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Recent studies have demonstrated that stem cells have attracted much attention
due to their special abilities of proliferation, differentiation and self-renewal, and
are of great significance in regenerative medicine and anti-aging research. Hence,
finding natural medicines that intervene the fate specification of stem cells has
become a priority. Ginsenosides, the key components of natural botanical
ginseng, have been extensively studied for versatile effects, such as regulating
stem cells function and resisting aging. This review aims to summarize recent
progression regarding the impact of ginsenosides on the behavior of adult stem
cells, particularly from the perspective of proliferation, differentiation and self-
renewal.
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1 Introduction

Panax ginseng (Panax ginseng C. A. Mey.), is a perennial herb of the Araliaceae family
(de Oliveira Zanuso et al., 2022). This plant is widely cultivated in East Asia, particularly in
China, Japan, and South Korea, due to its characteristic of being both a food and a medicine
(Ichim and de Boer, 2020). Ginseng contains ginsenosides, polysaccharides, proteins,
polypeptides, amino acids and other chemical components, among which ginsenosides
are the main medicinal components (Lee et al., 2019). Currently, around 200 types of
ginsenosides have been reported (Ratan et al., 2021). Based on the classification of
ginsenosides by glycoside type, ginsenosides generally be compartmentalized into two
categories: dammarane-type tetracyclic triterpene and oleanane-type pentacyclic
triterpene saponins (Hou et al., 2021). Dammarane-type ginsenosides are the primary
types and biologically active components of ginsenosides, which are divided into
protopanaxadiol (PPD) types (including ginsenosides Ra1, Ra2, Ra3, Rb1, Rb2, Rb3, Rc,
Rd, Rg3, Rh2, F2, compound K, malonyl-Rb1, malonyl-Rb2, malonyl-Rc and malonyl-Rd,
etc.) and protopanaxatriol (PPT) types (including ginsenosides Re, Rf, Rg1, Rg2, F1 and Rh1,
etc.) (Pan et al., 2018). In contrast, oleanane-type ginsenosides (including Ro, Rh3, Ri, etc.)
are rare in ginseng species (Zhang H. et al., 2022). The experimental pharmacological
research of ginsenosides have shown that the number of sugar residues contained in the
branched, the position of glycosides, and their stereoselectivity all affect the pharmacological
activity of ginsenoside monomers (Piyasirananda et al., 2021; Yousof Ali et al., 2021; Ali
et al., 2022). Oral administration of ginsenosides is the major approach, but they are not
easily absorbed by themselves with low bioavailability (Won et al., 2019). On the contrary, a
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large number of enzymes or gut microbiota can convert ginsenosides
into deglycosylated products with a higher bioavailability and
pharmacological activity that can be easily absorbed by human
body (Yang L. et al., 2020). Ginsenosides have been found to
possess a range of pharmacological effects, such as anti-aging (de
Oliveira Zanuso et al., 2022), anti-tumor (Wong et al., 2015),
hematopoietic recovery (He et al., 2021), promotion of
osteogenesis (Wu et al., 2022), and neuroprotection (Rokot et al.,
2016). In clinical trials, ginsenosides have been beneficial to the
treatment of acute ischemic stroke, cancer, and chronic kidney
disease, and can prompt oxidative stress or inflammation caused
by exercise challenges (Table 1). Although ginsenosides exhibit
various positive physiological activities, this review will focus on
the relationship between ginsenosides and stem cells.

Stem cells, encompassing both adult stem cells and embryonic
varieties, are essential for developing human tissues and maintaining
homeostasis (Zakrzewski et al., 2019). Their unique properties of self-
renewal, high proliferation, and differentiation into multiple lineages
make them attractive for a variety of applications, such as cell
replacement as well as tissue and organ renewal in regenerative
medicine (Brassard and Lutolf, 2019), exploration of regulatory
mechanisms during embryonic development (Weatherbee et al.,
2021), therapy for various diseases (Sinenko et al., 2021), the
establishment of disease models (Sterneckert et al., 2014) and drug
screening and development (Kumar et al., 2021). Notably, the fate
specification of stem cells (proliferation, differentiation and self-
renewal) is involved in the regulation of the body’s biological
process. An imbalance in fate specification can lead to the
emergence and progression of aging or even disease (Chandel et al.,
2016). Excessive proliferation of stem cells can lead to the development
of tumors and cancers (Najafi et al., 2019), while impaired self-renewal
and differentiation of stem cells can limit the potential of tissue and
organ regeneration and damage repair, such as in the case of aging and
nervous system injury (De et al., 2021; Sivandzade and Cucullo, 2021).
Consequently, understanding the regulation of stem cells fate is
indispensable for the prevention of aging and many diseases. The
stem cell niche refers to the microenvironment that maintains the
proliferation, differentiation and self-renewal of stem cells (Hicks and
Pyle, 2023). Stem cells can receive signals from the ecological niche and
respond accordingly, which plays an important role in supporting and
coordinating the activities of stem cells (Chacón-Martínez et al., 2018).
Ginsenosides inhibit inflammatory responses and reduce oxidative
stress to improve the stem cells niche (Hu et al., 2015; Wu et al.,

2020). Also, ginsenosides can promote stem cell proliferation,
differentiation into specific cell types, or self-renewal, thus regulating
stem cell function (He et al., 2019; He and Yao, 2021). In this review, we
summarize the effects of various ginsenosides on adult stem cells,
especially mesenchymal stem cells (MSCs), hematopoietic stem cells
(HSCs), neural stem cells (NSCs) and cancer stem cells (CSCs), thereby
elucidating the underlying mechanisms of ginsenosides in regulating
fate specification of stem cells.

2 Transport and metabolism in stem
cell niche of ginsenosides

The stem cell niche refers to the microenvironment at a specific
location in a tissue or organ, which provides the necessary support
and regulation for stem cells to maintain their proliferation,
differentiation and self-renewal capabilities (Chacón-Martínez
et al., 2018). The niche consists of stromal cells and the factors
they secrete, such as adhesion molecules, soluble factors (cytokines,
growth factors, metabolites, and nutrients), and matrix proteins. In
addition, physical factors such as calcium ions and oxygen
concentration also influence the characteristics of the stem cell
niche. Recently the transport and metabolism of prototypical
ginsenosides or ginsenoside metabolites in various types of stem
cell niches have received extensive attention. ATP-binding cassette
(ABC) transporters (especially ABCB1 and ABCG2) are clinically
important transporters and drug efflux pumps, and their expression
affects the differentiation activities of NSC stem cells (Lin et al.,
2006). Specifically, downregulation of ABCB1 (also known as
P-glycoprotein, p-gp) or ABCG2 (BCRP) expression promotes
the differentiation of NSCs into astrocytes or neurons (Lin et al.,
2006). Ginsenosides and their metabolites (CK, PPD, and PPT) have
been studied to be potential inhibitors of p-gp and BCRP (Jin et al.,
2006; Li et al., 2014). Those findings suggest that ginsenoside
metabolites may antagonize ABC transporter expression, thereby
benefiting NSC differentiation. Furthermore, overexpression of
ABC transporters in CSC supports drug resistance (Li et al.,
2010). The inhibition of ginsenosides on the efflux effect of ABC
transporters may be one of the means to promote the sensitivity
of CSCs to chemotherapeutic drugs. In addition, the enzymes
involved in drug metabolism are mainly cytochrome P450
(CYP450), including CYP2C9, CYP3A4, etc. The inhibition of
CYP450 prolongs the metabolism time of the drug in the body

TABLE 1 Clinical efficacy of ginsenosides.

Component Application Effect Mechanism References

Rd AIS neuroprotection microglial proteasome activity and sequential
inflammation↓

Zhang et al.
(2016)

Rg3 AL anti-angiogenic PI3K/Akt and ERK1/2 pathways↓ Zeng et al. (2014)

Rb1 CKD alleviate kidney dysfunction oxidative stress and inflammation↓ Xu et al. (2017)

Rg1 sports challenge reduce oxidative damage and inflammation TBA activity↓ and TNF-α mRNA↓ and IL-10
mRNA↑

Hou et al. (2015)

Rg1 exercise
resistance

induces immune stimulation and reduces skeletal
muscle aging

p16INK4a and MPO mRNA levels↓ Lee et al. (2021)

AIS, acute ischemic stroke; AL, acute leukemia; CKD, chronic kidney disease.
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and increases the blood drug concentration. CYP450 is highly
expressed in the bone marrow niche (HSC living environment)
(Zhang Y. et al., 2013). The competitive inhibition of ginsenoside
metabolites (CK, PPD, and PPT) on the activity of liver drug
enzymes (CYP2C9, CYP3A4) may be the reason why they reside
in the bone marrow niche and exert their pharmacological effects,
thereby regulating HSC function (Liu et al., 2006). Recently, the
transport of ginsenosides in the NSC niche was found that the
active transport of ginsenoside Rb1 to brain microvascular
endothelial cells, the cellular component of the NSC niche,
was dependent on the glucose transporter GLUT1 (Wang
et al., 2018). This finding suggests that upregulation of
GLUT1 can increase the bioavailability of ginsenosides in
NSCs and their niche. In the future, more in vivo experiments
are needed to screen and verify the key enzymes/proteins related
to the transport and metabolism of ginsenosides in stem cells and
niches, which will help the uptake of ginsenosides by stem cells.

3 Effects of ginseng on different types
of stem cells

Stem cells are pluripotent cells with the capacity for self-renewal,
self-replication, and differentiation into multiple cell types in a
suitable microenvironment, which are divided into two forms
according to developmental stages: embryonic stem cells and
adult stem cells. Considering that embryonic stem cells are
subject to ethical restrictions, are prone to self-differentiation,
and may have abnormal karyotypes after many passages, the
research on the effect of ginsenosides on stem cells mainly
focuses on adult stem cells (Scott and Reijo Pera, 2008). Adult
stem cells, including hematopoietic, neural, and mesenchymal stem
cells, are slow-dividing and quiescent cells with low proliferative
rates and are the source of adult tissue (Gurusamy et al., 2018).
Additionally, adult tissue stem cells can turn into cancer stem cells
(White and Lowry, 2015), in solid tumors, the acquisition of cancer

TABLE 2 Changes and effects of ginsenosides on the physiological behavior of various stem cells.

Cell
type

Derive Saponins Effect Targets/pathways References

CSCs colon 20(R)-Rg3 stemness and EMT↓ SNAIL signal axis↓ Phi et al. (2019b)

colon Rd stemness and EMT↓ EGFR signal axis↓ Phi et al. (2019a)

colon CK stemness and cancer metastasis↓ Nur77-Akt feedforward signaling↓ Zhang et al. (2022b)

lung Rk1/Rg5 EMT↓ Smad and NF-κB/ERK↓ Kim et al. (2021)

breast Rg3 stemness and self-renewal↓ Akt mediated self-renewal↓ Oh et al. (2019)

skin/liver Rh2 cell growth↓ Autophagy↑; β-catenin↓ Liu et al. (2015b), Yang et al. (2016)

ovarian Rb1 self-renewal↓ Wnt/β-catenin↓ Deng et al. (2017)

LSCs CD34(+) CD38(−)
LSCs

Rg1 proliferation↓ and cellular
senescence↑

SIRT1/TSC2↑;p16INK4a↑ and hTERT↓ Tang et al. (2020a), Tang et al. (2021)

MSCs human adipose Rg1 proliferation↑ and adipogenic
differentiation↑

Adipocytokine↑, IL-17↓ Xu et al. (2022)

bone marrow Rg1 aging↓ NRF2 and Akt↑; GSK-3β
phosphorylation ↓ and Wnt↓

Wang et al. (2020b), Wang et al.
(2021)

bone marrow Rg1 osteogenic differentiation↑ GR/BMP-2↑ Gu et al. (2016)

bone marrow Rg1 oxidative stress-induced apoptosis↓ PI3K/Akt↑ Hu et al. (2016)

bone marrow Rb1 migration↑ SDF-1/CXCR4 axis and PI3K/Akt↑ Liu et al. (2022b)

bone marrow 20(S)-Rb2 Dex-induced apoptosis↓ GPR120↑, Ras-ERK1/2↑ Gao et al. (2015)

human umbilical
cord

Rg1 proliferation↑ and differentiation to
NSCs↑

Wnt/β-catenin↓ and Notch↓ Xiao et al. (2022)

muscle Rb1 oxidative stress and mitochondrial
dysfunction↓

NF-κB↓ Dong et al. (2022)

HSCs Sca-1(+) HSC/
HPCs

Rg1 HSCs aging↓ SIRT6↑, NF-κB↓; SIRT1-FOXO3 and
SIRT3-SOD2↑; oxidative stress↓ and
Wnt/β-catenin↑; p16(INK4a)-Rb and
p19(Arf)-p53-p21(Cip/Waf1)↓; p53-
p21-Rb signal↓

Chen et al. (2014), Yue et al. (2014),
Tang et al. (2015), Li et al. (2016), Cai
et al. (2018), Tang et al. (2020b), Zhou
et al. (2020b), Wang et al. (2022a)

NSCs - Rg1 aging↓ Wnt/β-catenin↓; Akt/mTOR↓ Chen et al. (2018), Xiang et al. (2019)

- 20(S)-PPD proliferation↓ and differentiation↑ cell cycle↓, autophagy↑ Chen et al. (2020)

endogenous CK neurogenesis↑ LXRα↑ Zhou et al. (2020a)

CK, Compound K.
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stem cells phenotype can be achieved through epithelial-
mesenchymal transition (EMT) (Shibue and Weinberg, 2017).
The wide application of stem cells in regenerative medicine has
attracted much attention. At first, stem cells were transplanted into
the human body to repair damaged tissues, utilizing their potential
for self-replication and multi-directional differentiation (Giri et al.,
2019). Furthermore, advancements in stem cells reprogramming
technology have led to increased use of stem cells for the restoration
of aging cells, that is, stem cells can restore proliferate, differentiate,
and self-renewal ability to delay the aging process (Alle et al., 2021).
Recently, stem cells were suggested as a promising therapeutic
option for various diseases, including but not limited to
neurodegenerative diseases, cancer, stroke, myocardial ischemia
(Yamashita and Abe, 2016; Michler, 2018; Sivandzade and
Cucullo, 2021; Yin et al., 2021). Meanwhile, ginsenosides have
been proven to slow the pathological process of these diseases
and improve the condition (Huang et al., 2019; Wang R. et al.,
2020; Yang JE. et al., 2020; Yao and Guan, 2022). In recent times,
research studies have demonstrated the significant regulatory impact
of ginsenosides on the self-renewal, differentiation, and proliferation
of stem cells, thereby highlighting their potential for clinical use in
improving the field of stem cells research (Table 2).

3.1 Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are the progenitors of
numerous cell types and have the capacity to proliferate and
differentiate into a variety of cell lineages such as osteoblasts,
adipocytes, myoblasts, and others (Xie et al., 2020).

3.1.1 Effect on differentiation of MSCs
Ginsenosides have shown the potential to induce differentiation

of MSCs in vitro, especially in inducing osteogenic differentiation,
which is the consequence of expressing or activating genes/
transcription factors and signaling pathways related to osteogenic
differentiation (He et al., 2019). The role of BMP-2/Smad pathway in
MSCs osteogenic differentiation has been fully confirmed (Aquino-
Martínez et al., 2017). As an indispensable growth factor for driving
osteogenic differentiation, BMP-2 can activate the intracellular
Smad pathway to form Smad complexes that enter the nucleus
and promote the expression of the osteogenic transcription factor
RUNX2 (Wang et al., 2017). Such the BMP-2/Smad signaling
pathway can be activated by ginsenoside Rg1 to promote
osteogenic differentiation of bone marrow mesenchymal stem
cells (BMSCs), which is mediated by glucocorticoid receptor
(GR) nuclear translocation (Gu et al., 2016). In addition, the
Wnt/β-catenin signaling pathway is a key pathway that regulates
the osteogenic differentiation of MSCs by regulating the localization
of β-catenin, thereby regulating the expression of downstream
osteogenesis-related proteins and genes. GSK-3β is an
intermediary of the Wnt/β-catenin signaling pathway, and its
high activity negatively affects the stability and transcriptional
activity of β-catenin, blocks the activation state of the signaling
pathway, and thus regulates the function and fate of stem cells.
Currently, researchers believe that ginsenosides regulate the
osteogenic differentiation of MSCs by regulating the Wnt
signaling pathway. For instance, ginsenoside Rg1 can regulate the

differentiation capacity of MSCs, stimulate bone and cartilage
formation, by inhibiting the phosphorylation of GSK-3β and
reducing the excessive activation of the Wnt/β-catenin pathway
in aging cells (Wang Z. et al., 2020). Conversely, ginsenoside
compound K (CK) (the main metabolite of original propanediol
ginsenoside in gut bacteria) activates the Wnt/β-catenin signaling
pathway in vitro and promotes the expression of the downstream
Wnt target gene Runx2 (osteogenic transcription factor), inducing
the osteogenic differentiation of rat bone marrow-derived
mesenchymal stem cells (rBMSCs) (Ding et al., 2022). In view of
the fact that ginsenosides have two sides to the regulation of Wnt/β-
catenin signaling pathway in promoting osteogenic differentiation of
MSCs, that is, they show differences in different states (aging or
normal) of MSCs. Future detailed functional exploration of
individual members of the Wnt/β-catenin pathway will help to
understand its regulatory mechanism.

Adipose tissue-derived MSCs (ADSCs) are also quite common
in clinical practice. Ginsenoside Rg1-promoted cartilage gene
expression in ADSCs in vitro induces cartilage phenotype
differentiation (Xu et al., 2015; Guo et al., 2023). Co-
administration of ginsenoside Rg1 and platelet-rich fibrin elevates
cytokines (VEGF, HIF-1α) in human ADSCs niche and promotes
soft tissue regeneration (Xu et al., 2016). Ginsenoside Rg1 can also
improve the ADSC niche mediated by adipokine and IL-17 signaling
pathways, and promote the adipogenic differentiation of human
ADSCs (Xu et al., 2022). These results indicate that ginsenoside may
expand MSCs by regulating MSC niche.

3.1.2 Effect on the proliferation and differentiation
of MSCs in the aging process

Oxidative stress is the key contributor to the aging of stem cells
(Chen et al., 2017). Ginsenoside Rg1 has been proven to promote
superior antioxidant and anti-inflammatory capabilities, which can
promote BMSC proliferation and improve the anti-aging
hematopoietic microenvironment (Hu et al., 2015). Similarly, the
senescence-associated secretory phenotype (SASP) resulting from
DNA damage and oxidative damage associated with the aging of
MSCs can be inhibited by ginsenoside Rg1, which promotes MSC
proliferation by enhancing its antioxidant capacity, the activation of
Nrf2 and PI3K/Akt is required for this process to occur (Wang et al.,
2021). Ginsenoside Rg2 activates AMPK-mediated autophagy
restores pig MSCs proliferation and inhibits oxidative stress-
induced replicative senescence in pig MSCs (Che et al., 2023).
Ginsenoside Rg3 mainly enhances the biogenesis ability of
mitochondria and antioxidant function by promoting Ca2+

concentration properly, thus improving proliferation and
differentiation potential and preventing human MSCs from aging
(Hong et al., 2020). These results suggest that administration of
ginsenosides may be a promising approach to counteract MSC aging
by intervening in oxidative stress-related pathways (Figure 1).

3.2 Neutral stem cells

During central nervous system (CNS) development, neural stem
cells (NSCs) are capable of generating neurons, astrocytes, and
oligodendrocytes (Vieira et al., 2018). Recently, the use of neural
stem cells therapy has emerged as a novel approach to treating
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diverse neurological disorders and is an ideal approach for treating
neurodegenerative diseases and CNS injuries (Liu Y et al., 2020).

3.2.1 Effect on proliferation and differentiation of
NSCs

Ginsenoside Rg1 increases the activity of NSE, a neuron
biomarker, in transplanted NSCs, implying neuron-like
differentiation (Li et al., 2015). Similarly, the key to
ginsenoside Rb1 regulating the progression of
neurodegenerative diseases is to increase the levels of
biomarkers such as Nestin (marking NSC), GFAP (marking
astrocytes) and NSE in Alzheimer’s disease (AD) rat models,
and promote NSC proliferation and differentiation into
astrocytes and neurons (Zhao et al., 2018). However, high
levels of NSE have been shown to induce nerve injury and
neuroblastoma, and the specific mechanism of how
ginsenoside promotes NSE expression to exert neuroprotective
effects needs to be further elucidated. Even though most
ginsenosides are difficult to penetrate the blood-brain barrier
due to their large molecular weight, their neuroprotective effects
have been confirmed by a large number of experimental studies
(Xie et al., 2018). The underlying mechanism may involve in
improving the niche of NSCs. Nerve growth factor (NGF), a
neurotrophic factor in the NSCs niche, can induce the
differentiation of NSCs derived from the brain (Regalado-
Santiago et al., 2016). Ginsenoside Rg1 precisely acts as an
analog of NGF, attenuating oxygen and glucose deprivation-
induced nerve injury and promoting proliferation and glial-
like differentiation of cortical NSCs (Gao et al., 2017).

3.2.2 Effect on proliferation and differentiation of
NSCs in the aging process

Recently, the function of WNT/β-catenin in the CNS has been
studied and dysregulation of its signaling can lead to the production
and aggregation of β-amyloid (Aβ) (Aghaizu et al., 2020). Ginseng
total saponins extract and its intestinal metabolite 20(S)-
protopanaxadiol (PPD) jointly induce the phosphorylation of
GSK-3β (ser9), activate the Wnt/GSK-3β/β-catenin pathway to
promote NSC proliferation and differentiation, thereby
improving cognitive impairment in AD by replacing damaged
neurons (Lin et al., 2020; Lin et al., 2022). However, in LiCl-
induced NSC senescence, ginsenoside Rg1-dependent
downregulation of phosphorylated GSK-3β expression interfered
with the activation of the Wnt/β-catenin pathway, thereby
promoting NSC proliferation and delaying senescence (Xiang
et al., 2019). Screening potential Wnt/GSK-3β/β-catenin -targeted
activators/inhibitors in ginsenosides will help ginsenosides promote
the development of stem cell regenerative medicine and anti-aging
drugs in nerves field.

Aging leads to a decline in the capacity of NSCs to enter the cell
cycle efficiently (Audesse and Webb, 2020). Genes involved in cell
cycle regulation play an essential role in the stability and activation
of NSCs (Roccio et al., 2013). Ginsenoside Rg1 targets Akt/mTOR to
downregulate the levels of cell cycle arrest-related proteins (p53, p16,
p21, and Rb) in NSCs, promoting NSC proliferation and alleviating
D-galactose-induced NSC aging (Chen et al., 2018). 20(S)-PPD
induces autophagy and cell cycle arrest, and promote NSC from
a proliferative state to a differentiated state and helps to repair
neurons in age-related neurodegenerative AD (Chen et al., 2020).

FIGURE 1
Ginsenosides resist oxidative stress, regulate MSC proliferation and differentiation, and alleviate MSC aging. SASP, senescence-associated secretory
phenotype.
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This suggests that further understanding of the molecular
mechanism by which ginsenosides alleviate NSC aging requires a
deeper study of upstream signaling pathways and regulators that
affect the cell cycle to maintain the continued health of NSCs.

3.2.3 Effect on transdifferentiation of NSCs
NSCs can also differentiate from other stem cells with

transdifferentiation capability, such as MSCs (Feng et al., 2014).
It was previously demonstrated that ginsenoside Rg1 promotes the
differentiation of transplanted bone marrow mesenchymal stem
cells (BMSCs) into neurons and glial cells (Bao et al., 2015). A
recent report has shown that ginsenoside Rg1 regulates miRNA-124
expression in vitro to promote neural differentiation of mouse
adipose stem cells (ADSCs) (Dong et al., 2017). Ginsenoside
Rg1 promotes the neural phenotype differentiation of human
ADSCs by activating the expression of NSC niche components
including growth associated protein-43 (GAP-43), neural cell
adhesion molecule (NCAM), and synapsin-1 (SYN-1) (Xu et al.,
2014). In addition, ginsenoside Rg1 promotes the differentiation of
human umbilical cord mesenchymal stem cells (hUCMSC) into
NSCs by downregulating genes involved in the Wnt/β-catenin and
Notch signaling pathways, including GSK3β, β-catenin, Notch1, and
Hes1 (Xiao et al., 2022). However, the transdifferentiation capability
of NSCs is still doubted since the possible contamination by other
tissue stem cells or embryonic stem cells in those studies.

3.3 Hematopoietic stem cells

HSCs have self-renewal potential and can differentiate into
various hematopoietic progenitor cells (HPC) and produce

specific blood cell types to maintain the stability of the entire
hematopoietic system (Zhao and Li, 2015).

3.3.1 Effect on proliferation of HSCs
External supplementation of HSCs is widely used to reconstruct

damaged bone marrow (Ju et al., 2020). Bone marrow suppression
and extramedullary hematopoiesis are often caused by the side
effects of chemotherapy drugs (such as cyclophosphamide; CY)
used by cancer patients, making stimulation of hematopoiesis, a
critical issue in the context of cancer therapy in clinical practice
(Wang et al., 2009; Ahlmann and Hempel, 2016; Hou et al., 2017).
Ginsenosides relieve CY-induced myelosuppression by activating
HSC proliferation (Figure 2). HSCs expansion in the bone marrow is
strictly regulated by the HSCs niche (Pinho and Frenette, 2019).
Multiple signal molecules are involved in HSCs-niche interactions,
such as Ca2+ sensitive receptor (CaSR), and three cytokines,
including granulocyte-macrophage colony stimulatory factors
(GM-CSF), erythropoietin (EPO) and thrombopoietin (TPO), are
essential for HSC proliferation (Szade et al., 2018). CaSR has been
demonstrated that regulates calcium ion levels to maintain calcium
homeostasis and plays critical regulatory roles in the retention and
colonization of HSCs after transplantation (Cho et al., 2020; Uslu
et al., 2020). Such the CaSR can be activated by ginsenoside Rg1 to
relieve CY-induced inhibition of the proliferation of Lin-Sca-1+c-
Kit + HSCs and CD3+ in mouse bone marrow and peripheral blood,
restoring bone marrow function (Xu et al., 2012). Another study
found that ginsenosides Re and Rk3 compensated hematopoietic
function by increasing the secretion of cytokines (GM-CSF, TPO,
EPO) to restore HSC proliferation. (Han et al., 2019). In addition,
the compensatory hematopoiesis of the spleen is the key means to
restore the normal hematopoietic function of the bone marrow.

FIGURE 2
The targets of ginsenosides promoting HSC proliferation and stimulating bone marrow hematopoiesis at the molecular level. CY,
cyclophosphamide; CaSR, Ca2+ sensitive receptor; GM-CSF, granulocyte-macrophage colony stimulatory factors; EPO, erythropoietin; and TPO,
thrombopoietin.
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Ginsenoside Rg1 treatment of CY-induced myelosuppressive mice
can improve bone marrow hematopoietic activity by improving the
spleen niche and promoting the proliferation and homing of c-Kit +
HSCs in the spleen (Liu HH. et al., 2015). As mentioned above, the
niche may be an important target for ginsenosides to regulate HSC

proliferation and assist recovery from myelosuppression. It is
necessary to focus on whether the effects of ginsenosides on
other cellular components in the stem cell niche feed back to the
stem cells so that we can more fully understand the regulatory
mechanisms of ginsenosides on stem cell fate specification.

FIGURE 3
Molecular mechanism of ginsenosides affecting HSC differentiation and self-renewal ability to resist HSC aging.
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3.3.2 Effect on differentiation and self-renewal of
HSCs in the aging process

Research indicates that HSC aging is linked to body aging since it
impairs the self-renewal and differentiation ability of stem cells,
resulting in decreased hematopoietic and immune function, and
ultimately leading to tissue and organ structure and function
deterioration throughout the body (Han et al., 2019). Therefore,
it is meaningful to study the mechanism of HSC aging to elucidate
the aging mechanism of the body. Ginsenoside Rg1 resisted HSC
senescence to restore self-renewal and multi-differentiation abilities
(Figure 3). Excessive ROS generated by oxidative stress may be the
main mediator of stem cell senescence induced by excessive
activation of Wnt/β-catenin signaling pathway (Zhang DY. et al.,
2013). The proto-oncogene c-myc and cyclin D1 are target genes
downstream of the Wnt pathway, and their overexpression may
cause DNA damage and induce oxidative stress senescence (Shang
et al., 2023). Ginsenoside Rg1 acts as a Wnt/β-catenin signal
transduction inhibitor to inhibit Wnt target genes (such as cyclin
D1 and c-myc) regulated by TCF/LEF transcription factors, thereby
delaying LiCl and D-galactose-induced Sca-1 + HSC/HPC oxidative
damage cascades restore their differentiation characteristics (Li et al.,
2016; Wang et al., 2022a).

Cell cycle arrest is another main cause of HSC aging (Mohrin
et al., 2015). Ginsenoside Rg1 antagonizes lead acetate, t-BHP,
radiation, and d-galactose by repressing some key genes in the
cell cycle regulator signaling pathway (p53-p21-Rb, p16INK4a-Rb, and
p53-p21Cip/Waf1)-induced HSC senescence, improving HSC self-
renewal capacity (Chen et al., 2014; Yue et al., 2014; Li et al.,
2016; Cai et al., 2018).

Sirtuins alter protein activity and stability through lysine
deacetylation is another important factor in regulating the
cellular aging process (Lasigliè, 2021). The sirtuins SIRT1, SIRT3,
and SIRT6 are key regulators of HSC lifespan (Wang et al., 2016;
Fang et al., 2020; Wang et al., 2022b). Activation of SIRT6 by
ginsenoside Rg1 inhibits NF-κB through H3K9 deacetylation, slows
down t-BHP-induced Sca-1+HSC/HPC senescence, and enhances
self-renewal and multi-differentiation abilities (Tang et al., 2015).
Ginsenoside Rg1 activates SIRT3 to trigger deacetylation to enhance
SOD2 activity and accelerate ROS clearance, slow down D-gal-
induced Sca-1+HSC/HPC senescence, and promote HSC self-
renewal and multi-differentiation ability (Zhou Y. et al., 2020).
Ginsenoside Rg1-mediated SIRT1-FOXO3 promotes Sca-1+HSC/
HPCmulti-differentiation and self-renewal (Tang et al., 2020b), and
inhibits gamma-ray-induced Sca-1+HSC/HPC senescence, which is
dependent on deactivation of SIRT1/SIRT3 Acetylation (Tang et al.,
2020a).

Overall, the mechanisms of ginsenoside in reducing HSCs aging
mainly involve Wnt/β-catenin, cell cycle, and sirtuins-mediated
senescence signaling pathway.

3.4 Cancer stem cells

CSCs exhibit qualities of stem cells and cancer cells, contributing
to tumor growth, metastasis formation, and recurrence (Tanabe,
2022). CSCs initiate and maintain cancer initiation and progression
based on stemness characteristics, namely, self-renewal and
abnormal proliferation/differentiation (Eun et al., 2017).

3.4.1 Effect on proliferation and self-renewal of
CSCs

Wnt/β-catenin signaling is the main signaling pathway that
promotes cancer cell stemness (Katoh and Katoh, 2022).
Ginsenoside Rh2 inhibits cutaneous squamous cell carcinoma
(SCC) proliferation by reducing the number of Wnt target gene
Lgr5+ cells by inhibiting β-catenin signaling (Liu S. et al., 2015).
Ginsenoside Rg3 and Rh2 reduced the self-renewal capacity of
glioblastoma stem cells (GSC) by inhibiting the expression of
transcription factor LCF1 and downstream Wnt target genes
(c-myc, CCND1) of Wnt/β-catenin signaling (Ham et al., 2019).
Notably, the anti-CSC capacity of Rh2 is better than that of
ginsenoside Rg3, which supports that ginsenoside metabolites
with fewer sugar groups have stronger anticancer activity.

Accumulating evidence indicates that EMT activation is
abnormally high in CSCs, and there is a strong correlation
between CSC stemness and EMT regulation (Tanabe et al.,
2020). Recently, many studies have reported that ginsenosides
exert anticancer effects by inhibiting EMT (Dai et al., 2019; Cai
et al., 2021; Li et al., 2021). Ginsenoside Rg3R has been shown to
reduce self-renewal in colorectal cancer cells (CRC) by targeting
the SNAIL signaling pathway and modulating EMT features (Phi
et al., 2019b). Ginsenoside Rk1/Rg5 inhibited EMT and self-
renewal ability of A549 cells and reduced A549 stemness, which
was dependent on the inhibition of TGF-b1-mediated
downstream signaling pathways, including Smad2/3, NF-κB,
ERK1/2, p38 MAPK and JNK (Kim et al., 2021). In addition,
the hypoxic niche is the main place to maintain the stemness
characteristics of CSCs. Nur77 is highly expressed in the hypoxic
niche in a mouse model of colon cancer. Ginsenoside CK, as a
Nur77 ligand target, prevents the Nur77-Akt activation circuit
and inhibits CSCs proliferation and stemness (Zhang M. et al.,
2022).

In summary, the regulation of ginsenosides on CSC stemness
(especially self-renewal ability) involves a variety of signaling
pathways. The key to solving the problem of targeted therapy is
to further study whether these pathways exist independently or
interact, which will be the key of tumor therapy in the context of
ginsenoside.

3.4.2 Effect on proliferation and self-renewal of
CSCs in the aging process

One subtype of CSC, leukemia stem cells (LSCs), is a crucial
origin of leukemia due to its high proliferation and abnormal growth
(Chavez-Gonzalez et al., 2017). Inducing LSCs aging can reduce the
number of LSCs, thus reducing the incidence of leukemia (Liu W.
et al., 2022). Ginsenosides mainly induce the aging of LSCs by the
following signals, slowing down or inhibiting the development of
leukemia.

One of the mechanisms by which ginsenosides induce
senescence in LSCs is their inhibitory potential for proliferation
and self-renewal, involving deacetylation mediated by SIRT1 (one of
the sirtuins members). Ginsenoside Rg1 downregulates the
expression of SIRT1/TSC2 in CD34+CD38-LSCs, significantly
increases the level of senescence marker SA-β-Gal, and reduces
the unit of mixed colony-forming (a marker of proliferation ability),
and reduces cell renewal and proliferation ability to induce LSCs
senescence (Tang et al., 2020a).
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Telomere is another pathway that ginsenosides participate in
regulating the proliferation and self-renewal of LSCs to induce
senescence. LSCs have relatively short telomeres, but they show
higher levels of telomerase activity compared with normal cells. This
enhanced telomerase activity may be an adaptive mechanism aimed
at maintaining the continuous replication of LSCs and promoting
leukemia development (Kuo and Bhatia, 2014). A recent study
found that ginsenoside Rg1 inhibited CD34+CD38-LSCs
proliferative activity, increased expression of telomere damage
effector p16INK4a, and decreased human telomerase reverse
transcriptase (hTERT, catalytic subunit of telomerase) to induce
its replicative senescence for the treatment of leukemia (Tang et al.,
2021). The above findings suggest that ginsenoside Rg1 inhibits the
ability of LSCs to self-renewal and proliferation, and its targeted
therapy based on the intervention of LSCs senescence is a valuable
direction for healing leukemia in the future.

Noteworthy, we observed that the effects of ginsenosides on CSC
and normal stem cell fate are asymmetric (inhibit CSC self-renewal,
promote normal stem cell proliferation/differentiation), which may
have multiple reasons. First, CSCs of various origins overexpress the
glucose transporter GLUT1 (Maliekal et al., 2022). Due to their steroidal
structure, ginsenosides have the property of recognizing GLUT carriers
on tumor cell membranes (Chen et al., 2022). Ginsenoside Rh2 inhibits
GLUT1-mediated aerobic glycolysis in tumor cells, and its role as a
tumor energy blocker may be responsible for the inhibition of CSC self-
renewal (Liu X Y et al., 2020). Second, ginsenoside Rb1 and its
deglycosylated product compound K also decreased the expression
of drug efflux pumps (ABCG2 and P-glycoprotein), inhibiting the
resistance of CSCs to chemotherapeutic drugs (Deng et al., 2017). In
addition, ginsenosides, as signal transduction regulators of the Wnt/β-
catenin pathway, participate in the regulation of stem cell fate
specification, with opposite effects on CSCs and normal stem cells.
The regulation of ginsenosides on Wnt/β-catenin is mainly through
regulating the activity of the intermediate GSK-3β to mediate the signal
transmission triggered by β-catenin degradation/nuclear translocation,
including the inhibition/activation of downstream transcription factors
(TCF/LEF) and Wnt target genes (CCND1, c-myc, Lgr5), thereby
affecting the function and fate of stem cells (Sferrazza et al., 2020).
We speculate that ginsenosides inhibit CSC and stimulate normal stem
cell proliferation/differentiationmay be due to the different functions of
Wnt target genes in CSC and normal stem cells. However, further
verification in vivo or clinical experiments is needed to support this
point of view. In conclusion, ginsenosides show potential as anticancer
drugs, but further research and clinical trials are currently needed to
determine their efficacy and safety.

3.5 Other kinds of adult stem cells

Although the effects of ginsenosides on other types of adult stem
cells are not well understood, existing findings suggest a potential
multifunctional regulatory capacity. For example, Ginsenoside Rd
can stimulate the proliferation of intestinal stem cells (marked by
Bmi and Msi-1) in rat inflammatory bowel disease model and
promote the differentiation into intestinal epithelial cells expressing
CDX-2, thereby restoring intestinal function (Yang et al., 2020).
Ginsenoside Rg1 promotes the odontogenic differentiation of human
dental pulp stem cells (hDPSCs) by upregulating osteogenesis-

promoting factors, including bone morphogenetic protein-2 (BMP-
2) and fibroblast growth factor 2 (FGF2) (Wang et al., 2014). In
addition, PPT induced the proliferation and differentiation of sperm
stem cells and resisted busulfan-induced reproductive toxicity in male
mice (Ji et al., 2007). These findings suggest that ginsenosides have a
wide range of effects, contributing to tissue repair and regeneration, and
holding potential for the treatment of various diseases. Strengthening
the study of the molecular mechanism of ginsenosides on other types of
adult stem cells will help its clinical application.

4 Conclusion

This review gives an overview of the fate specification effects of
ginsenosides on adult stem cells from the perspective of physiology
(including aging states) and pathology. However, currently most of
studies we reviewed are based on in vitro model and we still lack
knowledge of how ginsenosides affect stem cell proliferation and
differentiation or relieve dysfunctions in those processes in vivo and
whether ginsenosides have considerable value in clinical practice. To
figure out such limitations and the great potential of ginsenosides in
tissue repair, cell replacement and disease treatment, more research
(especially in vivo studies in distinct species) should be done to unravel
the underlying mechanism of ginsenosides in proliferation,
differentiation and self-renewal of different stem cell types.
Considering the continuous proceeding of research on ginsenosides
and proliferation as well as differentiation processes in various stem
cells, we believe the promise of ginsenosides in regenerative medicine
and healthy aging will be attested soon.
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