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Hematopoietic stem cells (HSCs) are important for the hematopoietic system
because they can self-renew to increase their number and differentiate into all the
blood cells. At a steady state, most of the HSCs remain in quiescence to preserve
their capacities and protect themselves from damage and exhaustive stress.
However, when there are some emergencies, HSCs are activated to start their
self-renewal and differentiation. The mTOR signaling pathway has been shown as
an important signaling pathway that can regulate the differentiation, self-renewal,
and quiescence of HSCs, and many types of molecules can regulate HSCs’ these
three potentials by influencing the mTOR signaling pathway. Here we review how
mTOR signaling pathway regulates HSCs three potentials, and introduce some
molecules that can work as the regulator of HSCs’ these potentials through the
mTOR signaling. Finally, we outline the clinical significance of studying the
regulation of HSCs three potentials through the mTOR signaling pathway and
make some predictions.
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Introduction

Hematopoietic stem cells (HSCs) exist in hematopoietic tissues and play an important
role in hematopoiesis. The HSC pool is divided into two different subpopulations according
to their long-term reconstituting capacity: long-termHSCs (LT-HSCs) and short-termHSCs
(ST-HSCs), which can later differentiate into multipotent progenitors and finally
differentiate into lymphoid or myeloid cells with various functions (Morrison and
Weissman, 1994; Buitenhuis et al., 2008).

Most HSCs maintain quiescence in vivo, which is an important mechanism for
maintaining the number of HSCs and hematopoiesis balance. Moreover, HSCs remain
in quiescence at a steady state to preserve their self-renewal potential and protect themselves
against genetic damage and exhaustive stress to ensure their longevity (Nakamura-Ishizu
et al., 2014; Calvi and Link, 2015; Chen Z. et al., 2021). Under stress conditions such as tissue
injury and inflammation, HSCs can be activated and enter the cell cycle, starting their self-
renewal and differentiation to respond to these emergencies (Eaves, 2015; Dzierzak and
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Bigas, 2018). In the self-renewal process, HSCs can generate progeny
cells that are identical to themselves to maintain pluripotency and
increase their number at the same time. For example, if HSCs are
transplanted into a patient to treat some diseases, LT-HSCs can self-
renew to rehab the impaired blood system after transplantation,
which is crucial for normal operation of the blood system and
recovery from some serious blood and autoimmune diseases
(Chabannon et al., 2018). Moreover, HSCs can differentiate into
almost any blood cell under certain conditions, most of which are
immune cells. It is important for the immune system to maintain its
function through the continuous generation of immune cells from
HSCs. In a word, HSCs differentiation, self-renewal, and quiescence
are all very indispensable for HSCs, they are tightly associated with
hematopoiesis balance and even life-long blood production. If
something goes wrong with these processes, unfortunately, not
only the blood system function is affected, some serious diseases,
such as hematopoietic failure or malignancies may therefore happen
as well (Reya et al., 2001; Rossi et al., 2008; Wang et al., 2015b; Xiong
et al., 2019; Wu et al., 2020).

The mammalian target of rapamycin (mTOR) is a serine/
threonine kinase, which can sense a variety of signals, including
environmental and intracellular signals from nutrients, growth
factors, and so on. Then, mTOR works as a regulatory center,
integrating these signals and starting to regulate various
important vital movements (Ning et al., 2022; Wolfe et al.,
2023). Due to its powerful regulatory function, the mTOR
signaling pathway plays an important role in regulating cell
growth, proliferation, metabolism, and so on (Saxton and
Sabatini, 2017). mTOR can compose two protein complexes,
mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2). mTORC1 has mTOR, Raptor, PRAS40, DEPTOR,
and mLST8. It is sensitive to rapamycin and regulates important
vital movements such as mRNA translation, cell growth, and
protein synthesis (Inoki et al., 2002; Wullschleger et al., 2006;
Saxton and Sabatini, 2017). mTORC2 also has mTOR, mLST8,
and DEPTOR, which are contained in mTORC1. What is different
from mTORC1 is that mTORC2 contains Rictor, which makes
mTORC2 insensitive to rapamycin. Besides, mTORC2 also
includes the regulatory subunits mSin1 and Protor1/2. and it is
correlated with gluconeogenesis, cytoskeleton organization, and
cell survival (Wullschleger et al., 2006; Hagiwara et al., 2012;
Saxton and Sabatini, 2017). The mTOR signaling pathway plays
an important role in many physiological processes, and
abnormalities in it are implicated in the pathogenesis of many
diseases, including cancer (Cai et al., 2014). Studies have found
that aberrant regulation of mTOR is a hallmark of many cancers
and mTOR can be used as a therapeutic target for cancer (Din
et al., 2012; Lastwika et al., 2016; Hua et al., 2019).

Several studies have already revealed that the mTOR signaling
pathway can regulate HSCs’ differentiation, self-renewal, and
quiescence potentials. Meanwhile, a variety of molecules have
already been found to regulate these three potentials by affecting
the mTOR signaling pathway. These studies may provide many new
approaches to regulate HSCs’ activities and have significance in
clinical treatment. In this review, we will discuss how the mTOR
signaling pathway functions to regulate these three potentials and
some molecules that can regulate these potentials by influencing the
mTOR signaling pathway.

Mechanism of the mTOR signaling pathway
regulating HSCs

mTOR signaling pathway is a very essential signaling pathway in
the cells. It has been demonstrated that mTOR signaling pathway
plays an important role in hematopoiesis and mTOR protein levels
vary considerably during hematopoiesis (Hoshii et al., 2014; Spevak
et al., 2020).

The mechanism by which the mTOR signaling pathway
regulates the fate of HSCs is not well understood, but some
existing studies have provided some evidence (Fernandes et al.,
2021). In fact, glucose transporter (GLUT)1 expression is associated
with mTOR activation in hematopoietic and non-hematopoietic
cells, which is the possible mechanism (Wu et al., 2018; Sharif et al.,
2019). As the results of a study by Sarrazy et al. (2016), bone marrow
production was impaired in GLUT1 knockout models, indicating
the vital role of GLUT1 in the mechanism. High expression level of
GLUT1 causes more glucose to enter the HSC. Then, high glucose
levels promote HSCmetabolism and induce HSCs to quit quiescence
and enter self-renewal and differentiation. High glucose levels in
HSCs will also lead to O-linked β-N-acetyl glucosamine protein
modifications and have regulating effects on HSCs (Saki et al., 2013).
What’s more, glucose in HSCs can directly regulate gene expression
and influence the function of cyclins, thus regulating the quiescence,
self-renewal and differentiation of HSCs (Albert et al., 2019)
(Figure 1).

Quiescence and self-renewal of HSCs
through the mTOR signaling pathway

In steady state, the majority of HSCs stay in a quiescent cell cycle
state. Studies have shown that less than 5% of HSCs are in the S/G2/
M phases of the cell cycle, 20% are in the G1 phase, and more than
70% of HSCs are in the G0 phase (Bradford et al., 1997; Cheshier
et al., 1999). This status is called HSC quiescence. For example, in the
bone marrow, HSCs proliferate the first 3 weeks after birth and after
that they stay in quiescence for a long time (Bowie et al., 2006).
These quiescent HSCs divide at a very slow rate and show
comparatively smaller cell size, lower transcriptional activity, and
metabolic activity. Furthermore, they exhibit deficient RNA content
and synthesize protein at an extremely slow rate (Wilson et al., 2008;
Foudi et al., 2009; Wilson et al., 2009; Buszczak et al., 2014; Signer
et al., 2014; Llorens-Bobadilla et al., 2015; Zismanov et al., 2016;
Xiang et al., 2022). Quiescence is of great significance as a basic
property of HSCs (Pietras et al., 2011). In detail, quiescence is
supposed to prevent functional exhaustion and cell damage, and it
can protect HSCs from malignant transformation and malfunction
(Calvi and Link, 2015) so that HSCs in quiescence can be preserved
for a long time and the number of HSCs can be maintained. In other
words, maintain of quiescence is pivotal for HSCs to preserve their
function and number.

The self-renewal of HSCs is the ability to produce identical
daughter HSCs without differentiation (Seita and Weissman, 2010).
HSC is defined by its capacity to continuously produce all types of
blood cells. In this definition, HSCs continuous function just reflects
their self-renewal feature (Weissman, 2000). In homeostatic
conditions, HSCs maintain the potential for long-term self-

Frontiers in Cell and Developmental Biology frontiersin.org02

Ling et al. 10.3389/fcell.2023.1186850

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1186850


renewal and the capacity for subsequent reconstitution. However, in
some emergencies, severe hematopoietic stresses make HSCs lose
this potential (Lee et al., 2018). The self-renewal potential is
indispensable for HSCs because the organism needs self-renewal
to retain an adequate pool of HSCs, which is important for the
balance of hemopoietic function and the normal operation of the
hemopoietic system. Furthermore, it should be mentioned that HSC
quiescence is important in preserving HSCs self-renewal potential of
HSCs (Matsumoto et al., 2011; Kobayashi and Suda, 2012; Qing
et al., 2014).

The two isolated populations of HSCs, LT-HSCs and ST-HSCs,
have different self-renewal capacities. LT-HSCs have higher self-
renewal capacity than ST-HSCs (Haug et al., 2008; Wilson et al.,
2008). Self-renewal capacity is also linked to age. Aged HSCs were
shown to show reduced self-renewal and regenerative capacities
(Bernitz et al., 2016). Regarding HSC self-renewal, the two protein
complexes mTORC1 and mTORC2 give play to diverse regulatory
roles. mTORC1 works as a down-regulator of HSC self-renewal. The
deficiency of the mTORC1 activator Rheb1 leads to expansion
in vitro and in vivo, indicating that the activation of
mTORC1 inhibits HSC self-renewal, as does its inhibition of
HSC quiescence (Wang et al., 2019). However, mTORC2 doesn’t
play an inhibitory role in HSC self-renewal regulation. The deletion
of Rictor, the essential component of mTORC2, has unobvious
effects on HSC maintenance and self-renewal (Kalaitzidis et al.,
2012).

Previous research has clarified that some cell cycle regulators,
transcription factors, epigenetic molecules, niche factors, and even
physical factors all can regulate HSC switching between quiescence
and self-renewal, thus maintaining the balance of hematopoietic
(Göttgens, 2015; O’Reilly et al., 2021). Furthermore, a series of
kinase-related signaling pathways have been found to regulate

quiescence and self-renewal in HSCs synergistically, among
which the mTOR signaling pathway is indispensable. It has
already been revealed that activation of mTOR, or its upstream
protein kinase B (Akt), obviously induces quiescent HSCs to exit
quiescence and enter self-renewal progress (Chen et al., 2008;
Juntilla et al., 2010; Kharas et al., 2010; Hemmati et al., 2019).

Here are some molecules that have been shown to regulate HSC
switching between quiescence and self-renewal by influencing the
mTOR signaling pathway (Table 1). The nuclear gene DEK has been
found in recent research to have something to do with HSC
quiescence. Chen et al. showed that DEK protein upregulated the
expression of genes associated with cell cycling but inhibited the
expression of genes associated with quiescence maintenance in
HSCs. It is partly because DEK deficiency activates mTOR
signaling, and then HSCs are induced to exit quiescence and
enter cell cycles (Chen Z. et al., 2021). Another study showed
that Sel1L/Hrd1 endoplasmic reticulum-associated degradation
(ERAD) complex is more active in quiescent HSCs, and the
expression of Sel1L/Hrd1 genes is reduced when HSCs exit
quiescence. Mechanically, Ras homolog enriched in brain (Rheb),
a small GTPase, may function as a substrate of ERAD, which links
Sel1L/Hrd1 ERAD to mTOR activation (Liu et al., 2020). Rheb
accumulates in activated HSCs and it is known to directly activate
mTORC1 (Saucedo et al., 2003; Liang et al., 2020). When Liu et al.
eliminated Sel1L, the ERAD deficiency leads to the accumulation of
Rheb proteins, thus activating mTORC1 in HSCs. Therefore, HSCs
are induced to exit quiescence (Liu et al., 2020). In this way, Sel1L/
Hrd1 ERAD functions as a positive regulator that keep HSCs in
quiescence. The tuberous sclerosis complex (TSC) can inhibit the
target of rapamycin, and the genetic lesions of two genes, TSC1 and
TSC2, are the cause (Consortium, 1993; Slegtenhorst et al., 1997).
Among them, the TSC1 protein can function as a negative regulator

FIGURE 1
Mechanism of the mTOR signaling pathway regulating HSCs.
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of mTORC1 (Inoki et al., 2002; Potter et al., 2002). Previous research
found that TSC1 deletion led to mTOR activation, which could show
that TSC1 preserves the quiescence of HSCs by inhibiting the
activation of mTOR (Saucedo et al., 2003).

Some other proteins can also maintain HSCs quiescence
through the mTOR signaling pathway. F-box and WD-40
domain protein 7 (Fbxw7), the component of the F-box protein
of a stem cell factor–type ubiquitin ligase, can also regulate the
quiescence of HSCs. The deletion of Fbxw7 in adult HSCs results in
loss of quiescence in HSCs (Iriuchishima et al., 2011). mTOR is one
of the substrates of Fbxw7 (Mao et al., 2008). Forced expression of
Fbxw7α, the main Fbxw7 isoform in HSCs, induces the degradation
of the mTOR protein, thus keeping HSCs in quiescence
(Iriuchishima et al., 2011). Itpkb is also found to function as an
important regulator of HSC homeostasis which can ensure HSCs’
quiescence (Siegemund et al., 2015). Proto-oncogenic class I
phosphoinositide-3-kinases (PI3K) and their effectors such as
Akt, mTORC1 and mTORC2 are important regulators of HSCs
(Saucedo et al., 2003; Gan et al., 2008; Ito et al., 2012; Liang et al.,
2020; Liu et al., 2020). Siegemund et al. showed that Itpkb has an
important role in regulating HSCs homeostasis. The mechanism is
that Itpkb inhibits cytokine-induced PI3K signaling, thus inhibiting
Akt/mTORC1 activation in HSCs. Therefore, Itpkb can act as a
positive regulator that promotes HSC quiescence (Siegemund et al.,
2015). Sterol regulatory element binding factor-1c (Srebf1c) works
as a significant metabolic regulator in both humans and mice (Wang
et al., 2015a). Studies found that Srebf1c also plays an important role

in HSC quiescence. The deficiency of Srebf1c causes the
hyperactivation of mTORC1, which promotes HSCs to quit
quiescence and enter cell cycles. Therefore, Srebf1c also helps
HSCs remain in quiescence by inhibiting the overactivation of
mTORC1 in the mechanism (Schmidt, 2013). Folliculin (FLCN)
is a multifunctional protein that can modulate a variety of signaling
pathways playing important roles in cells activities like growth,
metabolism, proliferation, adhesion, and survival (Schmidt, 2013;
Tee and Pause, 2013). The research found that FLCN also functions
to maintain the quiescence of adult HSCs (Baba et al., 2016).
Mechanically, mTORC1 activation may explain why HSCs quit
quiescence and hematopoietic failure occurs with loss of FLCN
(Baba et al., 2016).

In addition, many studies have found some other types of
negative regulators of mTOR that can help keep HSCs in a
quiescent state, such as PTEN (Yilmaz et al., 2006; Zhang et al.,
2006) and PML (Ito et al., 2008). The deletion of them leads to the
hyperactivation of mTOR, then HSCs are induced to quit quiescence
and enter active cell cycling.

There are some special ways tomaintain the quiescence of HSCs.
Acute myeloid leukemia (AML), a genetically heterogeneous disease,
has something to do with the quiescence of HSCs. Extracellular
vesicles (EV) comprise many nanosized vesicles that carry protein
and nucleic acids (Butler et al., 2018). AML-EV is abundant in
micro-RNA (miR). The research found that AML-EV transfer miR-
1246 to LT-HSCs to cause the suppression of the mTOR subunit
Raptor, thus inhibiting protein synthesis in LT-HSCs. Therefore,

TABLE 1 Molecules that regulate HSC quiescence and self-renewal through mTOR signaling pathway.

Molecules Effects on mTOR Regulation of HSC quiescence and self-
renewal

References

DEK protein Inhibiting mTOR signaling Up-regulating quiescence maintenance-associated genes
to keep HSCs in quiescence

Chen et al. (2021b)

Sel1L/Hrd1 ERAD complex Inhibiting the accumulation of Rheb proteins to inhibit
the activation of mTORC1

Keeping HSCs in quiescence Liu et al. (2020)

TSC1 protein Working as a negative regulator of mTORC1 Preserving HSC quiescence Saucedo et al. (2003)

Fbxw7 Inducing the mTOR protein degradation Keeping HSCs in quiescence Iriuchishima et al. (2011)

Itpkb Inhibiting Akt/mTORC1 activation in HSC Promoting HSC quiescence Siegemund et al. (2015)

Srebf1c Inhibiting hyper-activation of mTORC1 Keeping HSCs in quiescence Schmidt (2013)

FLCN Inhibiting hyper-activation of mTORC1 Keeping HSCs in quiescence Baba et al. (2016)

PTEN Working as a down-regulator mTOR Keeping HSCs in quiescence Yilmaz et al. (2006)

PML Working as a down-regulator mTOR Keeping HSCs in quiescence Ito et al. (2008)

miR-1246 Causing the suppression of the mTOR subunit Raptor
and inhibiting protein synthesis

Keeping HSCs in quiescence Abdelhamed et al. (2019)

Lysosomes Degradation of lysosomal cargo reducing ROS levels Inducing HSCs to exit quiescence and enter self-renewal Liang et al. (2020)

GSK-3β Functioning downstream of PTEN Maintaining HSC self-renewal Huang et al. (2009)

ACA Influencing the PI3K/Akt/mTOR/PTEN pathway Up-regulating the expression of important genes to
induce HSC self-renewal

Becker-Kojić et al. (2013)

Myh9 Maintaining mTOR related pathway gene sets Preserving HSC self-renewal capacity An et al. (2022)

Dlk1-Gtl2 locus Suppressing the entire PI3K-mTOR pathway Maintaining HSC self-renewal capacity Qian et al. (2016)

PRMT5 Inhibiting the activation of mTOR Preserving HSC self-renewal capacity Tan et al. (2019)
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AML-EV induces HSC quiescence (Abdelhamed et al., 2019). Recent
research also showed that repression of lysosomal activation is
essential for the maintenance of HSC quiescence. The slow
degradation of lysosomal cargo reduces ROS levels and possibly
modulates amino acid efflux and mTOR activation. Hence,
inhibiting lysosomal activation can prevent the hyper-activation
of mTOR, thus keeping HSCs in quiescence (Liang et al., 2020).

There are also some molecules that can induce HSCs to quit
quiescence and start self-renewal by affecting the mTOR signaling
pathway (Table 1). Previous research found that glycogen synthase
kinase-3 (GSK-3) plays an essential role in regulating the balance
between self-renewal and lineage commitment in HSCs. GSK-3 has
two subtypes, GSK-3α and GSK-3β. Mechanically, GSK-3βfunctions
downstream of PTEN to induce HSCs self-renewal (Huang et al., 2009).

ACA is a novel human GPI-linked surface glycoprotein that was
previously isolated from human blood (Kojić and Terness, 2002). A
former study indicated ACA is a unique regulator of HSCs self-
renewal. Researchers demonstrated that the signaling machinery
initiated by the cross-linking of ACA is capable of generating and
maintaining human primitive self-renewing cells. The mechanism is
that ACA promotes the generation of primitive hematopoietic self-
renewing cells by upregulating the expression of important genes
known to participate in the control of self-renewal through the
PI3K/Akt/mTOR/PTEN pathway (Becker-Kojić et al., 2013).

Myosin heavy chain 9 (MYH9) also has something to do with
HSC self-renewal according to a recent study (An et al., 2022). An
et al. observed that Myh9 deficient HSCs were functionally
hampered to develop into mature hematopoietic precursors and
severely defective in repopulation capacity. That is, the loss of the
gene Myh9 seriously inhibits the self-renewal of HSCs. Therefore,
these HSCs cannot maintain long-term hematopoiesis. The result of
the Gene Set Enrichment Analysis showed that the gene sets were
negatively regulated in Myh9 deficient cells, which may indicate that
inhibition of HSC self-renewal caused by Myh9 deficiency is in part
due to the impaired mTOR signaling pathway (An et al., 2022).

The Dlk1-Gtl2 locus which contains the largest cluster of
miRNAs also participates in the regulation of HSC self-renewal.
Some researchers have linked the Dlk1-Gtl2 locus to energy
metabolism (Charalambous et al., 2012; Labialle et al., 2014).
Loss of imprinting at the Dlk1-Gtl2 locus induced
hyperactivation of the PI3K-mTOR Pathway, thus affecting the
self-renewal capacity. The study of Qian et al. (2016) further
revealed that the miRNA cluster in the Gtl2 locus suppresses the
entire PI3K-mTOR pathway and inhibits mitochondrial activity to
maintain HSC self-renewal capacity. Therefore Dlk1-Gtl2 locus
plays a positive regulatory role in HSC self-renewal.

Moreover, Tan et al. found that the Protein arginine
methyltransferase 5 (PRMT5) is associated with HSCs self-
renewal. Researchers found that reduction in PRMT5 activity
increases mTOR signaling and protein synthesis, which
constitutes a major branch of the proteostasis network (Klaips
et al., 2018). In the study, HSC loss was observed upon depletion
of PRMT5 activity, which was due to activation of mTOR caused by
the deficiency of PRMT5 activity. Thus, PRMT5 is an up-regulator
of HSC self-renewal which functions by inhibiting mTOR hyper-
activation. However, how reduced PRMT5 activity specifically
causes mTOR activation is still unclear and requires further
studies (Tan et al., 2019).

In summary, a wide variety of molecules can regulate HSC
quiescence and self-renewal by influencing the mTOR signaling
pathway. In terms of mechanism, most regulators preserve HSC
quiescence or induce HSC self-renewal by the regulation of
mTORC1 activation, further highlighting the significance of
mTORC1 in the switch between HSC quiescence and renewal.

Differentiation of HSCs through the mTOR
signaling pathway

In the above, it is mentioned that HSC is defined by its ability to
continuously give rise to all types of blood cells. The capacity to give
rise to all types of blood cells is the differentiation potential. It
indicates that HSCs have the multipotency to differentiate into all
functional blood cells, which is completely different from the self-
renewal capacity that produces identical daughter HSCs (Seita and
Weissman, 2010). This differentiation potential is also very
indispensable for HSCs because the blood cells derived from
HSCs are essential in life activities such as blood circulation and
immune regulation.

The blood system reflects the balance of two essential abilities of
HSCs, self-renewal and differentiation. Although mature blood cells
are generated at a high speed of more than one million cells per
second in adult humans (Ogawa, 1993), most of the HSCs from
which they are derived remain in a quiescent state and reside in the
G0 phase of the cell cycle under homeostatic conditions, as
mentioned above. In other words, only a small part of HSCs
participates in the generation of blood cells. Therefore, the
balance of HSC self-renewal and differentiation is essential for
the organism to retain a sufficient pool of HSCs and consistently
meet its own enormous demand for continuous replenishment of
short-lived mature blood cells at the same time (Seita and
Weissman, 2010). Furthermore, it has been shown that in
humans and mice, hematopoietic differentiation programs appear
to inhibit the self-renewal (van Galen et al., 2014).

As an important signaling pathway, the mTOR signaling
pathway also influences HSC differentiation. Research has found
that mTOR deficiency caused a reduction in blood lineage
production, indicating that mTOR may play an important
upregulation role in HSCs differentiation (Guo et al., 2013). Like
the regulation of HSC self-renewal, mTORC1 and mTORC2 also
play different roles in the regulation of HSC differentiation
(Kalaitzidis et al., 2012). This was demonstrated by the selective
knockout of Raptor and Rictor. These experiments demonstrated
that Raptor plays an important role in HSC differentiation;
conversely, Rictor has little impact on it. Therefore, it revealed
the significance of mTORC1 in regulating HSC differentiation
(Kalaitzidis et al., 2012; Magee et al., 2012). What’s more, some
researchers found that mTORC1 activation brings about HSC
differentiation in vitro and in vivo, and this effect can be
inhibited by rapamycin (Notario et al., 2018; Tan et al., 2019).
This further proved that mTORC1 is essential in the differentiation
potential, which functions as a positive regulator. According to the
previously stated, mTORC1 can activate GLUT1, thus causing high
glucose levels in HSCs. Then, signal transducer and activator of
transcription (STAT)5, which is a regulator of HSC differentiation,
can be activated by O-linked β-N-acetyl glucosamine (Freund et al.,
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2017). In this way, the differentiation of HSCs can also be
upregulated.

There are some molecules that can regulate HSC differentiation by
infecting the mTOR signaling pathway as well (Table 2). The toll-like
receptor 7 (TLR7), which is important in immune recognition, can
induce PI3K/mTOR signaling. During infection, it is important for
myelopoiesis. It is very likely that TLR7 induces the PI3K/mTOR
signaling, thus promoting HSCs myeloid differentiation (Buechler
et al., 2016; Fernandes et al., 2021). Another study found that when
not infected, TLR7 plays a similar role. In mice, TLR7 caused massive
myeloid expansion, which further revealed TLR7’s regulatory function
of HSC differentiation (Buechler et al., 2013). In this way,
TLR7 functions as an up-regulator of HSC differentiation through
the function of themTOR signaling pathway. Another toll-like receptor,
TLR2, is found relative toHSCsmyeloid differentiation in a recent study
as well. The study has revealed that the TLR2 ligand induces direct
myeloid differentiation of HSCs and hematopoietic progenitor cells
(HPCs). Mechanically, in response to TLR2 signaling, mTOR induces
the differentiation of HSCs and HPCs by directly activating
transcription factors involved in myeloid differentiation (Bono et al.,
2022).

In another research, Wang et al. knocked out Rheb1 and found
myeloid differentiation was impaired (Wang et al., 2019). As
mentioned above, Rheb1 can directly activate mTORC1, so
Rheb1 can also work as a positive regulator of HSC
differentiation. Furthermore, the ROS level also correlates with
HSC differentiation through the mTOR signaling pathway. It was
found when in ROS high levels, such as those found in the aging
bone marrow microenvironment, HSCs differentiation was induced
(Ludin et al., 2014). In the above, we introduced that mTOR can
regulate the ROS level, but the regulatory function seems to be
bidirectional, that is to say, ROS can as well regulate mTOR in some
way (Itoh et al., 2019).

Moreover, Megakaryocytes release sub-micron size
microparticles (MkMPs) are also shown to regulate HSCs
differentiation in recent research. The study results suggested that
MkMPs activate mTOR signaling in HSCs and HPCs to induce Mk
differentiation (Kao et al., 2022). The small RNAs in MkMPs play
important roles in this regulation process, especially two miRs, miR-
486-5p and miR-22-3p which are highly enriched in MkMPs. It is
probable that miR-486-5p from MkMPs directly targets PTEN, the
negative regulator of PI3K/Akt signaling in the development (Zhang
et al., 2006; Polak and Buitenhuis, 2012), and activates PI3K/Akt/
mTOR signaling in HSCs. Furthermore, the data suggest that miR-
22-3p plays an important role in cell proliferation and Mk
maturation (Kao et al., 2022). Therefore, MkMPs regulate the
differentiation in these ways.

As we can see, the regulation mechanism of HSCs’
differentiation is different from that of their quiescence and self-
renewal, almost the opposite. Therefore, it is reasonable that some
researchers found hematopoietic differentiation programs seem to
inhibit HSCs self-renewal.

Significance in the clinical treatment

As mentioned above, mTOR exactly plays an indispensable role
in the regulation of the quiescence, self-renewal, and differentiation
potentials of HSCs, and researchers have already found many
molecules that can regulate HSCs these three potentials of HSCs
through the mTOR signaling pathway. The significance of these
studies involves various aspects (Chen Z.-R. et al., 2021; Li and Chen,
2022). We think that one of the most important aspects is related to
clinical treatment. For example, Hematopoietic stem cell
transplantation (HSCT) is an important clinical treatment
method for a variety of refractory malignant hematopoietic
diseases, such as myelodysplastic syndrome, T cell lymphomas,
multiple myeloma, and chronic myelomonocytic leukemia (Singh
and McGuirk, 2016; De Witte et al., 2017; Schmitz et al., 2018;
Gonsalves et al., 2019; Cui et al., 2021). However, the clinical success
rate of HSCT isn’t that high, because the successful application of
HSCT is frequently inhibited by relapse and graft-versus-host
disease (GvHD) (Bhatia et al., 2017; Ghimire et al., 2017). Many
methods are tested to inhibit the influence of GvHD to Improve the
success rate of HSCT. Inspired by some research, mTOR inhibitors
have also been introduced to this field (Abouelnasr et al., 2013;
Ziakas et al., 2014). The pathogenesis of GvHD is partly attributed to
the activation of donor T cells (Ghimire et al., 2017), so a recent
study aims to target the mTOR signaling pathway in T cells to inhibit
their activation, thus improving the success rate of HSCT (Zhou
et al., 2022). Try to think differently, if we can use the above ways to
target the mTOR signaling pathway in HSCs to reduce the
differentiation of them, or reduce their differentiation into T cells
specificity, it may also make the successful application of HSCT
easier to achieve.

Leukemia is a kind of malignant clonal disease of HSCs, and
some of the leukemia stem cells (LSCs) directly originate from
malignant transformation of normal HSCs. More and more studies
have revealed that the imbalance of PI3K/Akt/mTOR signaling leads
to leukemogenesis, and increased activity of mTORC1 and
mTORC2 has been shown to play a critical role in the regulation
of the initiation, propagation and relapse of leukemia (Beauchamp
and Platanias, 2013; Fang et al., 2017; Evangelisti et al., 2018).
Therefore, there is a possibility that we can use the above ways

TABLE 2 Molecules that regulate HSC differentiation mTOR signaling pathway.

Molecules Effects on mTOR Regulation of HSC differentiation References

TLR7 Inducing the PI3K/mTOR signaling promoting HSC myeloid differentiation Buechler et al. (2016)

TLR2 Inducing mTOR signaling Activating transcription factors to induce HSC myeloid differentiation Bono et al. (2022)

Rheb1 Directly activating mTORC1 Working as a positive regulator of HSC differentiation Wang et al. (2019)

MkMPs Targeting PTEN to activate mTOR signaling Inducing HSC differentiation Kao et al. (2022)
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to regulate HSCs potential to prevent the occurrence of leukemia
early.

Anemia is defined as a condition in which the body has a
decreased number of circulating erythrocytes or red blood cells
(Vieth and Lane, 2014). That is to say, it is caused by the deficiency
of red blood cells. If we can use some ways to regulate the mTOR
signaling pathway in HSCs to induce them to differentiate into red
blood cells more, the symptoms of anemia may be lessened.

Of course, the significance of these studies in clinical treatment is
not limited to these diseases. Due to the regulatory role of mTOR in
the vital activities and metabolism of stem cells, studies on mTOR
may significantly promote the development of stem cell therapy.
Therefore, further research is still required, not only on mTOR itself,
but also on the whole PI3K/Akt/mTOR signaling pathway and
associated regulatory molecules.

Conclusion

In this review, we discuss the function of the mTOR signaling
pathway in the three important potentials, quiescence, self-renewal,
and differentiation, all of which are significant in the function of the
hematopoietic system. Furthermore, we introduced many molecules
that can regulate these three potentials by influencing the mTOR
signaling pathway. The regulatory function of some of the molecules
was found previously, while that of others was studied recently. And
with the continuous development of science and technology, more
and more molecules may be shown to regulate these potentials
through mTOR signaling.

When discussing the mechanismmTOR regulates HSCs these three
potentials, it is obvious that mTORC1 plays a more significant role than
mTORC2 in regulating every potential. mTORC1 functions as a negative
regulator of HSC quiescence and self-renewal, and its activation can
induce HSC differentiation. Therefore, it may also explain why HSCs
quiescence seems to be favorable to their self-renewal andwhy there is an
interaction of reciprocal inhibition between HSCs self-renewal and
differentiation. However, the function of mTORC2 in regulating
HSCs these potentials seems to be a lot weaker compared with that
of mTORC1 for some studies observed inapparent changes of HSCs
these three potentials with the deficiency of mTORC2. However, we
think that mTORC2may also regulate the three potentials in some ways,
and further studies are needed to clarify the function of mTORC2 in this
regard.

Furthermore, a variety of molecules have been found to regulate
these three potentials by influencing the mTOR signaling pathway.
Some of their regulatory function was found previously while others
are found recently. Andmany other molecules may be found to have
a similar regulatory function in the future. These studies provide
new ideas for regulating the three potentials and may be significant

in clinical treatment. If the results of these studies can be applied to
HSC-related treatment methods, such as HSCT, the success rate of
these studies may be promoted. Besides, these studies may be
favorable for the treatment of blood-related diseases as well,
including leukemia and anemia. Expect the significance in
clinical treatment, the significance in many other aspects is
waiting to be discovered in further studies.

In our perspective, existing studies mainly focus on mTOR and
its upstream signaling molecules, such as Akt and PI3K. While
molecules downstream of mTOR draw little attention. Future
research perhaps should focus more on the downstream of
mTOR to further elucidate the specific mechanisms by which
mTOR regulates various cellular life activities and cellular
metabolism.
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