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Diverse acute and chronic injuries induce damage responses in the
gastrointestinal (GI) system, and numerous cell types in the gastrointestinal
tract demonstrate remarkable resilience, adaptability, and regenerative capacity
in response to stress. Metaplasias, such as columnar and secretory cell metaplasia,
are well-known adaptations that these cells make, the majority of which are
epidemiologically associated with an elevated cancer risk. On a number of fronts,
it is now being investigated how cells respond to injury at the tissue level, where
diverse cell types that differ in proliferation capacity and differentiation state
cooperate and compete with one another to participate in regeneration. In
addition, the cascades or series of molecular responses that cells show are just
beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex
that is essential for translation on the endoplasmic reticulum (ER) and in the
cytoplasm, is recognized as the central organelle during this process. The highly
regulated management of ribosomes as key translational machinery, and their
platform, rough endoplasmic reticulum, are not only essential for maintaining
differentiated cell identity, but also for achieving successful cell regeneration after
injury. This review will cover in depth how ribosomes, the endoplasmic reticulum,
and translation are regulated andmanaged in response to injury (e.g., paligenosis),
as well as why this is essential for the proper adaptation of a cell to stress. For this,
wewill first discuss howmultiple gastrointestinal organs respond to stress through
metaplasia. Next, we will cover how ribosomes are generated, maintained, and
degraded, in addition to the factors that govern translation. Finally, we will
investigate how ribosomes and translation machinery are dynamically
regulated in response to injury. Our increased understanding of this
overlooked cell fate decision mechanism will facilitate the discovery of novel
therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and
translation machinery.
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1 Chronic inflammation, metaplasia, and
carcinogenesis in the GI tract

The gastrointestinal (GI) tract of a bilaterian is a “through-gut” system with oral and anal
openings, accommodating the perennial objectives of prey intake, digestion, and discharge of
remnants (Hartenstein and Martinez, 2019). As with other organs, the GI tract comprises
populations of cells with varying degrees of specialization and proliferative potential. For
instance, epithelial cells that line the luminal gut, including the esophagus, stomach, and
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small and large intestines, are constantly exposed to external stimuli
and rapidly shed, having a short half-life of days during homeostasis
(van der Flier and Clevers, 2009; Matsuo et al., 2017). These cells
must be constantly replaced by somatic stem cells located at the base
(esophagus, antral stomach, and intestines) or closer to the lumen
(stomach corpus) (Barker, 2014). In contrast, differentiated cells in
the GI tract that produce hormones and enzymes that aid in
digestion can have half-lives as long as months (e.g., chief cells
or parietal cells in the stomach, hepatocytes, or pancreas acinar cells)
(Ireland et al., 2005; Mills and Shivdasani, 2011; Matsuo et al., 2017).
The majority of the latter cell types maintain their colonies through
autoduplication, and since few are lost, they rarely multiply (Desai
et al., 2007; Malato et al., 2011; Aure et al., 2015; Brown et al., 2022).
The coexistence of diverse cell types in the same GI compartment is
an example of substantial cell-cell interaction playing a key role in
maintaining organ homeostasis.

Just as any other organ that must interact with its external
environment, GI organs suffer from chronic environmental insults
including viral and bacterial infections, which trigger mutagenic
responses that are at the heart of carcinogenesis. The most
common cause of stomach cancer is the class I carcinogen
Helicobacter pylori (H.pylori) bacterium, with Epstein-Barr
virus-associated gastric cancers also responsible for a significant
portion of cases (Tokunaga et al., 1993; Cancer, 1994).
Additionally, infections with the hepatitis B and C viruses
continue to be the leading worldwide cause of hepatocellular
carcinoma (Di Bisceglie, 1997; Arbuthnot and Kew, 2001);
while tobacco use, alcohol intake, chronic and acute
pancreatitis, are associated with pancreatic cancer (Alsamarrai
et al., 2014; Wei et al., 2016). Injury to GI organs frequently
involves multiple cell types in large areas of the affected organ. In
addition to the direct integration of a causative pathogen’s DNA
into host cells (as seen in hepatitis B virus infections) (Edman et al.,
1980; Shafritz et al., 1981; Tu et al., 2017), chronic injury-induced
altered environments and damaged intracellular signaling
pathways often result in a sustained cancer risk even after the
causative pathogen has been eradicated (Hatakeyama, 2014). This
is observed in metachronous gastric cancer formation after
endoscopic or surgical resection (Graham, 2014; Cho et al.,
2017; Choi et al., 2018), and sustained cancer risk in a
proportion of cured hepatitis C patients (El-Serag et al., 2016;
Luna-Cuadros et al., 2022).

Metaplasia is the transformation of one type of cell into another
type of cell that did not exist in that tissue at homeostasis (Giroux
and Rustgi, 2017). Metaplasias have long been recognized as a
reliable indicator of chronic inflammation and increased cancer
risk. A number of cell types in multiple organs exhibit metaplasias in
response to injury, and the GI tract is no exception. The presence of
goblet cells in the stomach, known as intestinal metaplasia, has long
served as an indicator of longstanding H. pylori infection and an
elevated risk of gastric cancer (Correa et al., 2010; González et al.,
2013; Lee et al., 2022). Likewise, the presence of goblet cells and
transition of squamous epithelium into columnar epithelium in the
esophagus—known as Barrett’s esophagus—is also a precursor to
esophageal cancer (Spechler and Goyal, 1986; Spechler, 2002).
Metaplasias occur in secretory cells in the GI tract as well. In
response to various injuries such as those from H. pylori
infection, stomach chief cells undergo metaplasia resulting in

expression of Trefoil factor 2 (TFF2) and the enzyme pepsinogen
(Goldenring et al., 2010; Goldenring, 2018; Goldenring and Mills,
2022). Hence, this is named spasmolytic polypeptide-expressing
metaplasia (SPEM). Acinar cells are another type of secretory cell
in the pancreas that produces digesting enzymes. These cells
undergo acinar-to-ductal metaplasia (ADM) that can ultimately
progress to pancreatic ductal adenocarcinoma (PDAC) through
the formation of pancreatic intraepithelial neoplasia (PanIN)
(Kopp et al., 2012; Storz, 2017).

Therefore, examining metaplasia in differentiated cells may
help to fill the large gap in our knowledge on how chronic
inflammation contributes to the development of cancer. The
question of how differentiated cells respond to injury and
become metaplastic at the molecular level is currently being
explored on numerous fronts. Secretory cells in the stomach
corpus (chief cells) and pancreas (acinar cells) have arguably
been the most thoroughly studied in this regard and are an
ideal tool for examining how cells manage their energy and
resources at the molecular level during injury and recovery
(Willet et al., 2018). At homeostasis, these cells are
characterized by disproportionate enrichment of secretory
machinery (e.g., rough endoplasmic reticulum (ER), Golgi
apparatus, and secretory vesicles) and quiescence. Injury leads
to an increase in cell plasticity in terms of both proliferative
capacity and lineage determination. Quiescent acinar cells in
the pancreas re-enter the cell cycle after injury and are also
known to become ductal-like cells or tuft cells (DelGiorno
et al., 2020; Ma et al., 2022). Likewise, chief cells in the
stomach corpus start to re-enter the cell cycle after injury and
can turn into other types of cells in the same organ, such as parietal,
neuroendocrine, or pit cells (Stange et al., 2013; Caldwell et al.,
2022). In the small intestine, various precursor secretory cells
might take on the function of crypt base columnar (CBC) stem
cells following the ablation of CBCs (Jadhav et al., 2017; Yu et al.,
2018; Murata et al., 2020). Hepatocytes can transdifferentiate to
cholangiocytes and vice versa under extreme injury (Raven et al.,
2017; Schaub et al., 2018). In fact, cell plasticity is evolutionarily
conserved and is even more prevalent in basal metazoans, such as
Porifera, where archaeocyte with totipotent stem cell properties
can readily transdifferentiate to differentiated choanocyte or
pinacocyte and vice versa (Sogabe et al., 2019).

Interestingly, the response of secretory cells to injury occurs
through an evolutionarily conserved, stepwise process, which was
recently termed paligenosis (Willet et al., 2018). Paligenosis consists
of three sequential stages: 1) autophagic-lysosomal degradation of
organelles, 2) induction of metaplastic/embryonic genes, and 3) re-
entry into the cell cycle. Numerous molecular characterizations of
genes governing paligenosis have been performed and are reviewed
in detail (Brown et al., 2022). Understanding these cell-intrinsic
changes that occur during paligenosis serves as a window to
investigate how other differentiated cells in the GI tract respond
to the injury, become metaplastic, regenerate, and may become
carcinogenic during the process.

Despite our progress in understanding paligenosis, we still lack
knowledge of a component that is crucial in determining cell fate
during injury: the ribosome. The generation and maintenance of
adequate numbers of ribosomes are essential for their primary
function of translation. However, what is even more important,
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especially during catabolic states such as during injury, is proper
regulation and production of the minimal number of ribosomes to
survive. This is because ribosome biogenesis (RiBi) is an energy-
intensive biological activity that consumes the majority of a cell’s
energy (Mayer and Grummt, 2006). In fact, 35%–60% of total
transcription in rapidly developing yeast cells is devoted to
rRNA, while 50% of RNA polymerase II transcription and 90%
of messenger RNA (mRNA) splicing are allocated to ribosomal
proteins (Warner, 1999; Moss and Stefanovsky, 2002; Cavanaugh
et al., 2004). Also, 80% of a proliferating eukaryotic cell’s work is
devoted to the creation of protein components (Schmidt, 1999).
Consequently, it is essential for the cell to tightly control the number
of ribosomes by regulating RiBi, maintenance, and degradation of
ribosomes, as well as the primary function of translation, according
to the energy state of a cell.

This review focuses on ribosomal behaviors that have been
understudied but are found in diverse cell types upon injury, and
highlights how this understanding of ribosomes can inform how we
view the plasticity of the digestive tract.

2 Life cycle of ribosomes at a glance

2.1 Ribosome biogenesis

A ribosome is an evolutionarily conserved ribonucleoprotein
(RNP) complex that is indispensable for translation (Petrov et al.,
2015). Ribosomes exist in the cytoplasm or on the rough ER, where
nascent polypeptides undergo extensive modification to be secreted
or membrane-bound (Palade, 1955; Alberts et al., 2002) (Figure 1).
De novo RiBi begins in the nucleolus, a well-known membrane-less
structure in the nucleus. The nucleolus is composed of three sub-
compartments: 1) the fibrillary center (FC), an electrodense region,
bordered by 2) a dense fibrillary component (DFC), and 3) granular
component (GC), where rRNAs mature and specific nucleolar
proteins are localized (e.g., fibrillarin in the DFC, and
nucleophosmin in the GC) (Leung and Lamond, 2003; Boisvert
et al., 2007; Farley et al., 2015). The FC consists of nucleolar
organizing regions (NORs), the number and location of which
varies among species. For instance, in humans, five acrocentric

FIGURE 1
Overview of the biogenesis and translation of ribosomes during homeostasis. Ribosomal DNA (rDNA) transcription occurs in the nucleolus by RNA
polymerase I. 18S rRNA is a component of the 40S small subunit (SSU), while 5.8S and 28S rRNA generates the 60S large subunit (LSU), along with 5S rRNA
transcribed in the nucleoplasm. mRNAs and ribosomal proteins are transcribed by RNA polymerase II together with initiation factors and template
mRNAs. In addition, RNA polymerase III generates tRNAs and 7SL-RNA in the nucleoplasm. SSUs undergo substantial modifications en route to the
cytoplasm,where they encountermRNA, initiation factors, and initiatormethionine tRNA to form a preinitiation complex, followed by addition of 60S LSU
to form 80S ribosome, also known as the monosome. The monosome can be translated in the cytoplasm as is or can form a polysome to generate
nascent peptides more efficiently (cytosolic translation). On the other hand, mRNAs containing a signal sequence can translocate to the endoplasmic
reticulum with the guidance of the signal recognition particle (SRP) complex as a monosome to produce secretory or membrane-bound peptides
requiring extensive post-translational modification. Also, de novo translation initiation can occur on ER.
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chromosomes (the short arms of chromosomes 13, 14, 15, 21, and
22) contain NORs, whereas Arabidopsis thaliana, for instance, has
two NORs on chromosomes 2 and 4, andMusmusculus has up to six
(12, 15, 16, 17, 18, and 19) (Henderson et al., 1972; Dev et al., 1977;
Haberer et al., 1996). Nevertheless, all NORs contain extensive
tandem repeats of ribosomal DNAs (rDNAs), which may be
required to accommodate a rapid increase in the demand for
RiBi that is directly related to cell survival (Kobayashi et al.,
1998). The transcription of RNA polymerase I and proteins such
as UBTF1 and TCOF1 is essential for rDNA transcription (Grummt,
2003; Valdez et al., 2004; Sanij et al., 2008). In addition, nucleolar
RNA polymerase II is directly engaged in stabilizing the nucleolus to
ensure correct RiBi by producing R-loops, which are triplex nucleic
acid structures, in addition to its role in small nucleolar RNA
(snoRNA) transcription (Dieci et al., 2009; Abraham et al., 2020).

rRNAs are initially transcribed as long 47S (Svedverg Unit) pre-
rRNA, that is cleaved in a regulated way on multiple spacer regions
(5′- and 3′-external transcribed spacers, and internal transcribed
spacers 1 and 2) to produce mature 18S, 28S, and 5.8S rRNA
[reviewed in detail in (Henras et al., 2015)]. 5S rRNA is unique
among backbone rRNA components in that it is transcribed using
RNA polymerase III from tandem arrays of 5S rDNAs in the
nucleoplasm (Ellis et al., 1988; Campell et al., 1992; Highett
et al., 1993). It is later integrated alongside 5.8S and 28S rRNAs
into the large subunit (LSU) of mature ribosomes with the help of
two ribosomal proteins, RPL5 and RPL11, which regulate the
positioning of 5S rRNA to the nucleolus (Steitz et al., 1988;
Chakraborty et al., 2011; Ciganda and Williams, 2011; Sloan
et al., 2013; Madru et al., 2015). Finally, chromatin modifiers
such as methylation or acetylation of histones influence rDNA
transcription, illustrating that initial rDNA transcription itself is
a non-trivial, delicately coordinated process that involves all three
RNA polymerases and massive energy consumption (Hirschler-
Laszkiewicz et al., 2001; Santoro and Grummt, 2001; Mayer
et al., 2006).

During the cleavage and maturation process of pre-rRNA,
various post-transcriptional modifications occur, which involves
three major processes: 1) hundreds of snoRNAs, the two major
types of which are box C/D, which mediates 2′-O-methylation (with
FBL, NOP56, and 58); and box H/ACA, which mediates
pseudouridylation (with NHP2, NOP10, and DKC1), 2)
200 auxiliary proteins localized in different sub-compartments of
the nucleolus (Henras et al., 1998; Newman et al., 2000; Dupuis-
Sandoval et al., 2015; Massenet et al., 2017), and 3) acetylation at
specific cytidine residues on 18S rRNA that is important for proper
maturation of 18S rRNA, mediated by a single enzyme, NAT10 (Ito
et al., 2014; Sharma et al., 2015; Sas-Chen et al., 2020). Through these
processes, two subunits; the large subunit (LSU: 5S, 5.8S, 28S, and
ribosomal large subunit proteins) and the small subunit (SSU: 18S
and ribosomal small subunit proteins), are produced and are
exported to the cytoplasm as subunits.

2.2 Translation at a glance

Translation of mRNA is the primary function of the ribosome
(Aitken and Lorsch, 2012; Hinnebusch, 2014). The formation of a
ternary complex in the cytosol initiates the translation process. With

GTP as an energy source, the trimeric eIF2 complex can bind to
Met-tRNAiMet, which then forms a 43S preinitiation complex with
the 40S SSU and other initiation factors: eIF1, eIF1A, and eIF3.
Additionally, mRNA is activated by the eIF4 complex (composed of
eIF4E, eIF4G, a scaffold protein and RNA helicase, eIF4A), and
poly(A)-binding protein (PABP), which aids in unwinding. The
eIF4G scaffold protein allows for the formation of a “closed-loop”
structure composed of eIF4F complex, mRNA, and PABP. Next, the
43S preinitiation complex loads onto the 7-methylguanosine cap
structure at the 5′-proximal region of mRNA and begins scanning
the 5′-untranslated region (UTR) to identify the start codon with the
help of DHX29 (Pisarev et al., 2008; Abaeva et al., 2011; Hashem
et al., 2013) until correctly placed at the ribosomal peptidyl-tRNA
(P) site of 43S preinitiation complex. This is the point when
eIF5 undergoes irreversible GTP hydrolysis on eIF2 to produce
stable 48S preinitiation complex. Finally, as eIF1 and the eIF2-GDP
complex are released and eIF5 is relocated, another GTPase, eIF5B,
catalyzes the LSU to join the 48S preinitiation complex and form the
80S ribosome (Pestova et al., 2000). When eIF5B departs from the
mature ribosome through GTP hydrolysis, only then does initiation
begin. Eventually, the 60S LSU is introduced, and eIF5A is used to
initiate elongation.

80S mature ribosomes can translate mRNA either as
monosomes (one ribosome bound to one mRNA) or as
polysomes (more than two ribosomes attached to a single
mRNA), and in two distinct locations: as a free-floating form in
the cytosol or on the rough ER. Thus, both cytosolic and ER-bound
ribosomes are capable of existing as both monosomes and
polysomes (Potter and Nicchitta, 2002; Ueno et al., 2012).
Secretory or membrane-bound (endomembraneous) proteins
associate with the ER as they are translated, while mRNAs
encoding cytoplasmic proteins are translated on free ribosomes.
This cellular compartmentalization is also known as mRNA
partitioning (Blobel and Dobberstein, 1975; Palade, 1975). Co-
localization to the ER is a co-translation process that needs the
signal recognition particle (SRP) to stall and guide 80S monosomes
carrying mRNAs with N-terminal signal sequences to the ER, where
it binds to heterodimeric SRP receptors composed of SRPRA and
SRPRB (Keenan et al., 2001). Although SRP is known to mediate the
majority of translocation, SRP-independent pathways have also
been implicated (Choi et al., 2000; Ast et al., 2013; Denic et al.,
2013; Hermesh and Jansen, 2013).

Ribosomes have traditionally been thought to disassemble upon
completion of translation. ABCE1 is involved in the disassembly of
80S ribosomes into subunits following canonical termination or
ribosome quality control, and it has also been implicated in the
“recycling” or re-initiation of 40S subunit synthesis (Nürenberg and
Tampé, 2013). It has been thought that ribosomes not only
disassemble but also dissociate from ER after translation
termination (Mechler and Vassalli, 1975). However, this
assumption has since been contested, at least during injury, when
monosomes from fragmentation of polysomes after unfolded
protein response were still connected to ER and these ER-bound
ribosomes were able to translate after injury (Stephens et al., 2005).

Ribosomal components are degraded when they are improperly
constructed, not utilized, or when translation goes awry. rRNAs
undergo non-functional rRNA decay (NRD) via multiple pathways,
including the TRAMP-exosome pathway, 18S NRD, and 25S NRD,
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as others have reviewed in detail (Lafontaine, 2010). It is intriguing
that the 18S NRD, which occurs during SSU formation, is intimately
associated with the no-go decay of mRNA and P-body localization,
while the ubiquitin-proteasome system is responsible for the
degradation of LSUs (Cole et al., 2009). Ribosomal proteins are
monitored and regulated as well. Unless the endogenous RPL26 pool
is depleted, overexpression of RPL26 in yeast does not result in its
integration into the ribosome or accumulation of RPL26, as it is
continuously degraded via the ubiquitin-proteasome pathway (Sung
et al., 2016).

2.3 Factors influencing the quantity and
quality (or function) of ribosomes

Cells must continuously monitor and maintain the optimal
number of ribosomes based on their needs (translation) and
costs (energy expenditure). This balance is maintained by
multiple “sensors” and “executors,” which include most of the
key signaling pathways that maintain this equilibrium. In this
section, we review how mTORC1, Myc, and AMPK play a
significant role in the regulation of RiBi, although it should first
be emphasized that no factor is solely responsible for governing or
the regulation of the RiBi pathway.

mTORC1 is a well-known factor for sensing nutrients and is also
linked to cellular growth and proliferation in various species,
including multiple phyla of animals (Mamane et al., 2006), plants
(Chen et al., 2018), and yeast (De Virgilio and Loewith, 2006; Chan,
2009). mTORC1 is positively affected by “anabolic signals,” such as
growth signals, mitogens, and nutrient availability, which are
mediated through PI3K, AKT, and TSC1/2 (Fingar et al., 2002;
Hirose et al., 2014). mTORC1 mediates downstream signaling
through phosphorylation of ribosomal protein S6 kinases,
S6K1 and S6K2, and through phosphorylation of RPS6 and
eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) (Shima
et al., 1998; Pende et al., 2000; Pende et al., 2004). Not surprisingly,
mTORC1 regulates both translation and RiBi (Jastrzebski et al., 2007;
Iadevaia et al., 2014). To ramp up RiBi, mTORC1 can directly affect:
1) RNA polymerase I transcription, 2) translation of ribosomal
proteins via the 5′- terminal oligopyrimidine (TOP) motif, and 3)
increasing RNA polymerase III transcription.

RNA polymerase I activity is regulated directly by
mTORC1 through various mechanisms including modulation of
TIF-IA activity or influencing the Ccr4-Not complex, which can be
inhibited by a specific mTORC1 inhibitor, rapamycin (Mayer et al.,
2004; Laribee et al., 2015). Rapamycin can also inhibit the processing
of pre-rRNAs at the conversion of 30S to 21S and the processing of
32S rRNA (Iadevaia et al., 2012), suggesting that mTORC1 regulates
overall rRNA transcription and processing at multiple points.

mTORC1 also influences RNA polymerase II-transcribed
proteins involved in RiBi. It was demonstrated that properly
functioning S6K1 and S6K2 are required for transcription of RiBi-
related factors (e.g., NOP56, NOP14, and GAR1) in the liver of mice
refed after fasting (Chauvin et al., 2014). Additionally, translation of
the proteins with 5′ TOPmotifs, a sequence of nucleotides that begins
with 5′-cytidine, followed by tandem pyrimidines up to 15
(Yoshihama et al., 2002), is influenced by mTORC1 through 4E-
BP1 (Iadevaia et al., 2008; Thoreen et al., 2012; Miloslavski et al.,

2014). The motif is found in the promoter region of most ribosomal
proteins and translation machinery components, including initiation
factors (e.g., eIF3E, eIF3F, and eIF3H) and elongation factors such as
eEF1A and eEF2 (Iadevaia et al., 2008; Cockman et al., 2020).

Finally, mTORC1 influences RNA polymerase III. In yeast,
Tor1 binds to 5S rDNA chromatin and is involved in 5S rRNA
production (Wei et al., 2009). RNA polymerase III is bound to and
transcriptionally regulated by Maf1, the function of which is
inhibited by phosphorylation on its Ser-60, 68, and 75 sites by
mTORC1 (Kantidakis et al., 2010; Michels et al., 2010; Shor et al.,
2010).

Myc is a transcription factor that functions as the “master
regulator” of global translation and cell cycle control. Therefore, it
is not surprising thatMyc regulates the expression of genes involved in
the synthesis of rRNA and ribosomal proteins (van Riggelen et al.,
2010). c-Myc is required for the direct conversion of 47S rRNA
precursors into mature 18S and 28S rRNA (Schlosser et al., 2003;
Arabi et al., 2005; Grandori et al., 2005), and production of proteins
involved in RiBi such as nucleolin, dyskeratin, or fibrillarin (Coller
et al., 2000; Alawi and Lee, 2007), as well as ribosomal proteins
specifically (Kim et al., 2000). In addition, numerous c-Myc
transcriptional targets are translation initiation factors, such as
eIF4E (Schmidt, 2004). Lastly, c-Myc directly triggers the
transcription of RNA-polymerase III (Gomez-Roman et al., 2003).

AMP-activated protein kinase (AMPK) is another critical
cellular energy sensor that regulates diverse metabolic processes
under stress and can also have an effect on RiBi (Hardie, 2011;
Hardie et al., 2012). Specifically, when activated by an increase in the
AMP/ATP ratio, such as in times of energy shortage, AMPK can
phosphorylate a single serine residue (Ser-635) on the RNA
polymerase I-associated transcription factor TIF-IA, thereby
inhibiting its binding to SL-1 and preventing the assembly of the
TF complex (Hoppe et al., 2009).

3 Ribosomal behavior during stress

The cell survival program is triggered at both the cellular and
tissue levels in response to stress. So far, it is evident that tissue
response to injury cannot be explained by a “one-size-fits-all”
theory, as it involves drastic structural and biochemical changes
both at the cell and tissue level, including dynamic alteration in
proliferative potential, remodeling and removal of organelles, cell
death through various routes, and eventual cellular and tissue
regeneration. A number of cellular phenotypes such as
autophagy, stress granule formation, P-body formation, or
translational blockage have aided in our understanding of how
cells can cope with injury and regenerate, but each can explain
only a part of the whole process, necessitating a comprehensive
understanding of the process. Here, we propose that the ribosomes
and the ER are at the center of all morphologic changes and fate
determination processes after injury and that understanding how
ribosomes are handled is crucial to understanding cell behavior
during injury. Dynamic regulation of both the quantity and the
function of ribosomes is crucial for successful regeneration. Thus,
the canonical role of ribosomes must be reconsidered, particularly
under stress, since it is becoming clear that ribosomes are not static
entities that perform only one job—translation—but are instead
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dynamic, versatile, and crucial players in the regeneration process
(Figure 2).

Specifically, the initial response of injured cells is to decrease the
biogenesis of the nascent ribosomes and shut down translation to
lessen the workload and consumption of energy used by these
processes. Rough ER also experiences functional or structural
changes. Existing cytosolic and rough ER ribosomes undergo
autophagy (also known as ribophagy and reticulophagy,
respectively). Furthermore, perturbation of RiBi and disruption of
ribosome homeostasis result in p53 stabilization in a manner similar
to that of ribosomopathy, which will be discussed in detail in the
following sections.

3.1 Global synthesis block, selective
translation, and membraneless organelle
formation

Global translational block occurs in response to a variety of
stimuli, including ER stress (Ron, 2002), iron deficiency (Han et al.,

2001), amino acid starvation (Dever et al., 1992), infection
(Chakrabarti et al., 2012), and hypoxia (Staudacher et al., 2015).
This makes sense from a metabolic standpoint, as ribosome
synthesis and translation are extremely energy-intensive
processes. Moreover, this would help reduce the net flux of
nascent polypeptides from the cytosol to the ER, which is
required when misfolded proteins accumulate during ER stress.
Consequently, cells have evolved delicate mechanisms to inhibit
translation via multiple processes. This occurs via three
mechanisms: 1) reduction in the total number of ribosomes by
inhibition of RiBi, 2) reduction in translation efficiency, and 3)
reduction in the number of functional ribosomes.

Reducing the total number of ribosomes by inhibiting the
transcription of the genes involved in RiBi and ribosomal protein
genes can be a rather rapid and straightforward process, which is
noted in response to various types of stress in yeast (Warner, 1999;
Gasch et al., 2000; De Nadal et al., 2011). Also, stressors are often
linked to the rapid shutdown of RNA polymerase I that is triggered
by the DNA-damage response, mediated by ATM kinase activity
and the repair factor proteins NBS1 and MDC1 (Kruhlak et al.,

FIGURE 2
Pathways of ribosome regulation during injury (1) During stress, multiple kinases phosphorylate the Serine 51 residue of eIF2 alpha, reducing
translation efficiency. The stalled preinitiation complex can be localized tomembraneless granules, such as stress granules. (2) Ribosome degradation can
be prevented by ribosome-plugging proteins (green circles), the majority of which are evolutionarily conserved. (3) Ribosomes in the cytosol and those
attached to the rough ER are susceptible to autophagic destruction through ribophagy and reticulophagy. (4) Ribosomal proteins (such as RPL5 and
11) and 5S ribosomal RNA complex (5S RNP) from degraded ribosomes or other errors in ribosome biogenesis stabilize p53 by sequestering and inhibiting
MDM2, ultimately blocking cell cycle progression.
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2007). Moreover, promoter-bound RNA polymerase II is susceptible
to targeted degradation (Steurer et al., 2022). In addition, it is widely
known that stress inhibits RNA polymerase III (Marshall et al., 2012;
Rideout et al., 2012; Moir and Willis, 2013). These mechanisms
reduce the net number of nascent ribosomes and, by extension, the
ribosome pool.

RiBi is further blocked at the processing step. In response to
stress, such as the integrated stress response, pre-rRNA processing
ceases at a relatively early stage of A’/01 processing (Szaflarski et al.,
2022). Moreover, suppression of mTORC1, which is known to occur
during injury across multiple phyla (Di Cara et al., 2018; Willet et al.,
2018), can reduce phosphorylation of 4E-BP1, which strengthens its
association with eIF4E and interferes with its interaction with
eIF4G1, thereby limiting translation initiation, particularly for
transcripts containing 5′-TOP motifs (Gingras et al., 1999;
Thoreen et al., 2012). Unphosphorylated LARP1 is an RNA-
binding protein that interacts with the 5′- and 3′- UTR of
ribosomal protein mRNAs. mTORC1 and Akt have been shown
to phosphorylate LARP1 and promote translation of the ribosomal
proteins (Hong et al., 2017). Thus, during stress, a decrease in
mTORC1 can result in a decrease in ribosomal protein levels and a
subsequent decrease in the number of ribosomes.

Another well-known global suppression occurs directly at the
translation level. Global synthesis blocking involves stalling or
blocking at the initiation step—a well-known rate-limiting step of
translation (Richter and Coller, 2015). The most well-known
mechanism for stress-induced blocking is serine
51 phosphorylation on the alpha subunit of eIF2, mediated by
four kinases, GCN2, PKR, PERK, and HRI, which arrests
translation by leading to a considerable decrease in protein
synthesis efficiency because it changes the affinity for binding
eIF2B, a guanidine exchange factor that re-charges eIF2 with
GTP and is critical to initiating another round of translation
(Taniuchi et al., 2016).

Frequently, stalled 48S preinitiation complexes are retained in
newly formed membraneless granules. The stress granule is the best-
known example of such membraneless organelles that can emerge in
response to stressors such as those in the integrated stress response
(Kedersha et al., 1999; Scheuner et al., 2001; McEwen et al., 2005).
The assembly and disassembly of stress granule is a dynamic process
induced by stress and ceases when stress is relieved (Wheeler et al.,
2016). In this regard, the assembly of stress granules may serve as a
hub for the storage of stalled mRNAs and translation factors during
stress until they can be released back to restore homeostasis,
conserving energy during the catabolic phase of injury and
enabling the cell to preserve selective mRNPs from the
translation pool that may be essential for the recovery phase
(Buchan and Parker, 2009; Wheeler et al., 2016).

It should be noted, however, that not all translation is blocked. In
fact, ATF4, IFRD1, and PPP1R15B are among the few transcripts
that are preferentially translated during a global translational block.
Mechanistically, upstream open reading frame (uORF) translation is
responsible for preferential translation of most of these transcripts
(Vattem andWek, 2004; Zhao et al., 2010; Andreev et al., 2015), and
these transcripts play a variety of roles in the stress response,
suggesting that cells have implemented a sophisticated machinery
for their survival during stress. Translation on ER during injury also
deserves attention. Clearly, de novo translation initiation can occur

on the ER (Jagannathan et al., 2014), where both monosomes and
polysomes can form (Voigt et al., 2017). During ER stress,
phosphorylation of PERK, a critical kinase residing on the ER
membrane, can directly sense and phosphorylate the eIF2α that
results in cytosolic translational block. However, translation on the
ER continues to occur and stress response transcripts such as Atf4
can be translated on the ER, thus serving as a “safe haven” during
injury. On the other hand, there are injuries that are detrimental to
the ER, such as the cerulein injury model in pancreatitis. In this
situation, since the ER platform is no longer present, ribosomes may
be degraded along with the ER or need to disengage from the ER to
initiate a new round of translation in the cytosol. These findings
suggest that regulation of the endoplasmic reticulum (ER) during
stress can have a significant but non-uniform effect on the cell
during stress and regeneration, an aspect that warrants further
investigation.

In short, translation is generally impeded during injury, however
it should be noted that cells are constantly sensing their nutritional
and energy state and preparing for regeneration during the anabolic
phase.

3.2 Ribosome plugging

Translational efficiency can be regulated by modulating the
number of existing, functional ribosomes. The concept of
impairing ribosome function without destruction is best studied
in prokaryotes. Bacteria are known to produce “hibernating”
ribosomes by forming 100S dimers (70S + 70S) during injury
(Ortiz et al., 2010; Polikanov et al., 2012; Basu and Yap, 2017;
Beckert et al., 2017; Matzov et al., 2017; Beckert et al., 2018).
Ribosome modulation factor, hibernation promoting factor, and
ribosome associated inhibitor occupy the decoding center, mRNA
binding channel, and acceptor (A) and peptidyl (P) sites within the
ribosomes (Yoshida et al., 2002; Ueta et al., 2005; Ueta et al., 2008).
This mechanism is evolutionarily conserved in eukaryotes.
Arguably, Stm1 in yeast is the best studied protein of this kind
that is activated in response to diverse stimuli (e.g., glucose
starvation) and binds and protects ribosomes from proteasomal
degradation (Van Dyke et al., 2004; Van Dyke et al., 2009; Ben-Shem
et al., 2011; Brown et al., 2018; Shetty et al., 2023). The structure and
function of Stm1 is evolutionarily conserved in mammals as an
ortholog, SERPINE mRNA binding protein 1 (SERBP1), although it
is unclear if it is functional during injury (Brown et al., 2018).
IFRD2 is another ribosome plugging protein, which was structurally
found to occupy the P and E sites of the ribosome, making it
incompatible with translation in rabbit reticulocytes (Brown et al.,
2018). The presence of these ribosome plugging proteins seems to be
restricted to a few organs, and the organ-specific function of these
proteins at homeostasis is relatively vague (Brown et al., 2018; Hopes
et al., 2022). Recently, it was shown that suppression of
mTORC1 stimulates Stm1/SERBP1 activity, offering a clue on the
mechanism by which a perturbation of homeostasis may affect
ribosome regulation (Shetty et al., 2023). Interestingly, it was
shown that IFRD1, a paralog of IFRD2 that shares high degree of
structural similarity, increases after various types of stress in vitro
and in vivo (Ndum, 2010; Zhao et al., 2010; Miao et al., 2020), which
may provide an important clue to explain how ribosome plugging
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can affect tissue regeneration. Not surprisingly, evolutionarily
conserved declamping elements also exist, which play a role in
the release of monosomes from “plugged” ribosomes, allowing them
to engage in translation and polysome formation following the
cessation of stress. The best-known example is Dom34-Hbs1 in
yeast, whose orthologs in mammals are PELOTA and HBS1L (Van
Den Elzen et al., 2014). The yeast late-annotated short open reading
frame 2 (Lso2) is another declamping factor involved in translational
recovery following malnutrition during stationary phase with a
comparable function to its mammalian counterpart, a coiled-coil
domain containing short open reading frame 124 (CCDC124)
(Wells et al., 2020). In short, ribosome plugging and de-plugging
may be an evolutionarily conserved mechanism that performs a
multifunctional role at homeostasis and during injury by inhibiting
translation, and conserving energy during the catabolic phase.

3.3 Ribophagy and reticulophagy

Reducing the absolute amount of existing machinery for
translation (i.e., ribosomes) is another strategy implemented by cells
to reduce the translation workload and energy expenditure. As
ribosomes exist in a free-floating form in the cytosol or are
attached to the ER, their degradation can occur through two
distinct pathways: direct degradation of ribosomes by
autophagosomes (ribophagy) and in conjunction with autophagy of
rough ER (reticulophagy). Although ribophagy has been documented
for decades with transmission electron microscopy (Eskelinen et al.,
2011), only recently have its receptors and precise mechanism been
defined. In yeast, nitrogen deficiency induces selective ribophagy via
the Ubp3p/Bre5p ubiquitin protease complex (Kraft et al., 2008). It is
intriguing that the human orthologs of Bre5p are the proteins
G3BP1 and G3BP2, the former of which is involved in the
production of stress granules (Cohen et al., 2003), suggesting a
possible link between these well-known contingency methods that
cells utilize during stress. In addition, fasting or mTORC1 suppression
induces selective ribophagy, where a ribosome-binding protein,
NUFIP1, can interact with both ribosomes and LC3B, thereby
serving as a specialized receptor for ribophagy (Wyant et al., 2018).

In contrast, reticulophagy is an autophagic process that selectively
degrades the ER (Bernales et al., 2006; Schuck et al., 2009).
Reticulophagy is essential for maintaining proteostasis during
homeostasis and during injury by degrading misfolded proteins and
preventing the unfolded protein response (Meusser et al., 2005;
Römisch, 2005). It has been demonstrated that phagophores can
form near the ER and are physically associated with the ER
membrane (Hayashi-Nishino et al., 2009; Ylä-Anttila et al., 2009).
There are a few known reticulophagy receptors. Starvation stimulates
the reticulon-like proteins ATG40 and FAM134B, which are
responsible for ER fragmentation and autophagosome targeting. To
remove misfolded proteins, FAM134B interacts with calnexin, an ER-
resident lectin chaperone, and the autophagosome membrane-
associated protein LC3 (Forrester et al., 2019). Hypoxia also
stimulates reticulophagy by forming a complex between FAM134B
and the ER chaperone BiP (Chipurupalli et al., 2022). CCPG1 is
another reticulophagy-related protein that has recently emerged as an
important non-canonical cargo receptor that facilitates reticulophagy
by binding directly to core autophagic proteins via the LC3-interacting

region or FIP200 as well as ER luminal proteins such as prolyl 3-
hydroxylase family member 4 (P3H4) (Smith et al., 2018; Ishii et al.,
2023). Insufficiency of CCPG1-mediated ER proteostasis in
hypomorphic mice led to excessive ER stress and pancreatic tissue
damage (Smith et al., 2018). Although research on reticulophagy that
focuses on the destruction of ribosomes is very limited, it is clear that
ribosomes attached to the ER membrane for translation are highly
likely to be destroyed as bystanders, while the degradation of the ER
membrane can serve as a source for autophagosomes.

In short, ribophagy and reticulophagy are essential processes
that enable cells to adapt to environmental stresses and preserve
cellular homeostasis, which is essential for the injury response.

3.4 Ribosome-mediated p53 stabilization
during injury

Another way ribosomes are involved in the cell’s injury response is
by serving as crucial mediators of the p53 stabilization. Mutations or
reduced expression in ribosomal proteins, or factors involved in RiBi,
have been known to cause a variety of developmental defects known as
ribosomopathies that are associated with p53 stabilization. This
provides evidence for the close relationship between ribosomes and
p53 stability (Narla and Ebert, 2010; Fumagalli and Thomas, 2011;
Farley-Barnes et al., 2019). For example, Diamond-Blackfann anemia
that occurs with mutations in genes coding for ribosomal proteins
such as RPS19, RPS24, RPL5, or RPL11, that result in hypoplastic,
macrocytic anemia and an elevated risk of cancers such as acute
myelocytic leukemia, can at least partially be corrected by deletion of
p53 (Draptchinskaia et al., 1999; Willig et al., 1999; Gazda et al., 2004;
Gazda et al., 2006; Gazda et al., 2008; Boria et al., 2010; Vlachos et al.,
2012; Bhoopalan et al., 2023). Treacher-Collins syndrome, another
ribosomopathy caused by autosomal dominantmutations of the Tcof1
gene, leads to a deficiency in ribosome synthesis and a p53-dependent
apoptosis in neural crest cells of embryos, leading to craniofacial birth
defects (Sakai and Trainor, 2009; Trainor et al., 2009), which can be
rescued by knocking out p53 (Jones et al., 2008).

Although best studied in congenital defects related to
ribosomopathies, the p53 sensing of RiBi also occurs in non-
mutated, “normal” cells; however, it appears that this process is
particularly important during injury when RiBi is inhibited, or
ribosome integrity is compromised. Perhaps, the best-known
example of this phenomenon is the formation of the 5S RNP
complex, composed of 5S rRNA, RPL5, and RPL11. The 5S
rRNP complex may translocate from the cytoplasm (where the
vast majority of mature ribosomes are) to the nucleoplasm, and
bind and sequester MDM2 (Sloan et al., 2013). It is also possible that
a “nascent” 5S RNP complex generated in the nucleoplasm
sequesters MDM2 directly during stress (Donati et al., 2013).
Furthermore, nucleolar proteins or even the nucleolus itself can
serve as a “stress sensor” whose disruption results in the stability of
p53 (Rubbi and Milner, 2003). NPM1, a nucleolar protein found in
the granular center, binds to HDM2 and functions as a negative
regulator of the p53-HDM2 interaction (Kurki et al., 2004). Also,
nucleolin translocates from the nucleolus to the nucleoplasm under
stress and directly interacts with p53 (Daniely et al., 2002). A partial
hepatectomy in mice deficient in RPS6, a component of 40S SSU,
resulted in failure of hepatocytes to undergo cell cycle progression at
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G1-S phase. This is the phase during which p53 serves as a key
checkpoint, demonstrating a close relationship between ribosome
integrity, p53, and proliferation after injury in vivo (Volarevic et al.,
2000). This extends to the intriguing idea that the ribosome may be
the hidden key linker between perturbation of major signaling
pathways, such as mTORC1 or Myc, and cell-cycle progression/
p53 stabilization, all of which are key processes that occur during
injury (Willet et al., 2018), allowing ribosomes to be targeted for the
facilitation or modulation of the injury process.

4 Conclusion

Here, we have shown that ribosomes are regulated in a distinct and
specificmanner during injury that is crucial for cells to cope with injury
and regenerate. Our new understandingwill transform ribosomes from
passive translational machinery to an essential injury responder and
cell fate determinant. This will allow individual observations that have
been made in injured cells (e.g., stress granule formation, translational
block, ribosome plugging, autophagy, p53 stabilization, cell death, and
cell cycle reentry) to be comprehended as a whole, with the ribosome
and the ER at the center. Yet, many questions remain unanswered. For
instance, we do not know whether the number and function of
ribosomes differ significantly by cell type and how this would
influence the mode of ribosome regulation during injury. In
addition, further studies may reveal how the remodeling or
destruction of the ribosomes and the ER during injury alters the
translational profiles of ribosomes. Addressing unanswered questions
such as these will aid in expanding our understanding of tumorigenesis
and the regeneration of multiple types of cells in diverse tissues.
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