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The acquisition of resistance to anoikis, the cell death induced by loss of adhesion
to the extracellular matrix, is an absolute requirement for the survival of
disseminating and circulating tumour cells (CTCs), and for the seeding of
metastatic lesions. In melanoma, a range of intracellular signalling cascades
have been identified as potential drivers of anoikis resistance, however a full
understanding of the process is yet to be attained. Mechanisms of anoikis
resistance pose an attractive target for the therapeutic treatment of
disseminating and circulating melanoma cells. This review explores the range
of small molecule, peptide and antibody inhibitors targeting molecules involved in
anoikis resistance in melanoma, and may be repurposed to prevent metastatic
melanoma prior to its initiation, potentially improving the prognosis for patients.
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1 Introduction

Anoikis is a type of apoptosis induced by detachment from the extracellular matrix
(ECM) and surrounding cells (Meredith et al., 1993; Frisch and Francis, 1994). Under a
physiological state, anoikis functions to maintain cell number equilibrium by triggering
apoptosis in cells with inappropriate cell-to-ECM and cell-to-cell interactions (Frisch and
Francis, 1994). Anoikis thereby functions in preventing cells from migrating, and
subsequently proliferating at inappropriate sites within the body. However, as a hallmark
of cancer and an absolute requirement for metastasis, tumour cells must acquire mechanisms
to resist cell death by anoikis to detach from the primary lesion, persist in circulation and
facilitate the seeding of metastases (Hanahan, 2022). In these cells, anoikis resistance is
achieved through the oncogenic deregulation of survival and death signalling as a result of
genetic, epigenetic and (micro-) environmental variation.

Cutaneous Malignant Melanoma, a cancer arising from melanocytes in the skin, is a
highly aggressive and invasive cancer type that demonstrates early dissemination into
lymphatic circulation from primary tumours less than 0.5 mm thick in at least one-third
of patients (Werner-Klein et al., 2018). In addition, metastatic melanoma is a vastly complex
and heterogeneous disease, with multiple, highly plastic subpopulations of cells contributing
to disease progression and drug resistance (Tsoi et al., 2018; Rambow et al., 2019). Despite
significant advancement in the treatment of metastatic melanoma since the advent of
targeted and immune checkpoint inhibitors, three-quarters of patients who are diagnosed or
relapse with an advanced stage of melanoma inevitably succumb to the disease (AIHW,
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2021). With the incidence of melanoma predicted to increase into
the future (Guy et al., 2015; Whiteman et al., 2016), the development
or repurposing of existing drugs to target and prevent the
progression of melanoma are urgently required. Anoikis
resistance poses an attractive target for the therapeutic
intervention of melanoma progression, with potential to prevent
the dissemination of cells from the primary tumour and allow the
targeting of circulating tumour cells (CTCs). However, the
understanding of mechanisms involved in anoikis resistance in
melanoma remains limited. This review details anoikis resistance
mechanisms identified in cutaneous melanoma, examines
therapeutic inhibitors with potential to be repurposed to target
anoikis resistance mechanisms, and discusses the feasibility of
targeting anoikis resistance to prevent the progression of
melanoma to metastasis (Figure 1).

1.1 General mechanisms of anoikis
resistance

Anoikis occurs through a combination of both the intrinsic and
extrinsic apoptosis pathways converging at the mitochondria and
resulting in the activation of caspases, triggering DNA
fragmentation and cell death (Paoli et al., 2013). The Bcl-2 family
of proteins play a key role in both apoptosis pathways and is
comprised of three subgroups: the anti-apoptotic proteins (Bcl-2,
Bcl-XL, Bcl-w, Mcl-1 and A1) (Opferman and Kothari, 2018), the
multi-domain pro-apoptotic members (Bax, Bak, Bok) (Reed, 2006),
and the BH3-only pro-apoptotic proteins (Bim, Bad, Bid, Noxa,
Puma) (Adams and Cory, 2007; Hao et al., 2007; Anvekar et al.,
2011). Following cellular detachment, the pro-apoptotic members
translocate from the cytosol to the mitochondria where they cause
mitochondrial outer-membrane permeabilisation (MOMP) and
cytochrome c release, triggering apoptosome assembly, caspase
cleavage and cell death (Gilmore, 2005). As a result, it’s generally
accepted that anoikis is marked by activation of caspase-3, -8 and -9,

and PARP-1 cleavage upon anchorage loss (Zhang et al., 2011;
Hasnat et al., 2015; Fanfone et al., 2022). However in the case of
malignant cells, activation of oncogenic signalling results in
deregulation of the pathways triggering caspase activation and
PARP cleavage, inevitably resulting in abrogated apoptosis
despite the presence of cell death-inducing stimuli.

Importantly, the “attach or die” phenotype is not true for all
cells, and applies mostly to those of epithelial origin, while
circulating blood and immune cells, for example, are
intrinsically anoikis resistant (Zhu et al., 2001). As an
exception to this rule, epithelial cells are able to overcome
anoikis under certain conditions such as embryogenesis and
wound healing, through the process of epithelial-to-
mesenchymal transition (EMT). EMT allows epithelial cells to
gain reversible migratory and invasive properties, as well as stem
cell-ness and the ability to evade apoptosis with the loss of cell-to-
cell adhesion in response to microenvironmental cues (Kalluri
and Weinberg, 2009; Thiery et al., 2009). Despite residing in the
skin, melanocytes are not derived from the epithelial lineage and
therefore do not undergo true EMT (Kalluri and Weinberg,
2009). Rather, EMT is involved in the formation of
melanoblasts (Figure 2, melanocyte precursor cells) from
neural crest cells during embryonic development (Thomas and
Erickson, 2008; Kalluri and Weinberg, 2009; Vandamme and
Berx, 2014). As a result of their developmental lineage, melanoma
cells are able to “hijack” EMT-like pathways to facilitate
metastatic progression, including driving resistance to anoikis
(Alonso et al., 2007). Subsequently, a model has been proposed
that describes the intrinsic phenotypic plasticity observed in
distinct subpopulations of melanoma cells; the phenotype
switching model. Similar to the way epithelial cells are able to
reversibly switch between epithelial and mesenchymal
phenotypes, this model describes the ability of cells in the
primary tumour to switch between proliferative and invasive
transcriptional states subject to regulation by the proximal
microenvironment (Hoek et al., 2006; Hoek et al., 2008).

FIGURE 1
Mechanisms of anoikis resistance during metastasis. While the detachment of a non-transformed melanocyte results in cell death by anoikis (1),
melanoma cells leaving the dermis as either single cells (2) or clusters (3) must develop mechanisms to resist anoikis in order to metastasise and form
secondary tumours at distant sites. Treatments targeting currently knownmechanisms of anoikis resistance have the potential to prevent cells leaving the
primary tumour (4), and may target those in circulation, preventing the seeding of metastases and improving prognosis for patients. Red arrows:
Processes where anoikis resistance is absolutely required.
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Subsequently, many of the molecules identified as drivers of EMT
have likewise been identified to contribute to the acquisition of
anoikis resistance in melanoma (Figure 2).

2 Mechanisms of anoikis resistance and
potential therapies

2.1 Adhesion molecules

2.1.1 Integrins
Integrins are transmembrane cell surface receptors that are

primarily responsible for mediating cell adhesion to the ECM
(Paoli et al., 2013). In addition to their function in physical
attachment, integrins transduce signals from the ECM to the
inner machinery of the cell by directly binding components of
the cytoskeleton. This results in actin filament rearrangement
within the cell and activation of downstream signalling pathways
that promote migration, proliferation and survival. In addition to
their role in “outside-in” signalling, integrins can transduce “inside-
out” signalling via the activation of extra-cellular ligands,

particularly TGF-β (Barczyk et al., 2010). Integrins consist of two
transmembrane glycoprotein subunits, α and β, which associate via
non-covalent bonding interactions (Hynes, 2002). Depending on the
cell type and composition of the ECM, different types of integrins
may be present; those that bind fibronectin, laminin, vitronectin, or
collagen (Friedl and Wolf, 2003).

During the process of EMT, epithelial cells undergo the
phenomenon of ‘integrin switching’, where collagen-binding
integrins are downregulated, and fibronectin-binding integrins
upregulated to allow detachment from the basement membrane
and mesenchymal cell migration (Maschler et al., 2005). As a
hallmark of cancer, self-sufficiency in growth signalling is an
absolute requirement for disease progression. A prominent
mechanism employed by cancer cells to achieve this is integrin
switching, as it favours receptors that transmit pro-growth or pro-
survival signals, including those that prevent cell death upon
detachment. As such, a distinct change in integrin expression has
been observed betweenmelanocytes andmelanoma cells throughout
progression. Studies analysing integrin expression demonstrate that
melanocytes predominantly express the α3β1 and α6β1 laminin-
binding integrins for adhesion to the basement membrane in vivo
(Krengel et al., 2005). However, during the progression to malignant
disease, melanoma cells upregulate expression of fibronectin- and
collagen-binding integrins to facilitate vertical migration through
the dermis, and attachment to vascular endothelial cells allowing
dissemination into circulation.

To date, the most comprehensively studied integrin with links to
anoikis resistance in melanoma metastasis is the αvβ3 integrin.
Studies demonstrate αvβ3 binds multiple ECM components,
including fibronectin, vitronectin, fibrinogen and osteopontin
(Cheresh, 1987). It is best known for its role in angiogenesis,
where blocking of the αvβ3 receptor in melanoma patients
through the administration of combination high-dose tumour
necrosis factor (TNF) and interferon γ (IFN-γ) inhibits tumour
angiogenesis and growth due to the specific inhibitory effect of these
cytokines on β3 subunit protein synthesis (Defilippi et al., 1991;
Brooks et al., 1994; Rüegg et al., 1998). In addition, expression of
αvβ3 on the surface of invasive cells allows the recruitment,
localisation and activation of matrix metalloproteinases (MMP-
1 and MMP-2), facilitating ECM remodelling through collagen
degradation, promoting migration (Brooks et al., 1996; Brooks
et al., 1998; Hofmann et al., 2000). As such, αvβ3 integrin is
widely recognised as a molecular marker of metastasis, where its
expression correlates with melanoma progression from radial
growth phase (RGP) to the invasive vertical growth phase (VGP)
(Albelda et al., 1990; Danen et al., 1994; Hsu et al., 1998; Johnson,
1999; Van Belle et al., 1999; Kageshita et al., 2000; Alonso et al.,
2007). Expression of αvβ3 integrin in primary cutaneous melanoma
is likewise associated with increased sentinel lymph node metastasis
(Meves et al., 2015).

Importantly, αvβ3 integrin has been demonstrated to contribute
to anoikis resistance through driving upregulation of anti-apoptotic
proteins such as Bcl-2 (Montgomery et al., 1994; Petitclerc et al.,
1999). A five-fold increase in the relative Bcl-2/Bax ratio conferred
increased cellular survival (Petitclerc et al., 1999; Zhang et al., 2011).
Recent studies have demonstrated that the αvβ3 integrin is able to
induce partial EMT independent of TGF-β signalling (Kariya et al.,
2021). This is important considering the recent emergence of

FIGURE 2
Comparison between EMT and melanoma metastasis.
Phenotypic plasticity observed during melanoma metastasis draws
striking similarities with the changes that occur during epithelial-
mesenchymal transition (EMT) (1). This is believed to be the result
of the developmental lineage of melanocytes in the neural crest,
allowing melanoma cells to undergo an EMT-like transition to
facilitate metastasis by varying the expression of adhesion molecules
in particular, in response to shifts in transcriptional regulation (EMT-
TFs) (2).
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evidence for distinct partial EMT-like phenotypes in melanoma that
possess increased invasiveness and motility (Sahoo et al., 2022).
However, an independent study demonstrated that αvβ3 integrin
expression was not influenced by Snail, a transcription factor that
promotes EMT (Kuphal et al., 2005).

Integrins containing the β1-subunit in conjunction with a range
of alpha subunits (α2, α3, α4, α5, α6 or α7) have similarly been
implicated in melanoma metastasis, invasion and anoikis resistance
(Etoh et al., 1993; Danen et al., 1994; Ziober et al., 1999; Hegerfeldt
et al., 2002; Toricelli et al., 2013; Kolli-Bouhafs et al., 2014; Kozlova
et al., 2018; Kozlova et al., 2019; Kozlova et al., 2020). Kozlova and
others demonstrated that inhibition of integrin α2β1 increased
sensitivity to anoikis, while blocking α3β1 and α5β1 reduced
invasion and activation of MMP-2 in vitro (Kozlova et al., 2019;
Kozlova et al., 2020). Integrins containing the β1 subunit are thought
to confer increased cell survival under anchorage-independent
conditions through increased expression of Bcl-2 and c-Myc
(Kozlova et al., 2019).

Integrins play an important role in the progression of
melanoma, however data surrounding the activation and
deactivation of integrin expression and clustering throughout the
metastatic process, remains incomplete. Studies investigating
integrins in metastasis focus on their expression levels and
largely ignore their activity. It’s understood that integrin
internalisation through endocytosis is important in enabling cell
motility as it allows their recycling to the leading edge of migrating
cells (Krengel et al., 2005). Therefore, future studies investigating
integrin recycling throughout each stage of metastasis would provide

valuable information on their functional role. Nevertheless,
inhibitors targeting integrin clustering and expression have been
used successfully in a range of non-malignant diseases (Slack et al.,
2022). Given that integrins are strongly upregulated in a range of
cancers including melanoma, the use of integrin inhibitors in this
context has been extensively explored (Figure 3).

Eptifibatide (integrilin) and tirofiban (aggrastat) target
β3 integrins, and were registered by the FDA (1998) for use in
patients with heart conditions. While neither inhibitor has been
examined in clinical trials against any cancer type, Kim et al.
demonstrated that eptifibatide significantly reduced the ability of
B16-F10 melanoma cells to form nodules on the lungs of mice
following arsenic exposure (Kim et al., 2019).

A number of monoclonal antibody therapies targeting integrins
have been evaluated in clinical trials (Table 1). However, none of
these therapies have progressed past phase II trials. In addition,
many small molecule and peptide compounds have demonstrated
efficacy as integrin inhibitors. Cilengitide is a cyclic Arg-Gly-Asp
(iRGD) peptide that inhibits αvβ3 and αvβ5 integrins, thus
inhibiting tumour cell interactions with vascular endothelial cells,
as well as cell-matrix interactions and angiogenesis. A phase III
clinical trial examining its use in glioblastoma was completed
(NCT00689221), in addition to multiple phase II studies in a
range of cancers (NCT00093964, NCT00813943, NCT01124240,
NCT00103337, NCT00121238, NCT00842712, NCT00679354).
Despite preclinical evidence supporting its use in melanoma
patients (Lode et al., 1999), a phase II trial in stage III/IV
metastatic melanoma patients was terminated (NCT00082875)

FIGURE 3
Targeting adhesion molecules in melanoma anoikis resistance. A range of integrins, as well as N-cadherin, and their downstream signalling
pathways, including FAK (green), Mitogen-Activated Protein Kinase (MAPK; pink), PI3K-Akt (purple) and catenin pathways (orange), are known to
contribute to anoikis resistance in melanoma. Pharmaceutical inhibitors targeting integrins, cadherins and FAK exist, and have the potential to be
repurposed to block melanoma cell survival upon detachment. Different classes of integrin inhibitors are shown, mAb, monoclonal antibody; ECM,
Extracellular matrix. Indicated inhibitors have been sourced from data from all cancers.
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due to low Progression Free Survival (PFS) after 8 weeks, indicating
the treatment was not effective (Kim et al., 2012). Nevertheless, more
recent studies revealed the ability of cilengitide to inhibit invasion
and vasculogenic mimicry of melanoma cells, and inhibit adhesion
to vitronectin (Ruffini et al., 2015) indicating that further
investigation into the use of cilengitide in metastatic melanoma
patients may be warranted. While one study advised against the use
of cilengitide in combination with paclitaxel due to decreased
sensitivity to the chemotherapeutic agent (Stojanović et al., 2018),
another revealed that combination therapy with doxorubicin
synergistically suppressed tumour growth and reversed drug
resistance in vivo, extending the survival of mice subcutaneously
injected with A375 cells expressing β3 integrin (Zhu X. et al., 2019).
Furthermore, combining cilengitide with anti-PD-L1 therapy
significantly reduced tumour volume in a B16 murine melanoma
model, and positively regulated anti-tumour immune responses
(Pan et al., 2022).

A small peptide antagonist ATN-161, similarly targeting
αvβ3 and αvβ5 integrins, has been tested in phase I/II trials with
carboplatin (NCT00352313). Preclinical evidence utilising ATN-161
loaded reversibly cross-linked polymersomes for drug delivery into
C57BL/6 mice bearing B16-F10 tumours demonstrated significant
inhibition of tumour growth, and significantly improved survival
rates (Zhang et al., 2017). Likewise, MK-0429 is a non-peptide
antagonist compound initially examined in a phase II trial for the
treatment of osteoporosis [NCT00533650 (Hutchinson et al., 2003)]
for its ability to target the αvβ3 receptor. MK-0429 reduced the
number of metastatic colonies in the lungs of mice injected with
B16-F10 melanoma cells by 64% at 100 mg/kg (Pickarski et al.,

2015). Similar to cilengitide, CEND-1 is an Arg-Gly-Asp cyclic
peptide (iRGD) targeting αvβ3 and αvβ5 integrins in the tumour
vasculature, promoting tumour penetration to enhance the efficacy
and specificity of chemotherapy treatment. A phase I clinical trial in
pancreatic ductal adenocarcinoma (PDAC) patients combining
CEND-1 with nabpaclitaxel and gemcitabine was successfully
completed [NCT03517176 (Dean et al., 2020)]. The use of
CEND-1 in melanoma patients has not been examined in clinical
trials. However preclinical evidence demonstrated that sterically-
stabilised liposomes modified with iRGD peptides such as CEND-1,
containing either paclitaxel or doxorubicin, significantly reduce
volume of melanoma tumours and increase percentage survival
in murine models (Yu et al., 2013; Du et al., 2014).

IH1062 is a novel small molecule inhibitor of αvβ3 integrins.
Preclinical evidence in melanoma demonstrated its ability to induce
anoikis and suppress metastasis in human melanoma cells,
interrupting ECM attachment and FAK phosphorylation, and
resulting in caspase activation through a decrease in the Bcl-2/
Bax protein ratio (Zhang et al., 2011). Other molecules with
therapeutic potential that are yet to be examined in melanoma
are summarised in Table 2.

Caution must be used when considering integrin-targeting
inhibitors for the treatment of melanoma patients. Natalizumab,
for example, targets α4, β7 and β1 integrins, and was registered by
the FDA in 2004 for multiple sclerosis patients. However, multiple
studies have reported a significantly increased risk of developing
cutaneous melanomas following natalizumab treatment (Mullen
et al., 2008; Vavricka et al., 2011; Munguía-Calzada et al., 2017;
Sabol et al., 2017; Kelm et al., 2019). As α4β1 integrin expression is

TABLE 1 Monoclonal antibody therapies targeting integrins.

Inhibitor FDA registration
year/trial phase

Clinical trial no. Disease types Evidence in melanoma

Abciximab 1993 (FDA) Cardiac Ischemic Complications Varner et al. (1999), Trikha et al. (2002)

Volociximab Phase I NCT00654758,
NCT00666692

Non-small Cell Lung Cancer Bhaskar et al. (2007), Ricart et al. (2008)

Phase II NCT00635193,
NCT00516841

Ovarian Cancer

Phase II NCT00100685 Renal Cell Carcinoma

Phase II NCT00401570 Pancreatic Cancer

Phase II NCT00278187 Lung Cancer

Phase II NCT00369395,
NCT00099970

Melanoma

Abituzumab Phase I NCT00848510 Colorectal and Ovarian Cancer
Patients with Liver Metastases

Castel et al. (2000), Mitjans et al. (2000), Wagner et al.
(2010)

Phase II NCT01008475 Metastatic Colorectal Cancer

Intetumumab Phase I/II NCT00246012 Stage IV melanoma Trikha et al. (2004), Wu et al. (2017b), O’Day et al.
(2011), O’Day et al. (2012), Robinson et al. (2012)

Etaracizumab
(Abegrin)

Phase I and II NCT00111696,
NCT00066196

Metastatic Melanoma Posey et al. (2001), Hersey et al. (2010), Moschos et al.
(2010)

Phase II NCT00072930 Prostate Cancer

Phase I/II NCT00263783,
NCT00284817

Refractory Solid Tumours
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thought to prevent melanoma metastasis formation, therapeutic
inhibition with natalizumab was shown to increase invasive
potential and cell migration in vitro, and resulted in the
dissolution of clusters to single cells (Qian et al., 1994; Carbone
et al., 2020). These concerns are further compounded by the findings
that targeting orthosteric binding sites of integrins has the potential
to induce a shift in integrin binding affinity to a higher binding state,
promoting tumour growth and angiogenesis rather than inhibiting it
(Slack et al., 2022).

Furthermore, integrin therapies induce the detachment of
melanoma cells from the ECM, but do not result in tumour cell
apoptosis in most cases. Consequently, integrin inhibitors may
induce amoeboid migration, characterised by a rounded cell
morphology with bleb-like protrusions, and weak cell-ECM
interactions (Wu J. S. et al., 2021), by encouraging detachment of
melanoma cells from the primary tumour. For instance, in a study
investigating the αvβ3 targeting cyclic oligopeptide cRGDfV, cell
adhesion was blocked however apoptosis was not induced (Allman
et al., 2000). Rather, a change in cell morphology imitating
amoeboid migration was observed following treatment. A similar
phenomenon was detected following the treatment of cells with
abituzumab (Castel et al., 2000). Amoeboid invasion has been
associated with weakening of integrin adhesions (Carragher et al.,
2006; Wolf et al., 2007). While previously shown that β1 integrin
expression is essential for amoeboid migration of melanoma cells

(Sanz-Moreno et al., 2008), other studies have revealed that blocking
β1 expression cannot abolish amoeboid crawling or dissemination
(Hegerfeldt et al., 2002). To overcome this, combining integrin
inhibitors with urokinase-plasminogen activator (uPAR)
inhibitors may be effective in blocking amoeboid invasion as
uPAR, in association with integrins and the actin cytoskeleton,
are believed to drive amoeboid invasion (Margheri et al., 2014).

2.1.2 Cadherins
Cadherins are calcium-dependent transmembrane

glycoproteins that function in maintaining cell-to-cell adhesion
through the formation of adherens junctions and contribute to
intracellular signalling via p120 and β-catenin recruitment in the
cytosol, influencing proliferation, cell survival and invasion
(Venhuizen et al., 2020). There are several subtypes of cadherins,
however type I cadherins are the most relevant to melanoma, and
include: epithelial cadherin (E-cadherin, CDH1), present in
epithelial cells, melanocytes and keratinocytes; neural cadherin
(N-cadherin, CDH2); and placental cadherin (P-cadherin, CDH3)
(Yu et al., 2019).

In the skin, E-cadherin functions to maintain the adhesion of
melanocytes to keratinocytes through the formation of the
epidermal melanin unit; one melanocyte bound to ten
keratinocytes (Tang et al., 1994; Danen et al., 1996; D’Arcy and
Kiel, 2021). However, loss of E-cadherin is an early event in the

TABLE 2 Pharmacological Inhibitors yet to be examined in melanoma.

Target Inhibitor FDA registration
year/trial phase

Clinical trial no. Disease types

αvβ3, β1, β5, β6 and
α5 integrins

GLPG-0187 Phase I NCT01580644, NCT00928343,
NCT01313598 (Cirkel et al., 2016)

Solid Tumours

αvβ3 integrins Proagio Phase I NCT05085548, (Turaga et al., 2016;
Turaga et al., 2021)

Pancreatic Cancer

Preclinical Uveal Melanoma and Triple Negative Breast
Cancer (Yang et al., 2015; Sharma et al., 2021)

N-cadherin EC1-3
domain

IH7 Preclinical N/A Prostate Cancer (Tanaka et al., 2010)

N-cadherin
EC4 domain

2A9 Preclinical N/A Prostate Cancer (Tanaka et al., 2010)

FAK GSK2256098 (UNII-
R7O0O4110G, CAS
1224887–10–8)

Phase I NCT01138033, NCT01938443,
NCT00996671

Solid Tumours

Phase II NCT02428270 Pancreatic Cancer, Adenocarcinoma

Phase II NCT02523014 (recruiting) Progressive Meningioma

FAK Conteltinib Phase I NCT02695550 Non-Small Cell Lung Cancer

FAK CEP-37440 Phase I NCT01922752 Solid Tumours

Akt Miransertib (MK-7075) Phase I NCT02594215 Proteus Syndrome

Phase I NCT01473095 Advanced Solid Tumours, Lymphoma

Akt TAS-117 Phase II NCT03017521 (Lee et al., 2021) Solid Tumours

Akt LY-2780301 Phase I NCT02018874, NCT01115751 Non-Hodgkin’s Lymphoma, Advanced Solid
Tumours

Phase I NCT01115751 Metastases
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progression of most melanomas, believed to occur between radial
and vertical growth phases (Silye et al., 1998; Kuphal et al., 2004),
and results in the loss of interactions within the epidermal melanin
unit (Hsu M. et al., 2000). Coinciding with the reduced levels of
E-cadherin, melanoma cells gain expression of N-cadherin allowing
them to interact with stromal fibroblasts and endothelial cells,
promoting migration from the epidermis and dissemination into
circulation (Li et al., 2001a; Nguyen and Mège, 2016; Murtas et al.,
2017). This ‘switch’ in cadherin expression is driven by
downregulation of the EMT transcription factors (EMT-TFs)
Snail and Zeb1 (Poser et al., 2001; Kuphal et al., 2004; Zhu L.
et al., 2019) and correlates with a low proliferation rate and
acquisition of an invasive phenotype in melanoma cells (Kovacs
et al., 2016).

As overexpression of MITF is shown to increase E-cadherin
expression, while directly repressing CDH2 (N-cadherin), MITF
downregulation results in cadherin switching in melanoma (Dilshat
et al., 2021). Other molecules identified to regulate cadherin
expression in melanoma cells include: STAT3 and MEK,
demonstrated to induce expression of N-cadherin (Vultur et al.,
2014); FAK, knockdown of which is shown to reduce expression of
E-cadherin (Pei et al., 2017); and Integrin Linked Kinase (ILK)
which regulates N-cadherin membranous localisation through
regulating its’ endocytosis and recycling (Gil et al., 2020).
Notch1 is likewise demonstrated to increase expression of
N-cadherin in melanoma cells and coincides with the acquisition
of an invasive phenotype (Murtas et al., 2017). Co-expression of
these molecules within a patients’ lesion correlates with significantly
poorer prognosis compared to those expressing either protein alone.
Crucially, expression of N-cadherin facilitates metastasis by
promoting the survival of cells under anchorage-independent
conditions (Li et al., 2001a). This is achieved through the
activation of anti-apoptotic proteins Akt and PKB, increased β-
catenin levels, and the inactivation of pro-apoptotic protein Bad.

However, controversy arises between studies analysing the
expression levels of E- and N-cadherin in ex vivo melanomas.
Early studies indicated that the majority of melanoma tumours
retain no expression of E-cadherin as a result of autocrine HGF
secretion from melanoma cells activating c-Met and the MAPK and
PI3K pathways resulting in E-cadherin downregulation (Li et al.,
2001b). However, more recent studies demonstrated mixed
expression of E- and N-cadherin in patient samples, trending
towards an increase in N-cadherin expression as melanoma
progresses (Yan et al., 2016). Granted, melanoma cells are known
to be highly plastic in their protein expression and phenotype.
Therefore, it’s possible that the E-to N-cadherin switch is highly
transient and may occur only in a small subpopulation of cells with
the propensity for metastasis, with E-cadherin re-expressed to
promote adhesion and proliferation at the secondary tumour site.
As a result the switch may not be identifiable through histological
analysis of tumour sections. Furthermore, studies thus far fail to
analyse the function and activity of the cadherins present. It is
hypothesised that reduced activity, rather than reduced expression
of E-cadherin may be sufficient to promote anoikis resistance in
some patients. Nevertheless, the survival advantage conferred by
cooperative dissemination and the formation of CTC clusters or
circulating tumour microemboli (CTM) versus single cells suggests
an important role for the expression of cell-to-cell adhesion

molecules during metastasis and may explain why a partial
switch in cadherin expression is observed in melanoma (Hou
et al., 2011).

As a result of the switch in expression of E-to N-cadherin
observed in a range of cancers driven by EMT-like
transcriptional programs, therapies that promote a reversal of
this transition have been utilised (Figure 3). ADH-1 (exherin) is
a synthetic cyclic peptide containing the His-Ala-Val (HAV)
sequence (N-Ac-CHAVC-NH2), designed to bind and inhibit
N-cadherin clustering and interactions (Eslami et al., 2019),
inhibiting angiogenesis and metastasis, and promoting apoptosis
in multiple myeloma, neuroblastoma and pancreatic cancer
(Shintani et al., 2008; Lammens et al., 2012; Sadler et al., 2013).
Subsequently, the safety and efficacy of ADH-1 as a single-agent
therapy against neoplasms has been examined in phase I/II trials
(NCT00264433, NCT00265057), as well as in combination with
carboplatin, docetaxel or capecitabine (NCT00390676), and
melphalan (LPAM) (NCT00421811). In melanoma, pre-clinical
evidence suggests combining systemic ADH-1 therapy with
regionally infused LPAM has the potential to improve survival of
melanoma patients with in-transit metastases. Studies investigating
the combination in mouse models of melanoma demonstrate a
synergistic reduction in tumour volume associated with suppression
of N-cadherin expression, induction of apoptosis and changes in the
levels of genes related to cell adhesion (Augustine et al., 2008; Turley
et al., 2015). ADH-1 treatment further resulted in an increase in
endothelial cell permeability, which was hypothesised to improve
the delivery of chemotherapeutic agents to melanoma tumours.
However, both studies demonstrate increased volume of specific
tumours treated with ADH-1 alone, which appears to correlate with
the PTEN expression status of the cell line employed. Additionally,
examination of ADH-1 combined with temozolomide (TMZ) in
vivo yielded conflicting results, demonstrating synergism in
DM443 and DM366 xenograft models, but increased tumour
volume in A375 xenografts. It is therefore clear that the mutation
status of a patient is an important consideration for the
administration of ADH-1 therapies. A phase I trial examining
safety, pharmacokinetics and anti-tumour activity of ADH-1 +
LPAM in stage IIIB/C melanoma patients with in-transit limb
metastases demonstrated complete response in 50% of patients
(N = 16) (Beasley et al., 2009), with a subsequent phase II study
revealing the combination therapy resulted in significantly improved
response rates when compared with standard-of-care isolated limb
infusion (ILI) alone [NCT00421811 (Beasley et al., 2011)].

While yet to be examined in clinical trials, monoclonal antibody
therapies designed to block N-cadherin activity have demonstrated
preclinical efficacy in a range of cancers (Hazan et al., 2000; Zhang
et al., 2007; Wallerand et al., 2010; Groen et al., 2011; Zhang et al.,
2013; Eiring et al., 2015; Klymenko et al., 2017) (Table 2). GC-4
binds the EC1 domain of N-cadherin, blocking adhesion and
intracellular signalling. Treatment of melanoma cells with GC-4
resulted in knockdown of N-cadherin, and subsequently blocked
melanoma cell adhesion to endothelial cells, inhibiting
transendothelial migration (Qi et al., 2005).

In addition to the use of therapies aimed at reducing N-cadherin
activity, studies have investigated whether increasing E-cadherin
expression within the primary tumour is a feasible method of
reducing the loss of interactions within the epidermal melanin
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unit, thus preventing cells from entering circulation. Inducing
expression of E-cadherin in melanoma cells is demonstrated to
reduce colony formation, and restore keratinocyte-mediated
inhibition of invasion, resulting in smaller tumours in vivo (Hsu
M. Y. et al., 2000). Although no data has been presented to support
this to date, it’s possible that the use of these agents may potentiate
the attachment of CTCs to secondary sites that express E-cadherin,
such as the liver, lungs and intestines, or may promote
mesenchymal-to-epithelial transition (MET) of pre-existing
micro-metastases resulting in E-cadherin re-expression, cellular
proliferation and subsequent formation of clinically detectable
metastases, as has been observed in breast cancer (Chao et al.,
2010; Padmanaban et al., 2019).

2.2 Receptor tyrosine kinase (RTK)
hyperactivation

Activated upon ligand binding or via ligand-independent
mechanisms facilitated by integrins, tyrosine kinase receptors
(RTKs) function as the upstream initiators of intracellular
signalling cascades (Moro et al., 1998; Shen and Kramer, 2004;
Mitra et al., 2011). Melanoma cells are demonstrated to significantly
upregulate expression of a range of RTKs to maintain growth and
survival signalling, avoid apoptosis and ultimately drive the
processes of invasion and metastasis. RTK hyperactivation is also
postulated to be one of the main mechanisms driving intrinsic and
acquired resistance to treatment utilising targeted inhibitors against
the MAPK signalling pathway (Manzano et al., 2016). In addition to
the growth factor receptors discussed in this section, many others
such as FGFR, PDGFR, IGFR and VEGFR, are known to be
important in anoikis resistance in a range of other cancers
(Hilmi et al., 2008; Molhoek et al., 2011; Paoli et al., 2013; Chen
et al., 2016), and likely also have a role in melanoma. However, little
evidence is currently available, and they are therefore outside the
scope of this review.

2.2.1 EGFR
A switch in expression levels of epidermal growth factor

receptors is demonstrated to occur during melanoma progression
and correlates with the acquisition of invasive or proliferative cell
behaviour (Tsoi et al., 2018). EGFR (ERBB1) is a neural crest-
associated gene that is found to be highly expressed in
subpopulations of melanoma tumour cells exhibiting an
undifferentiated or neural crest stem cell-like (NCSC) gene
expression signature, including upregulation of SOX9, NGFR and
AXL, downregulation of SOX10, and a highly invasive phenotype
(Sun et al., 2014; Tsoi et al., 2018). EGFR has been identified as a
driver of resistance to therapeutic MAPK pathway inhibition (Abel
et al., 2013; Dugo et al., 2015), where autocrine activation of EGFR
stimulates activation of the downstream MAPK and PI3K-Akt
signalling pathways (Oberst et al., 2008; Sun et al., 2014; Liu S.
et al., 2021). Conversely, subpopulations of cells with a proliferative
phenotype preferentially express ERBB3 (Tsoi et al., 2018); with
ERBB1 and ERBB3 expression shown to be mutually exclusive in
melanoma cell lines (Dugo et al., 2015). However, the
ERBB3 molecule demonstrates no kinase activity except when
dimerised with EGFR or ERBB2, while ERBB2 expression is

reported to be very low or absent in melanoma (Liu S. et al.,
2021, Ueno et al., 2008; Inman et al., 2003). This suggests that a
switch in EGF receptor expression occurs, with ERBB3 slowly
downregulated and EGFR upregulated during the transition to an
invasive phenotype in order to drive MAPK and PI3K-Akt pathway
activity and ultimately metastasis. However, these findings
contradict a study utilising B16-BL6 melanoma cells indicating
that ERBB3, when dimerised with EGFR, is essential for tumour
metastasis both in vitro and in vivo, and upregulates mesenchymal
genes downstream ofMAPK, JNK and PI3K-Akt pathway activation
(Ueno et al., 2008). Nevertheless, the study by Ueno and others is
based on a single murine melanoma cell line which likely fails to
recapitulate the intratumoural heterogeneity found in a patient
tumour, and thus the switch observed.

In conjunction with overexpression of EGFR, metastatic
melanoma cells are demonstrated to overproduce the epidermal
growth factor (EGF) ligand. EGF can subsequently act in an
autocrine signalling manner allowing melanoma cells to produce
their own growth and survival signals, as well as in a paracrine
manner acting on endothelial cells to drive neoangiogenesis
(Bracher et al., 2013). The hyperactivated EGF signalling cascade
promotes expression of MMPs, adhesion molecules and initiators of
EMT, subsequently driving invasion and metastasis (Kajanne et al.,
2007; Lafky et al., 2008; Hardy et al., 2010; Kim et al., 2011; Zuo et al.,
2011).

Overexpression and hyperactivation/hyper-phosphorylation of
EGFR has been linked to anoikis resistance in a range of cancers,
including hepatocellular carcinoma (Lim et al., 2020), GBME
(Talukdar et al., 2018), breast (Oberst et al., 2008), lung
(Chunhacha et al., 2013) and prostate cancer (Giannoni et al.,
2009). In epithelial cells, hyperactivation of EGFR results in
abrogated activity of pro-apoptotic Bim through the maintenance
of MAPK pathway signalling, allowing the survival of cells upon
ECM detachment (Reginato et al., 2003). While investigating the
effects of reduced pH on the survival and metastasis of human
melanoma cells, Peppicelli and others identified that cells possessing
an anoikis resistant phenotype expressed high levels of EGFR, and
reduced levels of cleaved PARP-1 (Peppicelli et al., 2019). These cells
additionally displayed enhanced motility and invasion through
matrigel, and expressed markers of a mesenchymal-like
phenotype including N-cadherin. Furthermore, CTCs from
melanoma are demonstrated to express receptors from the EGFR
family (Tsao et al., 2018). While the role for EGFR signalling in
anoikis resistance in melanoma cells remains poorly defined, it is
hypothesised that the sustained survival signalling provided by
autocrine EGF/EGFR activation within clusters of melanoma cells
contributes to the survival of disseminated cells.

A range of small molecule inhibitors and monoclonal antibody
therapies have been designed to target EGFR hyperactivation in
cancers of epithelial origin (Figure 4). Lapatinib is an antineoplastic
small molecule kinase inhibitor registered by the FDA (2007) for the
treatment of patients with advanced metastatic breast cancer
(HER2/ERBB2+) in conjunction with the chemotherapeutic agent
capecitabine (Ryan et al., 2008). Lapatinib prevents phosphorylation
of multiple RTKs, including EGFR, ERBB2, ERK1/2 and Akt and has
demonstrated efficacy in clinical trials covering other malignancies
(NCT00486954, NCT00949455, NCT02230553, NCT00095940,
NCT01184482, NCT04608409). Similarly, three monoclonal
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antibody therapies targeting EGFR have been registered by the FDA.
Cetuximab (2004) was first approved for the treatment of metastatic
colorectal carcinoma (CRC) and head and neck squamous cell
carcinoma (HNSCC), while avelumab (2017, NCT03089658) and
amivantamab (2021, NCT04599712) were approved for the
treatment of metastatic Merkel cell carcinoma and EGFR-mutant
NSCLC, respectively. A multitude of other ERBB inhibitors (ERBBi)
have demonstrated efficacy in clinical trials, with the most notable
examined in phase IV trials: osimertinib (NCT03853551),
dacomitinib (NCT04511533), erlotinib (NCT01230710,
NCT00949910, NCT01402089, NCT01609543, NCT01066884),
gefitinib (NCT00770588, NCT01203917, NCT00608868,
NCT01000740), afatinib (NCT02514174, NCT02208843).

Extensive preclinical studies have examined the effects of
ERBBi in metastatic melanoma. A study by Girotti and others
demonstrated that BRAFi-resistant melanoma cell lines express
high levels of phosphorylated EGFR, and secrete increased levels
of EGF (Girotti et al., 2013). Treatment of resistant A375 cells
with gefitinib reduced in vitro proliferation and invasion.

Subsequent in vivo treatment of BRAFi-resistant A375 tumour
xenografts with combination gefitinib plus vemurafenib
(PLX4720) synergistically reduced tumour volume, compared
to vemurafenib or gefitinib alone. As BRAFi treatment has
been demonstrated to promote SOX10-low/EGFR-high
expressing cell populations, an independent study investigated
the same inhibitor combination in the A375 cell line in the
context of SOX10 knockout (Sun et al., 2014). However, the
combination of gefitinib and vemurafenib did not lead to
proliferation arrest in this setting, suggesting that further
investigation is required to identify the specific cohort of
patients that may benefit from ERBB inhibition. Interestingly,
a study comparing single-agent treatment using gefitinib,
erlotinib or lapatinib versus the pan-ERBB inhibitor (targeting
EGFR, ERBB2,3 and 4), canertinib (CI-1033), revealed increased
ability of the multi-kinase inhibitor to reduce in vitro
proliferation of both BRAF-wild-type (WT) and BRAFV600E

melanoma cell lines (Ng et al., 2014). Canertinib was
additionally shown to synergise with vemurafenib in vitro,

FIGURE 4
Targeting receptor tyrosine kinase signalling pathways in melanoma anoikis resistance. The MAPK (pink) and PI3K-Akt (purple) signalling pathways
are constitutively activated in melanoma and stimulated by the binding of a growth factor (Epidermal Growth Factor (EGF)/Hepatocyte Growth Factor
(HGF); yellow) to their respective receptor tyrosine kinase at the cell membrane (EGFR/c-MET). Oncogenic activation of these pathways is due to one of
three proteins, whose genes are mutated with high frequently in melanoma; BRAF, NRAS and NF1. Most commonly, the BRAF gene harbours a
mutation resulting in the V600E alteration, while NRAS usually possesses mutations leading to the Q61R variant, and NF1 is frequently effected by a
genetic alteration resulting in loss of function (LOF). These variations result in abnormal signalling to downstream effectors, resulting in altered
proliferation, differentiation, apoptosis, cell survival and metabolism; inevitably driving melanoma initiation and progression. As such, components of the
MAPK pathway are targeted with small molecule inhibitors for the therapeutic treatment of melanoma, and have been approved as either single-agent
therapies or in combination. Inhibitors approved for treatment of melanoma are indicated. In addition, inhibitors targeting EGFR, c-MET, the PI3K-Akt
pathway, and downstream transcription factors (green) exist, and have the potential to block anoikis resistance. Indicated inhibitors have been sourced
from data from all cancers.
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significantly reducing the IC50 of vemurafenib in 4 of 6 melanoma
lines assessed.

ERBB4 is found to be somatically mutated in 19% of melanomas,
with the majority of alterations occurring in the extracellular
domain of the receptor, resulting in enhanced kinase activity
(Prickett et al., 2009). Importantly, ERBB4 mutations increased
the ability of melanoma cells to grow under anchorage-
independent conditions, as assessed by the ability of SK-MEL-
2 cells to form colonies in soft agar. Treatment with lapatinib
was demonstrated to significantly reduce cell growth in ERBB4-
mutant melanoma cells lines at 10- to 250- fold higher sensitivity
(IC50) than ERBB4WT cells, resulting in dose-dependent inhibition
of ERBB4 auto-phosphorylation and downstream Akt signalling.
However, a phase II clinical trial evaluating the safety and efficacy of
lapatinib in treatment refractory stage IV melanoma patients
carrying ERBB4 mutations (NCT01264081) was terminated with
30/34 patients failing to complete the trial. Nevertheless, the in vitro
and in vivo evidence supporting the use of ERBBi in melanoma is
strong, and further investigation into their use in melanoma patients
with high levels of EGFR expression is warranted, particularly given
the evidence for its role in driving anoikis resistance.

2.2.2 c-MET/HGF
c-MET (encoded by the proto-oncogene, MET) is a

transmembrane RTK activated by its’ ligand, hepatocyte growth
factor (HGF). The c-MET/HGF signalling pathway normally acts in
a paracrine manner, with HGF secreted by mesenchymal cells and
acting on surrounding epithelial cells (Li et al., 2001b). The
conformation change induced by HGF binding, and the
subsequent auto-phosphorylation of the homodimerised receptor
subunits at Y1234 and Y1235, results in the recruitment of
downstream effector proteins such as STAT3 and Grb2 (Organ
and Tsao, 2011). Guanine nucleotide exchange factors (GEFs),
including SOS, are subsequently recruited resulting in the
stimulation of the MAPK pathway via the activation of Ras-GDP
to Ras-GTP, as well as the initiation of PI3K-Akt pathway signalling
(Zhang et al., 2018). During embryonic development, c-MET/HGF
signalling plays a crucial role in the survival and migration of
myogenic progenitor cells through stimulation of EMT (Bladt
et al., 1995; Jeon and Lee, 2017).

Expression of c-MET is detected in both keratinocytes and
melanocytes in the dermis and epidermis of the skin (Saitoh
et al., 1994). However, following oncogenic transformation,
melanoma cells gain expression of HGF, allowing autocrine
c-MET/HGF signalling that functionally decouples melanoma
cells from keratinocytes, facilitating invasion and migration
(Natali et al., 1993; Otsuka et al., 1998; Rusciano et al., 1998; Li
et al., 2001b). Studies subsequently established that melanoma cells
with high c-MET/HGF autocrine signalling have an increased
propensity for metastasis to the liver (Lin et al., 1998; Otsuka
et al., 1998). Expression of c-MET in BRAFV600E melanoma cell
lines, mouse xenografts and patient tumours is further demonstrated
to contribute to vemurafenib resistance under hypoxic conditions
(Qin et al., 2016). At a cellular level, c-MET is localised to sites of
cellular adhesion (Kenessey et al., 2010), and co-immunoprecipitates
with adhesion molecules such as E-cadherin and desmoglein 1 (Li
et al., 2001b). A study by Koefinger and others demonstrated that
expression of HGF in melanoma cells induces a switch in cadherin

expression from E-to N-cadherin, driven by the downregulation of
Slug and upregulation of Twist (Koefinger et al., 2011).
Overexpression of c-MET also promotes proteolytic processes
associated with invasion through the upregulation of urokinase-
type plasminogen activator (uPA) and MMP expression (Rusciano
et al., 1998; Tanaka et al., 2021).

Given the role of c-MET in melanoma invasion and migration,
and its association with adhesion molecules and EMT processes, the
involvement of c-MET/HGF signalling in anoikis resistance is
unsurprising. An early study in hepatocytes revealed that c-MET
functionally sequesters the Fas death receptor to prevent apoptosis,
suggesting that a high c-MET to Fas ratio may be involved in cancer
cell survival (Wang et al., 2002). In accordance with this hypothesis,
c-MET is demonstrated to contribute to anoikis resistance in
detached ovarian cancer cells through activation of MAPK and
PI3K pathways (Tang et al., 2010), as well as in gastric cancer
(Toiyama et al., 2012), HNSCC (Zeng et al., 2002) and prostate
cancer (Dai and Siemann, 2012). In a study by Pierce and others
demonstrating increased anoikis resistance in melanoma cells
following overexpression of the BRN2 transcription factor, a
significant increase in c-MET expression and phosphorylation
were observed (Pierce et al., 2020). Comparable with autocrine
EGFR signalling discussed previously, autocrine c-MET/HGF
signalling in disseminated cells and CTC clusters is hypothesised
to contribute to the survival signalling necessary to evade anoikis
during melanoma metastasis.

Due to the high prevalence of c-MET hyperactivation in a
variety of cancers, inhibitors have been designed to target the
molecule for therapeutic purposes (Figure 4). Crizotinib is an
ATP competitive inhibitor against c-MET, as well as ALK, FDA
registered (2011) for the treatment of patients with advanced or
metastatic NSCLC. Preclinical evidence in uveal melanoma revealed
the feasibility of crizotinib treatment, demonstrating reduced
in vitro viability and migration, and a significant reduction in
vivo formation of macro-metastases (Surriga et al., 2013).
Furthermore, multiple studies have investigated combining
crizotinib with other inhibitors for the treatment of cutaneous
melanoma. The combination of crizotinib with the ERBBi
afatinib demonstrated synergistic cytotoxic effects, significantly
reducing 2D and 3D invasion, migration and colony formation
independent of BRAF/NRAS mutation status, and resulting in
decreased tumour volume in vivo (Das et al., 2019; Das et al.,
2020). Importantly, a phase I study investigating the use of
crizotinib in combination with vemurafenib in advanced
melanoma patients has demonstrated safety and efficacy
[NCT01531361 (Janku et al., 2021)]. Single-agent treatment with
crizotinib is under investigation in a phase II trial for the treatment
of uveal melanoma patients (NCT02223819), while a phase I/II
study is currently recruiting patients with solid tumours carrying
GNAQ/11 mutations or PRKC gene (encoding PKC protein family
members) fusions (NCT03947385), as these alterations are shown to
result in HGF hypersecretion and hyperactivation of c-MET
(Kermorgant et al., 2004; Surriga et al., 2013).

Cabozantinib is a small molecule inhibitor targeting a range of
RTKs including c-MET, KIT, VEGFR-1/2/3, AXL and TRKB. It was
first registered by the FDA (2012) for the treatment of patients with
progressive and unresectable advanced medullary thyroid cancer
(MTC), and has subsequently received FDA registration for use in
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treatment-refractory advanced renal cell carcinoma (2016),
hepatocellular carcinoma (HCC) (2019), and as a first line
treatment for differentiated thyroid cancer (DTC) (2021) and
RCC (2021). A preclinical study investigating cabozantinib
treatment of cell lines derived from melanoma brain metastases
demonstrated the ability of the inhibitor to significantly reduce
viability of cells in monolayer and 3D spheroid cultures, reduce
migration and colony formation, and downregulate
phosphorylation of Akt and MEK1/2 (Mannsåker et al., 2021).
Phase I and II trials investigating the response of uveal and
cutaneous melanoma patients to cabozantinib treatment have
been completed [NCT01709435, NCT00940225 (Daud et al.,
2017), NCT01835145 (Luke et al., 2020)].

Capmatinib is a c-MET inhibitor registered by the FDA (2020)
for the treatment of metastatic NSCLC patients with MET exon
14 skipping mutations. Preclinical studies have evaluated the
treatment of melanoma patient-derived xenografts (PDXs) with
single-agent capmatinib, and in combination with encorafenib
(BRAFi), binimetinib (MEKi) or both (Krepler et al., 2016). The
study revealed complete tumour regression in 100% of mice treated
with capmatinib + binimetinib + encorafenib, with no evidence of
therapy resistance. A phase II clinical trial is currently recruiting
advanced melanoma patients for treatment with the triple
combination (NCT02159066). Similarly, tepotinib was FDA
registered in 2021 for the treatment of NSCLC, and
demonstrated evidence against melanoma in preclinical studies.
Treatment of WM451 cells suppressed invasion and migration,
and induced apoptosis by blocking PI3K-Akt signalling resulting
in reduced Bcl-2, increased Bax expression and caspase-3 cleavage,
accompanied by a switch in N- to E-cadherin expression suggesting
suppression of EMT (Jing et al., 2022).

Foretinib (EXEL-2880, GSK1363089), a c-Met and
VEGFR2 inhibitor, has demonstrated a high level of efficacy in
clinical trials for other cancer types (NCT00742131, NCT00742261,
NCT00743067), and in preclinical studies. Treatment of B16-F10
melanoma cells with foretinib blocked anchorage-independent
growth under hypoxic conditions in vitro, and significantly
reduced spontaneous metastasis to the lungs of mice in a dose-
dependent manner (Qian et al., 2009). Similar to crizotinib,
combining foretinib treatment with ERBBi gefitinib or lapatinib
demonstrated synergistic cytotoxic effects on melanoma cells
(Dratkiewicz et al., 2018; Simiczyjew et al., 2019), while
combination treatment with vemurafenib produced comparable
effects (Dratkiewicz et al., 2019).

In addition to the direct effect of c-MET inhibitors on tumour
growth and invasion, treatment with c-MET inhibitors foretinib,
crizotinib and cabozantinib are demonstrated to reduce the viability
of vascular endothelial cells immortalised from melanoma tumours
grown in immunocompetent mice (Jenkins et al., 2021), revealing
the potential efficacy of c-METi on tumour cells, stromal cells
and CTCs.

2.3 Signalling pathways

2.3.1 FAK signalling
First linked to anoikis resistance in mammary epithelial cells by

Frisch et al. (1996), focal adhesion kinase (FAK/PTK2) plays a role in

tyrosine kinase signalling where it interacts with the β subunit of
integrins in the cytosol [reviewed in (Paoli et al., 2013)]. Cell
adhesion to ECM components through integrin binding results
in rapid activating phosphorylation of FAK (p-FAK) at tyrosine
residues 397 and 576, resulting in the recruitment of proteins
including Src kinase, the actin cytoskeleton-binding paxillin and
adaptor proteins such as Grb2, activating multiple downstream
pathways including MAPK and PI3k-Akt signalling (Goundiam
et al., 2012). FAK also has a distinct role independent of focal
adhesions as a result of a nuclear localisation signal within the FERM
domain of the protein (Aplin et al., 1998; Parsons et al., 2000).
Normally, interrupting focal adhesions through cellular detachment
results in rapid dephosphorylation of FAK and its cleavage
facilitated by caspase-3, -6 and -9, resulting in translocation to
the nucleus where FAK prevents activation of wild-type
p53 signalling, triggering intrinsic apoptosis (Del Mistro et al.,
2022).

In melanoma, studies indicate that inappropriate
phosphorylation of FAK upon cell detachment contributes to
anoikis resistance by allowing persistent survival signalling (Hess
et al., 2005). Studies utilising B16-F10 murine melanoma cells
cultured on poly-HEMA (an ultra-low attachment coating)
demonstrate increased expression of p-FAK, alongside increased
expression of downstream molecule RhoA, and increased activating
phosphorylation of Akt (p-Akt) and ERK1/2 (p-ERK1/2) when
compared to the Swiss 3T3 anoikis sensitive cell line used as a
control (Goundiam et al., 2010). Interestingly, a study demonstrated
that stabilisation of p-FAK through interaction with the cell cycle
regulator p14ARF and subsequent sumoylation contributes to anoikis
resistance (Vivo et al., 2017). Mutant forms of p14ARF containing
point mutations identified in melanoma were able to stabilise p-FAK
more effectively than wild-type p14ARF. Comparably, FAK
knockdown (siFAK) in B16-F10 cells was shown to suppress
migration and metastasis in vivo, with decreased number of
metastatic nodules present in the lungs of mice upon siFAK in
comparison to controls (Pei et al., 2017). FAK knockdown decreased
expression of p-ERK1/2, p-STAT3 and increase expression of
E-cadherin, while siRNA against Akt and PI3K reduced p-FAK
expression (Goundiam et al., 2012; Pei et al., 2017).

Small molecule inhibitors that target FAK activity have been
explored in both phase I and II trials for use in a range of advanced
solid and haematological malignancies, and may represent a viable
option for repurposing to target melanoma CTCs. Defactinib (VS-
6063, PF-04554878) is a specific inhibitor of FAKwith demonstrated
antioangiogenic and antineoplastic activities. Defactinib is shown to
be safe in healthy subjects, and has demonstrated efficacy against
advanced malignancies in phase I trials (NCT02913716,
NCT02546531 and NCT01943292). Interestingly, in a study
utilising melanoma cells from patients who relapsed following
treatment with BRAF or MEK targeted inhibitors, treatment with
the FAK inhibitor (FAKi) defactinib was able to resensitise cells to
killing by MAPK pathway inhibition (Del Mistro et al., 2022). Other
FAKi yet to be examined in melanoma are summarised in Table 2.

The literature suggests that clusters of tumour cells in circulation
have greater metastatic potential and increased ability to evade
anoikis than single tumour cells (Hou et al., 2011; Hou et al.,
2012). A study revealed the potential efficacy of using FAKi to
target anoikis resistant tumour cells in circulation (Au et al., 2016). It
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was demonstrated that CTC clusters are able to transit through
capillaries with over 90% efficacy by unfolding into single-file chains
of cells. Use of a FAK inhibitor tool compound (FAK I-14) resulted
in a significantly greater likelihood of CTC clusters being disrupted
when transiting through capillaries than untreated clusters
(Figure 1).

2.3.2 MAPK signalling pathway
Melanomagenesis occurs primarily through the acquisition of

pathogenic mutations in genes that encode key components of the
Mitogen-Activated Protein Kinase (MAPK) signalling pathway
(Guo et al., 2020). Mutations in BRAF, (N/H/K) RAS or NF-1
were detected in 52%, 30.9% and 14% of patients in the Cancer
Genome Atlas Network (TCGA) dataset, respectively (Akbani et al.,
2015). These mutations cause constitutive activation of the MAPK
pathway, driving processes such as proliferation, differentiation and
abrogated apoptosis via the activation of a kinase cascade resulting
in downstream nuclear transcription factor phosphorylation and
activation (Guo et al., 2020). MAPK signalling is demonstrated to be
stimulated by microenvironmental growth factors, and result in
activation of the EMT-TFs (Lamouille et al., 2014). The
downregulation of Slug and Zeb2, and upregulation of Zeb1,
Snail and Twist1 promote differentiation and metastasis in
melanoma cells (Hoek et al., 2004; Kuphal et al., 2005; Caramel
et al., 2013). However, the role of Slug in melanoma appears to be
highly context dependent, with other studies demonstrating
increased expression in invasive cell populations (Fenouille et al.,
2012; Pearlman et al., 2017).

Accordingly, multiple small molecule inhibitors against key
components of this pathway have been registered by the FDA for
use in metastatic melanoma (Figure 4). Vemurafenib (approved in
2011) and dabrafenib (2013) target and inhibit mutant-BRAF
(BRAFi) (Jenkins and Fisher, 2021). In addition, between
2014 and 2018, three regimens that combine the use of a BRAFi
with an inhibitor against MEK (MEKi) were approved for use. The
combinations of dabrafenib + trametinib, vemurafenib +
cobimetinib, and encorafenib + binimetinib have demonstrated
efficacy against melanomas with mutations in both the NRAS
and BRAF genes, and are shown to improve therapy response
and overall PFS (Flaherty et al., 2012; Ascierto et al., 2013;
Larkin et al., 2014; Long et al., 2015; Robert et al., 2015).
However, following treatment with such inhibitors, multiple
distinct and drug resistant subpopulations of melanoma cells
persist, and quickly drive relapse in a proportion of patients
(Fedorenko et al., 2011; Rambow et al., 2018; Rambow et al., 2019).

Together with its role in driving melanoma formation and
progression the MAPK signalling pathway contributes
significantly to the acquisition of resistance to cell death by
anoikis in melanoma cells. Unlike primary human epidermal
melanocytes, melanoma cell lines carrying the BRAFV600E

alteration demonstrate enhanced cellular survival and reduced
apoptosis when plated on agar, as measured by caspase-3
cleavage (Boisvert-Adamo and Aplin, 2006). It was identified that
mutant-BRAF drives anoikis resistance through constitutive
activation of MAPK signalling, resulting in the depletion of two
pro-apoptotic Bcl-2 family members; the Bcl-xl/Bcl-2-associated
death promoter (Bad) and Bcl-2-interacting mediator of cell
death (Bim), while simultaneously increasing expression of anti-

apoptotic myeloid cell leukemia-1 (Mcl-1) (Boisvert-Adamo and
Aplin, 2008; Boisvert-Adamo et al., 2009; Goldstein et al., 2009).
Consistent with these findings, siRNA-mediated ablation of BRAF,
or pharmacological inhibition ofMEK, were demonstrated to induce
susceptibility to anoikis in melanoma cells (Boisvert-Adamo and
Aplin, 2006). However, it is clear from the vast number of studies
detailing intrinsic and acquired resistance to single-agent and
combination MAPKi therapy (Fedorenko et al., 2011; Winder
and Virós, 2018), that the use of BRAF or MEK targeted
inhibitors alone is insufficient to block anoikis resistance long-
term in patients.

Reactivation of ERK1/2 is considered a primary mechanism of
MAPKi therapy resistance (Lee et al., 2020). Given its role in cell
cycle progression and evasion of apoptosis, inhibitors against ERK1/
2 are being investigated in a range of advanced and metastatic
malignancies (Figure 4). MK-8353 is a selective inhibitor that targets
both phosphorylated and unphosphorylated ERK1/2. Preclinical
evaluation in an in vivo human xenograft model derived from
the BRAFV600E-mutant melanoma cell line SK-MEL-28,
demonstrated significant reduction in tumour volume compared
to untreated controls (Moschos et al., 2018). Despite reporting
efficacy and safety in a phase I trial of patients with advanced
solid tumours (NCT01358331), MK-8353 demonstrated an anti-
tumour response in only 3 of 8 BRAFV600E melanoma patients, with
all patients withdrawing from the trial as a result of disease
progression or adverse effects. MK-8353 has also undergone
testing in a phase 1b trial in combination with the ATP
competitive MEK1/2 inhibitor Selumetinib in advanced or
metastatic solid tumours in an attempt to suppress MAPK
therapy resistance (NCT03745989), and is likewise currently
under investigation in combination with the immunotherapy
pembrolizumab (NCT02972034). Similarly, Ulixertinib (BVD-
523) in an ATP-competitive inhibitor against ERK1/2 that has
successfully completed phase I/II trials examining dosage and
safety, displaying favourable pharmacokinetics in NRAS-mutant
and BRAFV600E advanced solid malignancies, as well as those
carrying BRAF mutations at non-V600 sites (NCT01781429)
(Sullivan et al., 2018; Wu J. et al., 2021). Interestingly, ulixertinib
was recently used in a phase II trial for the treatment of patients with
metastatic uveal melanoma (NCT03417739). However, the therapy
failed to demonstrate anti-tumour activity, with those treated
demonstrating a median overall survival of 6.9 months (3.2–8.3),
and 38.46% of participants reporting serious adverse events as a
result of the treatment (Buchbinder et al., 2020). In addition to the
use of ERKi, the current gold-standard treatment combining the use
of targeted inhibitors with immunotherapies suggests there may be
efficacy in further combining BRAF or MEK inhibitors with those
against other knownmediators of anoikis resistance described in this
review to target CTCs, especially given the considerable level of
crosstalk between MAPK, PI3K-Akt, EGFR, FAK and other key
signalling pathways in melanoma.

2.3.3 PI3K-Akt signalling
The Phosphatidylinositol 3-Kinase Akt (PI3K-Akt) signalling

pathway has been demonstrated to synergise with oncogenic MAPK
signalling to increase proliferation and disease progression (Atefi
et al., 2011; Greger et al., 2012). PI3K-Akt signalling is constitutively
activated by mutant NRAS (Johnson and Puzanov, 2015), as well as
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the PTEN tumour suppressor which is found to be effected by loss of
function mutations in approximately 20% of BRAF-mutant
melanomas, resulting in Akt activation (Shull et al., 2012; Akbani
et al., 2015). Overall, expression of Akt is elevated in approximately
70% of malignant melanomas resulting in the dysregulation of
downstream effector molecules, such as mTOR (Pearlman et al.,
2017). Studies propose that melanoma invasiveness may be
regulated by a PI3K-PAX3-BRN2 axis, with inhibition of PI3K
signalling shown to reduce invasion and downregulate expression
of both PAX3 and BRN2 (Bonvin et al., 2012). In epithelial cells,
activation of PI3K-Akt signalling drives the process of EMT through
the activation of the EMT-TFs, protecting against death by anoikis
in suspension culture conditions (Khwaja et al., 1997; Xu et al.,
2015). Mechanistically, Akt activity is able to abrogate apoptosis via
the phosphorylation of Bim and Bad pro-apoptotic proteins,
inhibiting caspase-9 activity and transcription of the Fas death
receptor ligand (Qi et al., 2006; del Peso et al., 1997; Brunet
et al., 1999; Kennedy et al., 1999).

In melanoma, PI3K-Akt signalling is thought to contribute to
anoikis resistance. Early research suggested the pathway may act as a
secondary survival cue, protecting cells against apoptosis in the
absence of mutant-BRAF (Boisvert-Adamo and Aplin, 2006). In the
presence of mutant-BRAF, PTEN-deficient melanoma cells express
constitutively active Akt3, which protects against apoptosis by
upregulating Bim and Bmf (Shao and Aplin, 2010). When
cultured on poly-HEMA, B16-F10 cells demonstrated a transient
increase in Akt phosphorylation, while total protein level was
unchanged (Goundiam et al., 2010). A subsequent study revealed
that inhibition of Akt activation, as well as downstream RhoA and
RhoC expression, resulted in induction of anoikis through the
inactivation of the FAK signalling pathway (Goundiam et al.,
2012). Similarly, two consecutive studies by Toricelli et al.
validated these findings, revealing that inhibition of PI3K or Akt
proteins reversed anoikis resistance in melanoma cells (Toricelli
et al., 2013; Toricelli et al., 2017). Inhibition of Timp1, an MMP
inhibitor whose overexpression activates PI3K-Akt signalling,
induced sensitivity to anoikis in vitro and reduced tumour
volume and metastatic colony formation in vivo. Subsequent
studies have shown that anoikis resistance induced via the
knockdown of α2, α3β1 or α5β1 integrins can be rescued via the
specific inhibition of Akt (Kozlova et al., 2019; Kozlova et al., 2020).
Furthermore, MIST1 and SNAI1 transcription factors are thought to
contribute to anoikis resistance by directly repressing PTEN (Lee
et al., 2018), while knockdown of the NCAM adhesion molecule
induced apoptosis in melanoma cells by suppressing Akt activation
(Li et al., 2020).

Given the frequency of Akt hyperactivation in melanoma, a
range of inhibitors have been designed against its’ isoforms and may
be repurposed in order to target anoikis resistance (Table 2;
Figure 4). Uprosertib is an orally bioavailable inhibitor against
Akt. Preclinical evidence demonstrated the potential efficacy of
combining uprosertib with MEKi against a range of cancer cell
lines with mutations in the BRAF or KRAS genes (NCT01935973,
NCT01989598) (Dumble et al., 2014). However, a phase II study
investigating the combination in BRAF/NRAS wild-type, andNRAS-
mutant melanoma patients (NCT01941927) revealed no
improvement to overall or progression-free survival (Algazi et al.,
2018). A similar phase II trial in stage IV uveal melanoma patients

(NCT01979523) revealed analogous results, with dose reductions
required due to the frequency of adverse events (Shoushtari et al.,
2016), as predicted in the phase I dose-escalation study
[NCT01138085 (Tolcher et al., 2020)]. Despite this, a phase I/II
trial into uprosertib plus dabrafenib and trametinib in stage III/IV
metastatic solid cancers, including melanoma, is currently underway
(NCT01902173).

MK-2206 inhibits Akt, blocking downstream PI3K-Akt
signalling. Its’ anti-tumour activity has been assessed in clinical
trials against a range of cancers (NCT01071018, NCT00670488,
NCT00848718, NCT01283035, NCT01604772, NCT01349933,
NCT01802320, NCT01333475, NCT01258998, NCT01481129,
NCT01253447, NCT01231919, NCT01369849, NCT01277757)
(Molife et al., 2014). Preclinical studies treating melanoma cells
in vitro with MK-2206 resulted in a concentration-dependent
downregulation of phosphorylated Akt, inhibition of cell growth
and colony formation, and induced apoptosis through altered
expression of Bax, and increased ROS generation (Quast et al.,
2013; Petit et al., 2019). MK-2206 has further demonstrated efficacy
in combination with binimetinib, where treatment resulted in a
synergistic reduction in tumour volume (Petit et al., 2019), as well as
in combination with the mTOR inhibitor everolimus (Ciołczyk-
Wierzbicka et al., 2020), and vemurafenib (Su et al., 2012; Thang
et al., 2015). Interestingly, a phase I trial investigating MK-2206 in
combination with paclitaxel and carboplatin for the treatment of two
patients with BRAF-wild-type stage IV melanoma reported long-
term, enhanced responses to chemotherapy [NCT00848718
(Rebecca et al., 2014)]. However, a phase II clinical trial
investigating MK-2206 plus selumetinib (MEK1/2 inhibitor) in
stage III/IV melanoma patients who previously failed
vemurafenib or dabrafenib treatment was terminated due to slow
accrual (NCT01519427).

The small molecule Akt inhibitor Ipatasertib (GDC-0068) has
been examined in phase I trials against breast, ovarian and prostate
cancers (NCT03840200, NCT01562275, NCT01362374) (Yan et al.,
2013), as well as in phase II trials for gastric cancers (NCT01896531)
and in combination with paclitaxel for breast cancer treatment
(NCT02301988, NCT02162719). While its efficacy in melanoma
patients is yet to be examined, ipatasertib is demonstrated to prevent
growth of the PTEN-null melanoma tumours in vivo (Saura et al.,
2017). Similarly, capivasertib (AZD-5363) targets all isoforms of
Akt, and has completed phase I trials against solid tumours
(NCT04742036), haematological malignancies (NCT04944771)
and prostate cancer (NCT04087174). In a study by Dinavahi and
others, simultaneously administering capivasertib with the
WEE1 inhibitor AZD-1775, synergistically reduced melanoma
cell survival in vitro and tumour growth in vivo by driving
increased expression of p53 and blocking Akt-mediated
activation of FOXM1 (Dinavahi et al., 2018).

ONC-201 (TIC-10) is an orally available small molecule
inhibitor with activity against both Akt and ERK. The efficacy of
ONC-201 for the treatment of advanced malignancies has been
investigated in phase I and II (NCT02324621, NCT02250781,
NCT02609230, NCT03394027). Interestingly, as ONC-201 is
water-soluble and able to cross the blood-brain barrier, phase II/
III clinical trials are currently recruiting participants to examine its
efficacy against gliomas (NCT05476939, NCT05009992). While yet
to be trialled in melanoma patients, pre-clinical evidence
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demonstrated treatment of melanoma cell lines with ONC-201
reduced colony formation and migration in vitro, decreased
expression of p-Akt and p-ERK, and resulted in a significant
reduction in tumour volume (Wagner et al., 2017). Further,
combination treatment with bortezomib, an inhibitor of the
ubiquitin-proteasome pathway, demonstrated a synergistic ability
to reduce cell viability and induce apoptosis (Takács et al., 2021).
Although ONC-201 has been examined in clinical trials as a specific
inhibitor against Akt and ERK, conjecture surrounding its
mechanism of action remains, with studies suggesting it may
indirectly modulate Akt activity as a downstream effect of
dopamine receptor D2 inhibition (McSweeney et al., 2020;
Prabhu et al., 2020).

Perifosine (KRX-0401) is a small molecule inhibitor against Akt
that has been examined in phase II trials against a range of cancers
(NCT00389077, NCT00873457, NCT00455559, NCT00590954,
NCT00448721, NCT00498966, NCT00375791, NCT00398879,
NCT00053924, NCT00059982). Despite evidence that perifosine
treatment of melanoma cells reduces expression of p-Akt (Liu
and Xing, 2012), a phase II trial in metastatic cutaneous
melanoma patients failed to demonstrate efficacy [NCT00053781
(Ernst et al., 2005)]. Afuresertib (GSK-2110183) is an orally available
small molecule inhibitor of Akt. A phase I/II dose escalation study
combining afuresertib with trametinib in patients with advanced
solid tumours observed a partial response in a patient with BRAF-
wild-type melanoma, however the combination therapy was poorly
tolerated with extensive adverse effects recorded [NCT01476137
(Tolcher et al., 2015)].

Furthermore, there has been growing investigation into the use
of inhibitors targeting overexpression of PI3K directly in breast
cancer and haematological malignancies [reviewed in
(Vanhaesebroeck et al., 2021)], which is beginning to expand into
other solid tumour types with a phase I trial examining the safety
and tolerability of IOA-244 in uveal melanoma patients currently
recruiting participants (NCT04328844). In addition, given that
constitutive activation of the PI3K-Akt pathway activates
downstream mTOR signalling to drive survival, motility, invasion
and proliferation, multiple studies have investigated the use of
mTOR inhibitors in combination with other therapies for the
treatment of metastatic melanoma patients [recently reviewed in
(Chamcheu et al., 2019)]. Such combination treatments may also be
efficacious in the targeting of anoikis resistant melanoma cells.

2.4 Transcription factors

2.4.1 BRN2
BRN2, the POU domain transcription factor encoded by the

gene POU3F2, has been linked to melanoma progression in the
phenotype switching model as a potential driver of invasive
behaviour (Cook and Sturm, 2008; Hoek and Goding, 2010)
[reviewed in (Fane et al., 2019)]. BRN2 plays a role in the
delineation of neural crest cells to the melanocytic lineage during
embryonic development, similar to other factors such as SOX10 and
the Microphthalmia-associated transcription factor (MITF)
(Thomson et al., 1995; Cook et al., 2003). BRN2 is expressed in
melanoma tissues (Sturm et al., 1991; Thomson et al., 1993), with
10-fold higher expression observed in melanoma cell lines in

comparison to normal melanocytes (Eisen et al., 1995). Early
research revealed that inhibition of BRN2 expression results in
complete loss of tumour formation in mice, and the loss of
melanocyte markers including MITF (Thomson et al., 1995).
Subsequently, it was identified that BRN2 expression is inversely
correlated with, and mutually exclusive to MITF expression in
patient tumours and xenografts (Goodall et al., 2008). MITF and
BRN2 therefore regulate opposing functions in the phenotype
switching phenomenon by virtue of their ability to modulate
each other; BRN2 represses expression of MITF by directly
binding to its promoter (Goodall et al., 2008) as well as
indirectly through upregulating NFIB (Fane et al., 2017); while
MITF negatively regulates BRN2 via miR-211, a micro-RNA
derived from the MITF-regulated gene melastatin (TRPM1)
(Boyle et al., 2011). As a result, melanoma cells expressing low
levels of MITF and high BRN2 (MITFlow/BRN2high) are
demonstrated to be significantly more tumorigenic than
MITFhigh/BRN2low cells when injected subcutaneously into
mice (Goodall et al., 2008). In addition, BRN2 is shown to
interact with the DNA damage response proteins PARP1 and
Ku70/80 at sites of damage induced by UVB, chemotherapy or
vemurafenib treatment, promoting error-prone repair via non-
homologous end joining (NHEJ) and suppressing apoptosis
(Herbert et al., 2019).

It’s therefore unsurprising given the role of BRN2 in driving
invasion and metastasis that it has been similarly implicated in
resistance to cell death by anoikis in melanoma. A recent study by
our lab revealed that overexpression of BRN2 in human metastatic
melanoma cell lines increased cellular viability when grown under
non-adherent conditions (Pierce et al., 2020). The increased survival
ability coincided with amplified expression of known markers of the
anoikis-resistant and mesenchymal-like phenotypes; including the
β1 integrin subunit (ITGB1), TWIST1 andMET, as well as increased
STAT3 phosphorylation. The study further demonstrated that
inhibition of c-MET was able to significantly reduce percentage
viability in BRN2 overexpressing cells in ultra-low attachment
conditions.

Currently, there are no FDA registered inhibitors against BRN2,
nor are there any in clinical trials. However, a study in
neuroendocrine prostate cancer recently emerged detailing the
development of a potent and specific small molecule inhibitor
against wild-type BRN2 (B18-94) (Thaper et al., 2022) (Figure 4).
Inhibition of BRN2 using B18-94, or inducible CRISPR/
Cas9 knockout as a control, was shown to result in the
upregulation of pathways for epithelial development and
apoptosis, suggesting that direct inhibition of BRN2 may be a
feasible way of inducing anoikis in cancer cells that overexpress
BRN2. While yet to be examined in humans, in vivo administration
of B18-94 via both intra-peritoneal (IP) and oral routes in a murine
model suggests the compound has efficacious therapeutic likeness.
Furthermore, treatment of xenograft tumours reduced tumour
volume and cell proliferation, and increased apoptosis. Similarly,
a synthetic peptide derived from the POU domain of BRN2 (R18H)
has been demonstrated to induce apoptosis in B16-F10-
Nex2 melanoma cells in vitro, while IP administration in C57BL/
6 mice resulted in a significant reduction in the formation of
metastatic nodules in the lungs, compared to untreated mice (da
Cunha et al., 2019).
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2.4.2 STAT3
Signal transducer and activator of transcription 3 (STAT3) is

activated downstream of receptor tyrosine kinase and growth factor
receptors, particularly cMET/HGF, EGFR and PDGFR, as well as
janus kinase (JAK) and Src Kinase pathways. Phosphorylation of
STAT3 results in its dimerization and translocation to the nucleus
where it promotes transcription. STAT3 has been extensively
studied in the context of melanoma, where its constitutive
activation is shown to promote melanoma cell proliferation,
metastasis and invasion, and contribute to immune evasion by
stimulating persistent expression of VEGF (Kortylewski et al.,
2005; Lee et al., 2012; Swoboda et al., 2021; Graziani et al., 2022).
Studies demonstrate that STAT3 drives melanoma cell survival
through the upregulation of anti-apoptotic proteins Bcl-XL, Mcl-
1, Cyclin D1 and survivin, and downregulation of p53 (Zhuang et al.,
2007). As such, STAT3 has been identified as a contributor to the
anoikis resistant phenotype in melanoma.

A study demonstrated increased STAT3 phosphorylation at
Y705 in melanoma cell lines cultured in suspension conditions
compared to adherent cells, driving upregulation of Bcl-2 and
Mcl-1 (Fofaria and Srivastava, 2014). The subsequent increase in
STAT3 activity increased migration and invasion of cells replated
from suspension cultures in vitro, while knockout of
STAT3 prevented the formation of tumours in vivo. An
independent study confirmed these findings, revealing that
p-STAT3 (Y705) stimulated anoikis resistance of B16-F10
melanoma cells as part of the FAK, p-ERK1/2 and PPARγ
signalling pathways (Pei et al., 2017). Furthermore,
STAT3 activity upregulated V-ATPase expression in B16-F10
cells to drive anoikis resistance, while pharmacological blockade
of STAT3 repressed V-ATPase, inducing anoikis through ROS-
mediated misfolded protein accumulation (Adeshakin et al., 2021b).
An increase in STAT3 phosphorylation was similarly observed in
melanoma cells cultured in ultra-low attachment conditions with an
anoikis resistant phenotype induced by overexpression of BRN2
(Pierce et al., 2020).

The use of STAT3 inhibitors (STAT3i) for metastatic melanoma
patients has been extensively investigated, given that combining
STAT3i with anti-PD-1 immunotherapy has the potential to
remodel the tumour microenvironment and resensitise
treatment-refractory cells to vemurafenib treatment, while
increasing CD8+ T cell infiltration into the tumour (Su et al.,
2018; Zhao et al., 2020; Kim et al., 2022) (Figure 4). In vitro
studies suggest the potential of utilising STAT3i to target anoikis
resistance, with preclinical studies demonstrating that the synthetic
inhibitor, AG-490, and the natural compound from black pepper,
piplartine (PL), reduce anoikis resistance and induce PARP cleavage,
while reducing the migratory potential of melanoma cells (Fofaria
and Srivastava, 2014).

The FDA registered anti-helminthic drug niclosamide has
potential inhibitory effects against STAT3. It’s unclear whether
these effects are direct, however the molecule is predicted to bind
to both the SH site and the Y705 phosphorylation site (Shi et al.,
2017). Niclosamide may alternatively block STAT3 activation by
targeting the androgen receptor variant V7 (AR-V7) upstream. Its
use has been examined in phase I trials for castration resistant
metastatic prostate cancer (NCT02532114) and refractory AML
(NCT05188170). In melanoma, preclinical evidence revealed that

niclosamide inhibited melanoma cell proliferation in vitro,
independent of BRAF or NRAS mutation status, inhibiting
tumour growth in xenograft models by uncoupling mitochondria
and increasing metabolic stress (Figarola et al., 2018). Treatment of
melanoma cells reduced STAT3 phosphorylation (Y705), inducing
apoptosis via activation of Bax, reduction in Bcl-2 expression, and
caspase-3 cleavage (Zhu Y. et al., 2019; Zheng et al., 2022).
Niclosamide was further established to block melanoma cell
migration and invasion, inhibiting activation of MMP-2 and 9,
while inducing ROS generation in a dose-dependent manner. Other
studies reveal improved delivery and efficacy of niclosamide against
melanoma cells when the drug is packaged into liposomes
(Hatamipour et al., 2019; Shah et al., 2022). A range of other
STAT3 inhibitors have been examined in many cancers including
melanoma, and are summarised in Table 3.

Upstream, STAT3 is activated by the cytokine IL-6, and as such
therapies blocking IL-6 are being investigated for their ability to
prevent STAT3 activation (Table 4). In addition, as Janus kinases
(JAK) are upstream mediators of STAT3 activation and signalling, a
range of JAK inhibitors under investigation in clinical trials have
demonstrated efficacy against melanoma in preclinical studies (Wu
K. J. et al., 2017), and subsequently have the potential to be
repurposed to block anoikis resistance by targeting JAK/STAT
signalling in melanoma cells (Table 5).

2.4.3 AP-1 family
The activating protein-1 (AP-1) family of transcription factors

are comprised of homodimers between Jun proteins (cJun, JunB and
JunD) or heterodimers between Jun and Fos (c-Fos, FosB, Fra1 and
Fra2) (Wisdom, 1999; Eferl and Wagner, 2003; Gurzov et al., 2008),
and demonstrate a wide range of functions that differ depending on
the composition of the complex, the target gene, and the cell type,
influencing cell growth, proliferation and cell cycle progression
(Chinenov and Kerppola, 2001; Jin et al., 2011). AP-1
transcription factors act as part of the immediate-early response
initiated by MAPK pathway signalling. As such, during
melanomagenesis the constitutive activation of this pathway
results in over-activation of the AP-1 factors, driving cellular
dedifferentiation and transcriptional heterogeneity (Comandante-
Lou et al., 2022). In particular, Fra-1 (encoded by the gene FOSL1) is
important for melanoma progression as its accumulation triggers
the transcription factor switch that drives (partial)-EMT,
downregulating Zeb2 and SNAI2 and directly upregulating Zeb1
at its promoter (Caramel et al., 2013; Casalino et al., 2022).
Subsequently, Fra-1 drives changes in cytoskeletal organisation,
polarisation, motility and invasion (Dhillon and Tulchinsky,
2015; Casalino et al., 2022). Critically, Maurus and others
demonstrated that FOSL1 promotes anoikis resistant growth of
melanoma cells on soft agar, and allows subcutaneous tumour
growth in vivo via a Fra-1 target gene product, the chromatin
modifier HMGA1 (Maurus et al., 2017).

Fra-1 was previously thought to be a non-viable target for
pharmacological inhibition by small molecules, and as such most
of the attempts to target the molecule focus on its destabilisation by
inhibition of upstream kinases, or via targeting FOSL1 mRNA
(Sobolev et al., 2022). Some metabolites and molecules are
reported to non-specifically inhibit its expression and function,
such as PARP1 inhibitors, glucocorticoid dexamethasone,
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ranpirnase and rosiglitazone, while vemurfanib and retinoic acid are
shown to activate Fra-1 expression (Zeng et al., 2022). However, a
few polypeptide and small molecule inhibitors against Fra-1 have
demonstrated promise in recent years (reviewed in (Casalino et al.,
2022) Table 6 and Figure 4).

2.5 Other contributing factors

Additional factors, including the microenvironment and ECM,
cellular metabolism, and production of reactive oxygen species
(ROS) and nitric oxide (NO) are believed to contribute to anoikis
resistance in melanoma. However, we have chosen to focus on the
contribution and targeting of intracellular signalling cascades, and as

such detailed discussion of these topics are beyond the scope of this
review.

Research in the field of cellular microenvironment and ECM
have focused on the contribution of MMPs and TIMP-1 to anoikis
resistance. TIMP-1, despite being described as an MMP inhibitor, is
interestingly shown to increase the survival of melanoma cells in
suspension, and increase metastatic potential by interacting with
β1 integrins, resulting in PDK1 activation (Zhu et al., 2001; Ricca
et al., 2009; Toricelli et al., 2013; Toricelli et al., 2017). Furthermore,
adhesion to fibronectin is thought to activate PI3K-Akt signalling,
and protect cells from apoptosis (Boisvert-Adamo and Aplin, 2006;
Fedorenko et al., 2016). Drugs targeting these processes have the
potential to block anoikis resistance in melanoma cells [as reviewed
in (Winer et al., 2018)].

TABLE 3 STAT3 inhibitors.

Inhibitor FDA registration
year/trial phase

Clinical trial no. Disease types Evidence in melanoma

Napabucasin (BBI-608) Phase III NCT02753127, NCT01830621,
NCT02178956

Colorectal and Gastric Cancer Bitsch et al. (2022)

Phase III NCT02993731 (Sonbol et al.,
2019)

Pancreatic Ductal Adenocarcinoma

WP-1066 Phase I NCT01904123 Recurrent Malignant Glioma and
Metastatic Melanoma in the Brain

Kong et al. (2008), Hatiboglu et al.
(2012), Tang et al. (2013), Sau et al.
(2017)

Phase I NCT04334863 Medulloblastoma and Brain
Metastases

WP-1220 (MOL-4239) Phase II NCT01826201 Psoriasis

NCT04702503 Cutaneous T Cell Lymphoma

NSC-741763 Phase I NCT00696176 (Sen et al., 2012;
Ramasamy et al., 2020)

Head and Neck Tumours Niu et al. (1999)

SCV-07 (golotimod) Phase II NCT00968357 Chronic Hepatitis C WO2012040656A2 (Tuthill and Sonis,
2012)

C188-9 (TTI-101) Phase I NCT03195699 Advanced Cancers, incl. Melanoma

OPB-51602 Phase I NCT01344876 Multiple Myeloma, Lymphoma,
Leukaemia

Phase I NCT01423903, NCT01867073 Advanced Cancer

Phase I NCT01184807 Refractory Malignancies incl.
Melanoma

Wong et al. (2015)

Danvatirsen (ISIS-481464,
ISIS-STAT3Rx, AZD9150)

Phase I/II NCT01563302 (Reilley et al.,
2018), NCT03527147,
NCT02549651

Advanced Cancers, Lymphoma,
Diffuse Large B-Cell Lymphoma

Phase I NCT01839604 Hepatocellular Carcinoma

Phase I/II NCT02499328 (active) Head and Neck Squamous Cell
Carcinoma

OPB-111077 Phase I NCT01711034, NCT02250170,
NCT01711034

Advanced Solid Tumours

Phase I NCT03197714 Acute Myeloid Leukaemia

SC-43 Phase I/II NCT04733521 (recruiting) Non-Small Cell Lung Cancer,
Advanced Biliary Tract Cancer

Phase I NCT03443622 (withdrawn) Solid Tumours

HL237 Phase I NCT04633733, NCT03278470 Rheumatoid Arthritis
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TABLE 4 IL-6 inhibitors.

Inhibitor FDA registration year/
trial phase

Clinical trial no. Disease types Evidence in
melanoma

Siltuximab (Sylvant, CNTO-328) 2014 (FDA) Multicenteric
Castelman’s Disease

Zaki et al. (2004)

Phase I NCT02641522 Type 1 Diabetes

Phase II Phase IIPhase I/II
Phase II

NCT01484275, NCT00402181,
NCT01531998, NCT04975555 (recruiting)

Multiple Myeloma

Phase II NCT00433446 Prostate Cancer

Phase I/II NCT00265135 Metastatic Renal Cell
Carcinoma

Phase I/II NCT04191421 (recruiting) Pancreatic Cancer

Early Phase I NCT05316116 (recruiting) Granular Lymphocytic
Leukaemia

Bazedoxifene (Conbriza, Duavive,
WAY-140424, TSE-424)

2013 (FDA) Menopause Chakraborty et al.
(2021)

Phase I/II Phase II NCT02448771, NCT04821141 (recruiting) Breast Cancer

Not Applicable NCT04812808 Pancreatic Cancer

TABLE 5 JAK inhibitors.

Inhibitor FDA registration year/
trial phase

Clinical trial no. Disease types Evidence in
melanoma

Ruxolitinib (INCB018424,
INC424)

2011 (FDA) Myelofibrosis Mo et al. (2022), Shen
et al. (2022)

Phase I/II Phase II NCT02066532, NCT01594216 Breast Cancer

Phase I/II NCT02155465 Lung Cancer

Phase II NCT01423604 Pancreatic Cancer

Phase II NCT01348490 Myeloproliferative Neoplasms

Fedratinib (Inrebic,
SAR302503, TG-101348)

2019 (FDA) Myelofibrosis

Phase I NCT01836705 Solid Tumours

Pacritinib (ONX-0803, SB-
1518)

Phase I NCT02808455 Healthy Volunteers

Phase II NCT04635059 (recruiting) Prostate Cancer

Phase I/II NCT04520269 Breast Cancer (with 1q21.3 copy
number amplification)

Tofacitinib (xeljanz, CP-
690,550)

2012 (FDA) Rheumatoid Arthritis

Phase III NCT05326464 (recruiting) Glioblastoma

Phase I NCT04034238 Pancreatic Adenocarcinoma and
Mesothelioma

Itacitinib (INCB-039110) Phase III NCT03139604 Graft-versus-host Disease

Phase II NCT01858883 Pancreatic Cancer and Solid Tumours

Phase I NCT02646748 (Kirkwood et al., 2018;
Beatty et al., 2019)

Solid Tumours incl. Melanoma

Phase I NCT03272464 (active, not recruiting) Melanoma
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Studies investigating the cellular metabolism of CTCs have
identified autophagy as a contributing factor to anoikis resistance
driven by p53, PI3K-Akt, mTOR, STAT and EGFR signalling
(Guadamillas et al., 2011; Liu M. et al., 2021). The contribution
of autophagy, as well as ferroptosis and necroptosis to anoikis
resistance in melanoma were recently reviewed (Ashrafizadeh
et al., 2019). Small molecule inhibitors targeting these
pathways have the potential to induce anoikis in melanoma
cells [as reviewed in (Wu et al., 2022)]. Regulators of fatty
acid oxidation (FAO), CROT and CRAT, are shown to
regulate anoikis in melanoma cells (Lasheras-Otero et al.,
2022), while inhibitors of FAO, such as thioridazine and
ranolazine may have therapeutic potential [as reviewed in
(Munir et al., 2022)]. Anoikis induction is additionally linked
to increased ROS and reduced NO production (Adeshakin et al.,
2021b; Zhu et al., 2020; Monteiro et al., 2019; Ribeiro-Pereira
et al., 2014; Giannoni et al., 2008; da Costa et al., 2018), and as
such therapies that target these processes may be a viable option
against melanoma cells (Adeshakin et al., 2021a). These topics
were recently reviewed in (Sattari Fard et al., 2022).

3 Discussion/concluding remarks

There is an opportunity to repurpose existing therapies for
patients with a high risk of disseminating melanoma. For
instance, patients with ulcerated disease may benefit from novel
therapy due to early dissemination leading to worse prognosis than
those with non-ulcerated, but similarly staged melanoma. Further,
treatments targeting pathways involved in invasion and cellular
migration may prevent cells leaving the primary tumour, while those
impacting anoikis resistance mechanisms may potentially target
melanoma cells in circulation prior to the seeding of metastases
(Figure 1). Ultimately, it is clear that transcriptomic testing is
required to administer personalised targeted therapies based on
the expression signature of an individuals’ tumour. This
personalised approach will hopefully culminate in better health
outcomes for patients with malignant melanoma.

Author contributions

Conceptualisation, HN and GB; writing—original draft
preparation, HN; writing—review and editing, JS and GB. All
authors have read and agreed to the published version of the
manuscript.

Funding

The authors wish to thank the National Health and Medical
Research Council of Australia (APP1158283 Project Grant, GB).

Acknowledgments

The authors wish to thank the Queensland University of
Technology for supporting this work through an Australian
Government Research Training Program (RTP) Scholarship, and
QIMR Berghofer Medical Research Institute for a Top-Up
Scholarship.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

TABLE 6 AP-1 family inhibitors.

Target Inhibitor Type Evidence in melanoma References

c-Jun, Fos TAM67 c-Jun dominant negative
derivative peptide

Knocks down c-Jun in melanoma cell line frommetastatic inguinal lymph
node lesion

Madireddi et al. (2000)

Blocked NFκB activation, downregulating genes for invasion and
metastasis

Matthews et al. (2007)

Reduced thymosin β4 in primary fibroblasts and melanoma cells Nummela et al. (2006)

Increased colony formation of primary and metastatic human melanoma
cell lines in soft agar, induced vertical growth, loss of contact inhibition,
morphology changes

Yang et al. (2004)

Attenuated apoptotic effect of ATF2 derived peptide Bhoumik et al. (2004)

AP-1,
c-Fos

T-5224 Small molecule Efficacy against triple-negative breast cancer cell lines, pituitary adenoma
and human oral squamous cell carcinoma

Zhao et al. (2021), Kamide et al.
(2016), Zhong et al. (2019)

Induced PARP and caspase-3 cleavage in TERT-mutant melanoma cell
lines

Liu et al. (2021b)
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