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Background: Ultra-Wide-Field (UWF) fundus imaging is an essential diagnostic
tool for identifying ophthalmologic diseases, as it captures detailed retinal
structures within a wider field of view (FOV). However, the presence of
eyelashes along the edge of the eyelids can cast shadows and obscure the
view of fundus imaging, which hinders reliable interpretation and subsequent
screening of fundus diseases. Despite its limitations, there are currently no
effective methods or datasets available for removing eyelash artifacts from
UWF fundus images. This research aims to develop an effective approach for
eyelash artifact removal and thus improve the visual quality of UWF fundus images
for accurate analysis and diagnosis.

Methods: To address this issue, we first constructed two UWF fundus datasets: the
paired synthetic eyelashes (PSE) dataset and the unpaired real eyelashes (uPRE)
dataset. Then we proposed a deep learning architecture called Joint Conditional
Generative Adversarial Networks (JcGAN) to remove eyelash artifacts from UWF
fundus images. JcGAN employs a shared generator with two discriminators for
joint learning of both real and synthetic eyelash artifacts. Furthermore, we
designed a background refinement module that refines background
information and is trained with the generator in an end-to-end manner.

Results: Experimental results on both PSE and uPRE datasets demonstrate the
superiority of the proposed JcGAN over several state-of-the-art deep learning
approaches. Comparedwith the best existingmethod, JcGAN improves PSNR and
SSIM by 4.82% and 0.23%, respectively. In addition, we also verified that eyelash
artifact removal via JcGAN could significantly improve vessel segmentation
performance in UWF fundus images. Assessment via vessel segmentation
illustrates that the sensitivity, Dice coefficient and area under curve (AUC) of
ResU-Net have respectively increased by 3.64%, 1.54%, and 1.43% after eyelash
artifact removal using JcGAN.

Conclusion: The proposed JcGAN effectively removes eyelash artifacts in UWF
images, resulting in improved visibility of retinal vessels. Our method can facilitate
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better processing and analysis of retinal vessels and has the potential to improve
diagnostic outcomes.

KEYWORDS

retina, ultra-wide-field fundus images, artifact removal, conditional GAN, vessel
segmentation

1 Introduction

Ultra-Wide-Field (UWF) fundus images are a new type of
retinal colour fundus image with ultra wide angle characteristics,
which can cover 200° Patel et al. (2020) of the retinal fundus in a
single image. It has significant advantages over conventional colour
fundus images in screening and detecting retina-related diseases
such as diabetic retinopathy. However, the imaging characteristics of
UWF fundus images often lead to problems with eyelash artefacts in
UWF fundus images. As shown in Figure 1, eyelash artefacts obscure
the site of the lesion and some of the blood vessels, making it difficult
to clearly distinguish key information. In the diagnosis of clinical
disease, eyelash artefacts are a serious problem in terms of image
quality and pose a significant diagnostic challenge to physicians
Kornberg et al. (2016); Ajlan et al. (2020).

To reduce the effect of eyelash artifacts, some physical methods
are often applied to the UWF imaging acquisition. These methods
include manually pulling up the eyelid, retracting eyelashes via
cotton bud Cheng et al. (2008), holding down eyelashes via
disposable eyelid speculum (EzSpec) Inoue et al. (2013) and
expanding eyelids with the eyelid clamper Ozawa et al. (2020),
etc. Although these methods can reduce the appearance of eyelash
artifacts to a certain extent, they are not able to completely solve the
problem of eyelash artifacts, and these methods bring new
challenges during surgical inspections Inoue et al. (2013).
Therefore, eyelash artifact has always plagued doctors as a
problem with the interpretation of UWF images. In recent years,
researchers have found that eyelash artifact is a serious interference
problem in the study of UWF images such as lesion detection and
blood vessel segmentation Yoo et al. (2020); Li et al. (2020, 2019), as
shown in Figure 1. Given the adverse effects of eyelash artifacts on
both clinical diagnosis and computer vision tasks, it is necessary to
develop an automatic and effective method for removing eyelash
artifacts from UWF images.

To the best of our knowledge, there is no automatic algorithm
that has been proposed for eyelash artifact removal of UWF images.
The main reason is that it is difficult to obtain corresponding image
pairs eyelashes/eyelashes-free, and super-sized images are very
important for model design and training strategy is no small
challenge. At present, the task of removing shadow occlusion Fan
et al. (2019) in natural image processing is similar to the task of
removing eyelash artifacts in UWF images, both of which are
dedicated to removing occlusion artifacts and recovering
occluded information Chen et al. (2021). However, compared
with natural images, it is more difficult to remove eyelash
artifacts in UWF images Matsui et al. (2019). For example, the
features of eyelash artifacts are complex and diverse, with large
differences, and the structures of blood vessels and lesions are
relatively small. Hence, the difficulties of fully automatic UWF
image eyelash removal methods: On the one hand, relying on an

image acquisition process like natural images, it is impossible to
obtain paired UWF images (i.e., images with eyelashes and
corresponding eyelash-free labels) for supervised learning. On the
other hand, eyelash artifacts in UWF images are usually highly
complex and diverse, which makes it difficult to preserve some fine
structures such as blood vessels/lesions in the eyelash artifact area
for further analysis. Most of the UWF images currently available
contain eyelashes, only a small part contains no eyelashes at all and a
few contain few eyelashes, and there are no matching image pairs of
eyelashes/eyelashes-free at all. Secondly, when designing the model,
it is necessary to take into account the removal of eyelashes and the
recovery of the information occluded by the eyelashes Mackenzie
et al. (2007), and what method to use for training large-size images is
also a problem that needs to be considered.

In response to the problems raised above, this paper proposes a
Joint Conditional Generative Adversarial Network (JcGAN) to
remove eyelash artifacts from UWF images and constructs to two
UWF image datasets: synthetic eyelashes (SEL) and real eyelashes
(REL). The joint conditional generative adversarial network (See
Figure 2) adopts the combination of conditional adversarial network
and adversarial network and uses two sets of data sets as input to
train the same generator, which not only trains the generator to
remove synthetic eyelashes but also trains the generator to remove
real eyelashes ability. Connect a background refinement module
after the generator to ensure background integrity.

The proposed method extends considerably our previous work
Sha et al. (2022), which was trained only on the paired samples with
synthetic eyelash artifacts generated from the proposed Eyelash
Growing Model. In this work, we first extended our synthetic
dataset in a manner contrary to Eyelash Growing Model, where
paired samples were obtained by manually erasing eyelash artifacts
from real UWF images. Secondly, we have collected an unpaired
dataset, which consists of real UWF images with and without eyelash
artifacts. In order to fully utilize the unpaired samples and thus further
enhance the generalization performance on real UWF images with
eyelash artifacts, we have also improved the architecture by
introducing one additional discriminator into the generative
adversarial network, which shares the generator with the original
one. Different from the original discriminator, the additional
discriminator aims at distinguishing between real samples without
eyelash artifacts and the ones generated from real samples with
eyelash artifacts. To this end, the additional discriminator could
constrain the generator to improve the performance of eyelash
artifact removal on the real UWF images. Overall, the
contributions of our work can be summarized as follows:

• For the first time in the UWF fundus imaging field, we
construct two datasets for eyelash artifact removal, which
respectively consist of paired images with/without synthetic
eyelash artifacts and unpaired images with/without real eyelash
artifacts.
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• We develop a deep learning architecture called Joint
conditional Generative Adversarial Networks (JcGAN), which
adopts one shared generator with two discriminators for jointly
removing real and synthetic eyelash artifacts and utilizes a
background refinement module to refine background information.

• We apply the proposed JcGAN on the datasets for eyelash
artifact removal. Both quantitative and qualitative results
demonstrate the superiority of the proposed JcGAN in
eliminating eyelash artifacts and its performance gains to the
vessel segmentation task.

2 Related works

2.1 GAN and CGAN

Generative Adversarial Network (GAN) was first proposed by
Ian Goodfellow Goodfellow et al. (2014). It is a framework for
estimating generative models through an adversarial process,
including a generative model G that captures data distribution
and a discriminant model D that estimates the probability that
samples come from training data rather than G-generated data. The
training goal of generative model G is to generate images similar to
the target domain to greatly increase the error probability of
discriminant model D, while the training goal of discriminant

model D is to greatly reduce the probability of discriminatory
errors. A minimax game process is the so-called generative
confrontation. The generative adversarial model is only a
mapping from the source domain to the target domain, and
cannot specify a fixed target, which is caused by the lack of
target guidance. Conditional generative adversarial network
(CGAN) Mirza and Osindero (2014) is to add prior conditions
to both the generator and the discriminator based on the generative
adversarial network, so that a conditional model is formed into the
guidance of additional conditions. This extra condition is diverse, it
can be class labels or other patterns of data, guided by the extra
condition, we can generate a fixed single target for the generator.

2.2 Eyelash artifact removal from UWF
images

Since the availability of UWF images, the range of fundus
examinations has been greatly improved and the efficiency of
fundus screening has been increased, providing an efficient
method of screening for a wide range of eye diseases. However,
the existence of eyelash artifacts has increased the difficulty of
automatic UWF image examination. At present, methods of
removing eyelash artifacts from UWF images are limited to
physical avoidance methods of the shooting process. Inoue et al.

FIGURE 1
Detailed illustration of eyelash artifacts obscuring lesions and blood vessels. (A) The eyelash artifact obscures the lesion information. (B)Ground truth
of the lesion in (A). (C) The eyelash artifact obscures the vessel information. (D) Ground truth of the vessel in (C)
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(2013) have invented a disposable eyelid mirror (EzSpec), a flexible
translucent speculum that keeps the eye open to misalignment and
covers a wider eyelash area, but the use process requires topical
anesthesia, which is expensive and not universal. Ozawa et al. (2020)
invented an eyelid clamp to circumvent the problem of eyelash
artifacts during UWF images to capture. It is a face-worn tool that
keeps the eyes open by applying pressure in the eyelid area, but the
avoidance effect of eyelash artifacts is not obvious. In addition, there
are some small ways to avoid eyelashes in the process of taking UWF
images, such as using tape to stick eyelashes, using cotton swabs to
converge eyelashes, or pulling up eyelashes directly by hand, etc.
However, these methods The effect of avoiding eyelashes is not
obvious, and it is not easy to operate and control. Therefore, the
problem of eyelash artifacts in UWF images has always been a
disturbing factor of UWF images.

2.3 Shadow removal

The problem of eyelash artifact occlusion in UWF images is
similar to the problem of shadow removal of natural images.
However, the automatic algorithm for eyelash artifact removal of
UWF images has not been studied before, while the automatic
removal algorithms for the task of natural image shadow removal
have been extensively explored. In general, image shadow
removal algorithms can be divided into traditional methods
and deep learning based methods. The traditional methods
were developed based on image gradient Finlayson et al.
(2005); Gryka et al. (2015), lighting information Yang et al.
(2012); Zhang et al. (2015), and region attributes Guo et al.
(2012). Deep learning based methods mainly include
supervised learning models Zhang et al. (2019); Liu et al.
(2020) and unsupervised learning models Hu et al. (2019b).

Previous methods remove shadows by modeling the image as
a combination of shadow and shadow-free components Arbel and
Hel-Or (2010); Finlayson et al. (2009, 2002), or by shifting colors
from shadow-free to shadow regions Shor and Lischinski (2008);
Wu and Tang (2005); Xiao et al. (2013). Due to the limitations of
the underlying models in those methods, they are usually unable
to handle shadows in complex real-world scenes Khan et al.
(2015). Following that, researchers explored statistical
modeling methods to discover and remove shadows using
features such as intensity Gong and Cosker (2014), color Guo
et al. (2012), texture Khan et al. (2014), and gradient Finlayson
et al. (2005); Gryka et al. (2015). However, these handcrafted
features are hard to represent the complex features of shadows.
Therefore, Khan et al. (2015) propose a method of using a
convolutional neural network (CNN) to detect shadows and
then using a Bayesian model to remove shadows. Qu et al.
(2017) develop three sub-networks to extract features of
multiple views separately, and embedded all sub-networks into
a complete framework for shadow removal. Wang et al. (2018)
used one conditional generative adversarial network (CGAN) to
detect shadows and another CGAN to remove shadows. Hu et al.
(2019a) explore orientation-aware spatial context methods to
detect and remove shadows. However, these methods are
trained in paired images, which are limited by paired datasets.
To get rid of the dependence on paired data, Hu et al. (2019b)
propose a Mask Shadow GAN framework based on Cycle GAN
Zhu et al. (2017), which utilizes unpaired data to learn the
mapping from unshadowed domains to shadowed domains
and vice versa Of course. Later Liu et al. (2021) develop the
LG Shadow Net framework to improve the Mask Shadow GAN
Hu et al. (2019b) by introducing a brightness-guided strategy that
uses the learned brightness features to guide the learning of
shadow removal.

FIGURE 2
We propose Joint Conditional Generative Adversarial Networks (JcGAN) for eyelash artifact removal from UWF images. The network includes a
generator G, two discriminators D1 and D2 and a background refinementmodule called Ref. The generator G and the discriminator D1 form a conditional
generative adversarial network that takes the synthetic eyelashes (SEL) dataset as input. The generator G and the discriminator D2 form a generative
adversarial network that takes the real eyelashes (REL) dataset as input.
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3 Datasets

To the best of our knowledge, there is no research using deep
learning methods for eyelash artifact removal of UWF images. Also,
there is no publicly available dataset on eyelash artifacts in UWF
images. This paper constructs two new datasets of eyelash artifacts in
UWF images. The first is the paired synthetic eyelashes (PSE) dataset
and the second are the unpaired real eyelashes (uPRE) dataset.
Table 1 presents the details of the two datasets. All data used in this
paper were collected from the affiliated Ningbo Eye Hospital of
Wenzhou Medical University and Ningbo People’s Hospital at
Ningbo, China. The acquisition device was an Optos fundus
camera (Optos PLC, Dunfermline, Scotland). Prior to
examination, written informed consents were obtained from
subjects in accordance to the tenets of Declaration of Helsinki.
The PSE dataset consists of 7025 pairs of eyelash and eyelash-free
images with a size of 1024 × 1024, where the eyelashes are from the
eyelash growing model Sha et al. (2022). We used 5975 pairs of
images as the training set and 1050 pairs of images as the test set. The
uPRE dataset includes 3687 each of eyelash images and eyelash-free
images with a size of 1024 × 1024, where the eyelashes are from the
patients themselves. We used 3037 pairs of images as the training set
and 650 pairs of images as the test set.

3.1 Paired synthetic eyelashes dataset

In practice, it is difficult to obtain paired eyelash/eyelash-free
UWF images by controlling the eyelash variables during image

acquisition, as is in the case of ISTD Wang et al. (2018).
Previously, we proposed an eyelash growing model in the
DelashNet Sha et al. (2022) method to solve the above problem.
Since the lash removal performance can be easily affected by the
reliability of the eyelash growing model, we additionally set up more
realistic data pairs into the training set to better guide the model. To
this end, we respectively adopted forward and reverse synthesis
methods to generate the pairwise dataset for eyelash artifact
removal. For the forward synthesis method, the eyelash growing
model was developed to simulate eyelash features and generate
synthetic eyelashes, followed by a fusion procedure to combine
eyelash-free UWF images. For the reverse synthesis method,
Photoshop is used to manually erase eyelash artifacts from UWF
images and thus generate eyelash-free images. The forward synthesis
method fails to simulate the complicated characteristics of eyelash
artifacts, thus hinders the model’s capability of identifying and
eliminating real eyelash artifacts. Conversely, the reverse
synthesis method preserves the authenticity of the eyelash
artifacts, but this process may distort the background. The paired
data generated in the above two ways construct the Paired Synthetic
Eyelashes (PSE) Dataset in this work.

3.2 Unpaired real eyelashes dataset

A UWF image contains both eyelash information and eyelash-
free information. Therefore, UWF image patches with eyelashes and
without eyelashes can be separately obtained by cropping the entire
image. We cropped the large size (3900 × 3072) UWF images into

FIGURE 3
Illustration of the architecture of our proposed JcGAN-Net.
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several small-size patches for training. The cropped patch size is also
an important issue that needs to be considered. If the size is too
small, less global information can be preserved. While if the size is
too large, it will be impossible to achieve high computational
efficiency. Therefore, we finally use patch size of 1024 × 1024 for
data training. Although the data with eyelashes and without
eyelashes are not completely matched, the construction basis of
this real data set is still of great significance to our follow-up model
design.

4 Proposed method

In this section, we introduce the proposed architecture called
JcGAN, for eyelash artifact removal in UWF fundus images. The
overall framework of JcGAN is illustrated in Figure 3. It adopts one
shared generator with two discriminators and learns to translate
those images with eyelash artifacts into artifact-free ones via
adversarial training jointly with paired and unpaired samples.
JcGAN also introduce an additional background refinement
module into an end-to-end process, in order to further restore
background information obscured by eyelash artifacts.

4.1 Architecture

Our JcGAN consists of two generative adversarial networks
with one shared generator G and an addtional background
refinement module (BRM), as shown in Figure 3. The
generator G tries to generate the corresponding artifact-free
image from the input image with synthetic or real eyelash
artifacts, and the discriminator D1 (D2) attempts to distinguish
between real artifact-free images and the ones generated from
synthetic (real) samples. In order to further restore background
details covered by eyelash artifacts, the background refinement
module (BRM) is applied to refine the generated results from the
generator G via end-to-end training.

Both the generator G and background refinement module
(BRM) adopts the same U-shape structure, which contains eight
encoder-decoder layers with symmetric skip connections
Ronneberger et al. (2015). All encoder layers employ 4 × 4
convolution with stride 2 followed by Batch Normalization (BN)
and Leaky ReLU, except the last encoder layer with ReLU instead
and no BN. For the first seven decoder layers, we utilize 4 × 4
transposed convolution with stride 2 followed by BN and ReLU. The
last decoder layer also removes BN and outputs the final result
through Tanh function.

For both discriminators D1 and D2, we construct a network
with five 4 × 4 convolutional layers, where stride is set to 2 in the
first three layers and 1 in the last two layers. BN is used in the 2nd-

4th layers. All layers introduce Leaky ReLU except the last layer.
Finally, the discriminator network outputs a confidence map via
Sigmoid function, where each pixel represents the probability that
the corresponding local region of the input image is identified as
coming from a real artifact-free sample.

4.2 Loss function

In order to effectively constrain the proposed JcGAN, we employ
the joint adversarial training strategy to optimize the architecture
end-to-end based on both paired and unpaired samples. Finally, we
construct the loss function including conditional adversarial loss,
unconditional adversarial loss and refinement loss.

• Conditional adversarial loss For a synthetic pair of
corruption/artifact-free samples (xp/yp), the generator G takes
xp and random noise vector z as input and attempts to produce
the fake result (denoted as G (z, xp)) which is close to yp as
possible, while the discriminator D1 attempts to classify between
the real pair (xp, yp) and the fake pair (xp, G (z, xp)). Through the
competition between G and D1, JcGAN can learn the
mapping from corruption images to the corresponding
artifact-free ones. Thus the conditional adversarial loss Lca can
be expressed as:

Lca G,D1( ) � Exp,yp~pPSE xp,yp( ) logD1 xp, yp( )[ ]
+Exp~pPSE xp( ),z~pz z( ) log 1 −D1 xp, G z, xp( )( )([ ]

(1)

In addition, we also introduce L1 distance to further minimize
the discrepancy between the generated image G (z, xp) and the real
artifact-free image yp:

L1 G( ) � Exp,yp~pPSE xp,yp( ),z~pz z( )‖yp − G z, xp( )‖1 (2)

• Unconditional adversarial loss For unpaired corruption/
artifact-free samples (xu/yu), the generator G also takes xu as
input and attempts to produce the fake result (denoted as G (z,
xu)), while the discriminator D2 attempts to identify whether one
given image is real or fake artifact-free image. The competition
betweenG andD2 could promote the perceptual quality of generated
images from G. Therefore, the unconditional adversarial loss Luca

can be denoted as:

Luca G,D2( ) � Eyu~puPRE yu( ) logD2 yu( )[ ]
+Exu~puPRE xu( ),z~pz z( ) log 1 −D2 G z, xu( )( )([ ]

(3)

• Refinement loss In order to constrain background refinement
module (denoted as R) to produce refined artifact-free results more
precisely, we adopt L1 distance as refinement loss:

Lref G, R( ) � Exp,yp~pPSE xp,yp( ),z~pz z( )‖yp − R G z, xp( )( )‖1 (4)

Finally, the total loss function of the proposed JcGAN is
defined as:

Ltotal G,D1, D2, R( ) � Lca G,D1( ) + L1 G( )
+Luca G,D2( ) + Lref G, R( ) (5)

where λ1 and λ2 represent the weighted parameters of L1 distance
and refinement loss.

TABLE 1 Details of the two datasets PSE and uPRE.

Datasets Amount Content of images Type

PSE 7025 eyelash/eyelash-free pair

uPRE 3687 eyelash/eyelash-free unpair
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5 Experimental setup

In this section, we describe the experimental setups, including
the evaluation metrics, data ablation, module ablation and
comparative experiments.

5.1 Implementation settings

The proposed JcGAN was implemented with PyTorch library,
and the experiments were conducted on two NVIDIA GPUs
(Tesla V100 with 32 GB). All training images were resized to
1024 × 1024, and a random horizontal flipping was applied
for data augmentation. Adam optimization was applied to
train the model, with epochs of 200, the initial learning rate of
0.0002 and batch size of 15. The weighted parameters in the final
objective function were experimentally set as: λ1 = 100 and
λ2 = 10.

5.2 Evaluation criteria

We verify the synthesic data and real data separately. For
synthesic paired data, the traditional image enhancement Maini
and Aggarwal (2010) evaluation criteria are used to calculate PSNR
and SSIM Hore and Ziou (2010):

• Peak Signal to Noise Ratio (PSNR);

PSNR � 10 × log
2n − 1( )2
MSE

( ) (6)

whereMSE Sara et al. (2019) is the mean squared error between the
original image and the processed image.

• Structural Similarity (SSIM);

SSIM x, y( ) � 2μxμy + c1( ) 2δxy + c2( )
μ2x + μ2y + c1( ) δ2x + δ2y + c2( ) (7)

where μx is the mean of x, μy is the mean of y, δx is the variance of x,
δy is the variance of y, and δxy is the covariance of x and y.
c1 � (κ1L)2, c2 � (κ2L)2 is a constant used to maintain stability.
L is the dynamic range of pixel values. κ1 = 0.01, κ2 = 0.02. Structural
similarity ranges from −1 to 1. When the two images are identical,
the value of SSIM is equal to 1.For the real unpaired data, we use the
equivalent numbers of looks in the local area to evaluate the
smoothness of the processed image. Additionally, we use the

performance on the validation vessel segmentation task as an
indirect evaluation metric.

• Equivalent numbers of looks (ENL) Vespe and Greidanus
(2012);

ENL � μ2

δ2
(8)

where μ is the mean of the local area of the image, δ is the variance of
the local area of the image. ENL is commonly used to measure the
speckle suppression of different SAR/OCT image filters. When the
ENL value is bigger, it indicates the image is smoothed well.

• Resunet was used to train a vessel segmentation network,
which was indirectly validated by the effect on vessel
segmentation performance before and after eyelash artifact
removal.

5.3 Data ablation

As mentioned above, two datasets including PSE and uPRE are
used for evaluation. The PSE dataset consists of two parts, PSE part 1
(PSE1) from the eyelash growing model and PSE part 2 (PSE2) from
manual erasure. PSE1 is characterized by the fact that the synthetic
eyelashes can only approximate the key information of the real
eyelashes to some extent, but cannot completely model the real
eyelashes. PSE2 is used to compensate PSE1 by including paired
eyelash information from realstic UWF images. To verify the
effectiveness of the two data generation approaches, we conduct
the data ablation experiments as follows. We designed three
experiments to verify the performance of the three dataset
combinations respectively. (i) The combination of PSE1 dataset
and uPRE dataset. (ii) The combination of PSE2 dataset and uPRE
dataset. (iii) The combination of PSE dataset and uPRE dataset.

We used the data of the above three combinations to train three
models. For each model, we also tested the three sets of data: PSE1,

TABLE 2 The values of the PSNR and SSIM tests of our 3×3 groups.

Methods PSNR SSIM

PSE1 PSE2 PSE PSE1 PSE2 PSE

PSE1+uPRE 39.270 37.488 40.125 0.9640 0.9304 0.9585

PSE2+uPRE 35.935 38.972 38.073 0.9475 0.9253 0.9462

PSE + uPRE 40.182 38.943 43.692 0.9652 0.9353 0.9729

FIGURE 4
Comparison of ENL before and after the real eyelash artifact
removal, where the blue bar represents the ENL value of the eyelash
artifact area before eyelash artifact removal, and the orange bar
represents the ENL value of the same area after eyelash artifact
removal.
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PSE2 and PSE. Therefore, in the experiment of data ablation, we
have completed a total of 3 × 3 data testing. Table 2 shows the values
of the PSNR and SSIM of the 3 × 3 groups. The results show that the
training method using the third data combination achieves the best
results. The results show that the model trained on the PSE + uPRE
data achieves the best results. First of all, the PSE1 does not simulate
all the information of real eyelashes. Adding the PSE2 reduce the
effects of lacking of synthetic eyelashes. Second, the ground truth
from PSE2 data has limitations with inaccurate backgrounds.
Adding accurate ground truth from the PSE1 can compensate
this issue in the PSE2. At the same time, we use the uPRE
dataset to verify the effects of the three models. As shown in
Figure 4, the ENL results of the real data have been improved to
a certain extent.

As shown in Figure 4, all three different data resulted in
improved ENL after eyelash removal, among which the
combination of PSE2+uPRE achieved the largest improvement,
and the combination of PSE + uPRE achieved the second rank.
For the test results of synthetic eyelashes data, the combination of
PSE + uPRE achieved the best results, which met our expectations.
While for the test results of the real eyelash data, the combination of

PSE + uPRE has not achieved the best results in the test of real
eyelash data. We know that ENL only calculates the local area of
eyelash artifact. Therefore, in order to fully verify the performance of
these three sets of data, it is necessary to compare them in a
larger area.

Figure 5 shows the test results on three sets of training data.
From the figure, we can see that the results of the PSE + uPRE
training data are significantly better than the results of the other two
groups. It removes most of the artifacts and preserves the
background much better. Thus, we take the PSE1+PSE2 data as
the final PSE dataset.

5.4 Module ablation

The JcGAN proposed in this paper includes three sub-nets: a
conditional generative adversarial Mirza and Osindero (2014) sub-
net (cGAN-sub) composed of generator G and discriminator D1, a
generative adversarial Goodfellow et al. (2014) sub-net (GAN-sub)
composed of generator G and discriminator D2, and a background
refinement sub-net (Ref-sub). To verify the contributions of each

FIGURE 5
Visual representation of a data ablation experiment.(A–C) represent three different pictures, the first column shows the original picture, the second
column shows the test results of PSE + uPRE training, and the third column shows the test results of PSE2 + uPRE training, the fourth column shows the
test results of the PSE1 + uPRE training.
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sub-net to the overall JcGAN network, we design module ablation
experiments as follows.

According to the combination of different sub-net, we conduct a
total of four module ablation experiments. 1) The conditional
generative adversarial sub-net (cGAN-sub) is used as the baseline
of the JcGAN network framework. Hence, we first design
experiments to train the conditional generative adversarial sub-
net to verify the effectiveness of the baseline module. 2) Based on the
conditional generative adversarial sub-net (cGAN-sub), we
separately add the background refinement sub-net (Ref-sub) to
verify the utility of the background refinement sub-net on model
performance. 3) Based on the conditional generative adversarial sub-
net (cGAN-sub), we separately add the generative adversarial sub-
net (GAN-sub) to verify the utility of the generative adversarial sub-
net on model performance. 4) Finally, we add a generative
adversarial sub-net (GAN-sub) and a background refinement
sub-net (Ref-sub) on the baseline, i.e., our complete JcGAN
network framework, to verify the effectiveness of all sub-networks.

After completing the above four experiments, we use the PSE
dataset and the uPRE dataset to verify the results respectively.
Table 3 shows the PSNR and SSIM values on the PSE dataset.

It is obvious from Table 3 that our method achieves competitive
performance on the PSE dataset. The baseline of our model (cGAN-
sub) has achieved significant breakthroughs in PSNR and SSIM
values. The value of PSNR is as high as 39.1357, which is due to the

high resolution Takahashi et al. (2019) of UWF images. Initially, we
design Ref-sub as a background refinement sub-network in the
overall framework of JcGAN, in order to ensure that the background
occluded Audet and Cooperstock (2007) by eyelash artifacts can be
fully recovered while eyelash artifacts are removed. Now, after
adding Ref-sub on the basis of cGAN-sub, the values of PSNR
and SSIM are further improved, which shows that Ref-sub plays an
active role. After verifying the effectiveness of cGAN-sub and Ref-
sub, we further verify the effectiveness of GAN-sub. Adding GAN-
sub on the basis of cGAN-sub means that the joint idea of our
JcGAN network is applied. The two datasets train the same
generator alternatively so that this generator has the ability to
remove synthetic eyelashes and real eyelashes. As shown in the
results, our joint strategy achieve competitive performance on the
PSE dataset. Finally, the test results of the JcGAN network also show
that each sub-network in our whole framework plays an active role,
and combining the three sub-networks can produce the best results.

After being evaluated on the PSE Dataset, we also validate our
method on the uPRE dataset. We used the local area of eyelash
artifact removal to calculate the ENL value. Figure 6 shows the ENL
values of the eyelash occluded area before and after eyelash artifact
removal.

As shown in Figure 6, the combination of different sub-networks
improves the value of ENL. In particular, the addition of the Ref-sub
subnet has greatly improved the value of ENL. This shows that our
Ref-sub sub-network effectively recovers the background of the
eyelash artifact part. The JcGAN network framework improves
the value of ENL the most, which also strongly proves that our
joint strategy is also successful in the artifact removal of real
eyelashes.

6 Discussion

6.1 Comparative analysis

To verify the effectiveness of our method, we selected several
methods similar to ours for comparative experiments. Currently, no
deep learning method has been proposed for artifact removal in
ultra-widefield fundus images. Therefore, we selectively choose
several classical GAN network related methods Pix2Pix Isola
et al. (2017) and cycleGAN Zhu et al. (2017) and some natural
image shadow removal methods ST-CGAN Wang et al. (2018) and
Mask-ShadowGANHu et al. (2019b) as comparison methods in our

TABLE 3 The values of PSNR and SSIM tested on the PSE dataset for themodule
ablation experiments.

Methods PSNR SSIM

cGAN-sub 39.1357 0.9519

cGAN-sub + Ref-sub 42.1008 0.9640

cGAN-sub + GAN-sub 40.8884 0.9697

JcGAN 43.6922 0.9729

FIGURE 6
Comparison of ENL before and after the real eyelash artifact
removal, where the blue bar represents the ENL value of the eyelash
artifact area before eyelash artifact removal, and the orange bar
represents the ENL value of the same area after eyelash artifact
removal.

TABLE 4 The values of PSNR and SSIM tested on the PSE Dataset for the
comparative experiments.

Methods PSNR SSIM

Pix2Pix 34.1901 0.9281

Mask-ShadowGAN 37.2841 0.9462

CycleGAN 37.8026 0.9442

ST-CGAN 41.6814 0.9707

JcGAN 43.6922 0.9729
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analysis. We trained the above methods sequentially and tested each
method using PSE dataset and uPRE dataset, as shown in Table 4.

The results show that our method achieves remarkable
performance on the PSE Dataset. Our proposed JcGAN method
achieves a high PSNR value of 43.6922 and a SSIM value of 0.9729,
the highest among all methods. Compared with the best existing

method, JcGAN improves PSNR and SSIM by 4.82% and 0.23%,
respectively. At the same time, we compare the visual effects of the
PSE Dataset test, and our method also achieves the best results, as
shown in Figure 7. From Figure 7 we can see that our method
achieves the best results in both eyelash artifact removal and
background restoration. Compared with our method, none of the
other methods completely remove eyelash artifacts. Among them,
ST-CGAN has problems in the process of background recovery,
which leads to information loss in the test image. Similarly, we
perform the results validation of different methods on the uPRE
dataset. We calculated the position ENL value of the local area of the
eyelash artifact removal part for different methods. A comparison of
ENL value results for different methods on the uPRE Dataset is
shown in Figure 8. From Figure 8, we can see that our method
JcGAN achieves the largest improvement in ENL value, which shows
that our method restores the smooth background in the region
removed for eyelash artifacts. Figure 9 shows a visual comparison of
the results of different methods on the REL dataset.

6.2 Application to UWF image segmentation

To verify that our proposed eyelash artifact removal algorithm
can promote better processing and analysis of retinal vessels, a
dedicated experiment for vessel segmentation in UWF images is
performed. The corresponding segmentation results are shown in
Figure 10, and sensitivity (SEN), Dice and area under curve (AUC)

FIGURE 7
Comparison of the results of different methods on the PSE Dataset. Our method removes the most eyelash artifacts and restores the most realistic
background information.

FIGURE 8
Comparison of ENL before and after the real eyelash artifact
removal, where the blue bar represents the ENL value of the eyelash
artifact area before eyelash artifact removal, and the orange bar
represents the ENL value of the same area after eyelash artifact
removal.
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FIGURE 9
Comparison of the results of different methods on the uPRE Dataset. Our method removes themost eyelash artifacts and restores the most realistic
background information.

FIGURE 10
Vessel segmentation results. (A)Original image (B) Eyelash Removal image (C) Ground truth (D) The segmentation result of eyelash removal image
(E) The segmentation result of original image. The red in (E) represents the wrong segmentation of eyelashes as blood vessels.
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are shown in Table 5. ResU-Net Diakogiannis et al. (2020) is adopted
as the segmentation network. 406 eyelash-free images are used to
train ResU-Net. For the trained segmentation model, the original
image with eyelashes and the image processed by JcGAN are used
for testing respectively. Assessment via vessel segmentation
illustrates that the SEN, Dice and AUC of ResU-Net have
respectively increased by 3.64%, 1.54%, and 1.43% after eyelash
artifact removal using JcGAN, as shown in Table 5. As shown in
Figure 10; Table 5, the eyelash-removed images have better
performance on the vessel segmentation task than the original
images. The images processed by our JcGAN network
successfully solved the problem that eyelashes were incorrectly
segmented as blood vessels, and improved the overall
segmentation performance.

6.3 Summary

Artifacts caused by eyelash occlusions hinder high-quality
inspection on retinopathy at wide range in UWF fundus images.
In this work, we tackle the issue of eyelash artifacts existing in
UWF fundus images with deep learning technique for the first
time. We firstly collect UWF fundus images and construct two
eyelash datasets called paired synthetic eyelashes (PSE) and
unpaired real eyelashes (uPRE) respectively. Based on the two
datasets, we have proposed a deep learning approach called Joint
conditional Generative Adversarial Networks (JcGAN) to
eliminate eyelash artifacts in UWF fundus images. The
proposed JcGAN could jointly learn the mapping from images
with real or synthetic eyelash artifacts to artifact-free ones via two
generative adversarial networks with a shared generator. In
addition, a background refinement module is trained with the
generator in an end-to-end manner to further recover the detailed
information of regions corrupted by eyelash artifacts. The
experimental results on both PSE and uPRE dataset show that
our eyelash artifact removal approach have achieved the best
performance. Compared with other deep learning methods, our
JcGAN can remove eyelash artifacts more effectively and achieve
higher visual effect. Furthermore, JcGAN can significantly
facilitate vessel segmentation in UWF fundus images due to
the improved visibility of vessels obscured by eyelash artifacts.
In the future, we will consider exploring a more appropriate
method to construct paired synthetic eyelash samples and
introducing prior knowledge of eyelash artifacts into the deep
learning model. Furthermore, we will apply our approach to
lesion segmentation tasks (e.g., identifying hemorrhages and
exudates) as a preprocessing procedure to verify the
effectiveness of eyelash artifact removal.
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TABLE 5 The results of the eyelashes removal image and the original image on
the blood vessel segmentation index.

Methods ResU-net

SEN Dice AUC

Original image 0.4663 0.5124 0.8783

Eyelash Removal image 0.4833 0.5203 0.8909

Frontiers in Cell and Developmental Biology frontiersin.org12

Zhang et al. 10.3389/fcell.2023.1181305

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1181305


References

Ajlan, R. S., Barnard, L. R., and Mainster, M. A. (2020). Nonconfocal ultra-widefield
scanning laser ophthalmoscopy: Polarization artifacts and diabetic macular edema, 40.
Philadelphia, Pa: Retina, 1374.

Arbel, E., and Hel-Or, H. (2010). Shadow removal using intensity surfaces and texture
anchor points. IEEE Trans. pattern analysis Mach. Intell. 33, 1202–1216. doi:10.1109/
TPAMI.2010.157

Audet, S., and Cooperstock, J. R. (2007). Shadow removal in front projection
environments using object tracking. In 2007 IEEE conference on computer vision
and pattern recognition, IEEE, 1–8.

Chen, Z., Long, C., Zhang, L., and Xiao, C. (2021). “Canet: A context-aware network
for shadow removal,” in Proceedings of the IEEE/CVF international conference on
computer vision, 4743–4752.

Cheng, S. C., Yap, M. K., Goldschmidt, E., Swann, P. G., Ng, L. H., and Lam, C. S.
(2008). Use of the optomap with lid retraction and its sensitivity and specificity. Clin.
Exp. Optometry 91, 373–378. doi:10.1111/j.1444-0938.2007.00231.x

Diakogiannis, F. I., Waldner, F., Caccetta, P., and Wu, C. (2020). Resunet-a: A deep
learning framework for semantic segmentation of remotely sensed data. ISPRS
J. Photogrammetry Remote Sens. 162, 94–114. doi:10.1016/j.isprsjprs.2020.01.013

Fan, H., Han, M., and Li, J. (2019). Image shadow removal using end-to-end deep
convolutional neural networks. Appl. Sci. 9, 1009. doi:10.3390/app9051009

Finlayson, G. D., Drew, M. S., and Lu, C. (2009). Entropy minimization for shadow
removal. Int. J. Comput. Vis. 85, 35–57. doi:10.1007/s11263-009-0243-z

Finlayson, G. D., Hordley, S. D., and Drew, M. S. (2002). “Removing shadows from
images,” in European conference on computer vision (Springer), 823–836.

Finlayson, G. D., Hordley, S. D., Lu, C., and Drew, M. S. (2005). On the removal of
shadows from images. IEEE Trans. pattern analysis Mach. Intell. 28, 59–68. doi:10.1109/
TPAMI.2006.18

Gong, H., and Cosker, D. (2014). “Interactive shadow removal and ground truth for
variable scene categories,” in Bmvc (Nottingham, UK: BMVA Press), 1–11.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.
(2014). Generative adversarial nets. Adv. neural Inf. Process. Syst. 27.

Gryka, M., Terry, M., and Brostow, G. J. (2015). Learning to remove soft shadows.
ACM Trans. Graph. (TOG) 34, 1–15. doi:10.1145/2732407

Guo, R., Dai, Q., and Hoiem, D. (2012). Paired regions for shadow detection and
removal. IEEE Trans. pattern analysis Mach. Intell. 35, 2956–2967. doi:10.1109/TPAMI.
2012.214

Hore, A., and Ziou, D. (2010). “Image quality metrics: Psnr vs. ssim,” in 2010 20th
international conference on pattern recognition (IEEE), 2366–2369.

Hu, X., Fu, C.-W., Zhu, L., Qin, J., and Heng, P.-A. (2019a). Direction-aware spatial
context features for shadow detection and removal. IEEE Trans. pattern analysis Mach.
Intell. 42, 2795–2808. doi:10.1109/TPAMI.2019.2919616

Hu, X., Jiang, Y., Fu, C.-W., and Heng, P.-A. (2019b). “Mask-shadowgan: Learning to
remove shadows from unpaired data,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2472–2481.

Inoue, M., Yanagawa, A., Yamane, S., Arakawa, A., Kawai, Y., and Kadonosono, K.
(2013). Wide-field fundus imaging using the optos optomap and a disposable eyelid
speculum. JAMA Ophthalmol. 131, 226. doi:10.1001/jamaophthalmol.2013.750

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 1125–1134.

Khan, S. H., Bennamoun, M., Sohel, F., and Togneri, R. (2014). “Automatic feature
learning for robust shadow detection,” in 2014 IEEE conference on computer vision and
pattern recognition (IEEE), 1939–1946.

Khan, S. H., Bennamoun, M., Sohel, F., and Togneri, R. (2015). Automatic shadow
detection and removal from a single image. IEEE Trans. pattern analysis Mach. Intell.
38, 431–446. doi:10.1109/TPAMI.2015.2462355

Kornberg, D. L., Klufas, M. A., Yannuzzi, N. A., Orlin, A., D’Amico, D. J., and Kiss, S.
(2016). “Clinical utility of ultra-widefield imaging with the optos optomap compared
with indirect ophthalmoscopy in the setting of non-traumatic rhegmatogenous retinal
detachment,” in Seminars in ophthalmology (Taylor & Francis), 31, 505–512.

Li, Z., Guo, C., Nie, D., Lin, D., Zhu, Y., Chen, C., et al. (2019). A deep learning system
for identifying lattice degeneration and retinal breaks using ultra-widefield fundus
images. Ann. Transl. Med. 7, 618. doi:10.21037/atm.2019.11.28

Li, Z., Guo, C., Nie, D., Lin, D., Zhu, Y., Chen, C., et al. (2020). Development and
evaluation of a deep learning system for screening retinal hemorrhage based on ultra-
widefield fundus images. Transl. Vis. Sci. Technol. 9, 3. doi:10.1167/tvst.9.2.3

Liu, D., Long, C., Zhang, H., Yu, H., Dong, X., and Xiao, C. (2020). “Arshadowgan:
Shadow generative adversarial network for augmented reality in single light scenes,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
8139–8148.

Liu, Z., Yin, H., Mi, Y., Pu, M., and Wang, S. (2021). Shadow removal by a lightness-
guided network with training on unpaired data. IEEE Trans. Image Process. 30,
1853–1865. doi:10.1109/TIP.2020.3048677

Mackenzie, P. J., Russell, M., Ma, P. E., Isbister, C. M., and Maberley, D. A. (2007).
Sensitivity and specificity of the optos optomap for detecting peripheral retinal lesions.
Retina 27, 1119–1124. doi:10.1097/IAE.0b013e3180592b5c

Maini, R., and Aggarwal, H. (2010). A comprehensive review of image enhancement
techniques. arXiv preprint arXiv:1003.4053.

Matsui, Y., Ichio, A., Sugawara, A., Uchiyama, E., Suimon, H., Matsubara, H., et al.
(2019). “Comparisons of effective fields of two ultra-widefield ophthalmoscopes, optos
200tx and clarus 500,” in BioMed research international 2019.

Mirza, M., and Osindero, S. (2014). Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784.

Ozawa, N., Mori, K., Katada, Y., Tsubota, K., and Kurihara, T. (2020). Efficacy of the
newly invented eyelid clamper in ultra-widefield fundus imaging. Life 10, 323. doi:10.
3390/life10120323

Patel, S. N., Shi, A., Wibbelsman, T. D., and Klufas, M. A. (2020). Ultra-widefield
retinal imaging: An update on recent advances. Ther. Adv. Ophthalmol. 12,
2515841419899495. doi:10.1177/2515841419899495

Qu, L., Tian, J., He, S., Tang, Y., and Lau, R. W. (2017). “Deshadownet: A multi-
context embedding deep network for shadow removal,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 4067–4075.

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention (Springer), 234–241.

Sara, U., Akter, M., and Uddin, M. S. (2019). Image quality assessment through fsim,
ssim, mse and psnr—A comparative study. J. Comput. Commun. 7, 8–18. doi:10.4236/
jcc.2019.73002

Sha, D., Ma, Y., Zhang, D., Zhang, J., and Zhao, Y. (2022). “Delashnet: A deep network
for eyelash artifact removal in ultra-wide-field fundus images,” in Proceedings of the 5th
international conference on control and computer vision, 107–112.

Shor, Y., and Lischinski, D. (2008). “The shadow meets the mask: Pyramid-based
shadow removal,” in Computer graphics forum (Wiley Online Library), 27, 577–586.

Takahashi, H., Tanaka, N., Shinohara, K., Yokoi, T., Yoshida, T., Uramoto, K., et al.
(2019). Ultra-widefield optical coherence tomographic imaging of posterior vitreous in
eyes with high myopia. Am. J. Ophthalmol. 206, 102–112. doi:10.1016/j.ajo.2019.03.011

Vespe, M., and Greidanus, H. (2012). Sar image quality assessment and indicators for
vessel and oil spill detection. IEEE Trans. Geoscience Remote Sens. 50, 4726–4734.
doi:10.1109/tgrs.2012.2190293

Wang, J., Li, X., and Yang, J. (2018). “Stacked conditional generative adversarial
networks for jointly learning shadow detection and shadow removal,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 1788–1797.

Wu, T.-P., and Tang, C.-K. (2005). A bayesian approach for shadow extraction from a
single image. In Tenth IEEE Int. Conf. Comput. Vis. (ICCV’05) Volume 1 (IEEE), vol. 1,
480–487.

Xiao, C., She, R., Xiao, D., and Ma, K.-L. (2013)., 32. Wiley Online Library, 207–218.Fast
shadow removal using adaptive multi-scale illumination transferComput. Graph. Forum

Yang, Q., Tan, K.-H., and Ahuja, N. (2012). Shadow removal using bilateral filtering.
IEEE Trans. Image Process. 21, 4361–4368. doi:10.1109/TIP.2012.2208976

Yoo, T. K., Ryu, I. H., Kim, J. K., Lee, I. S., Kim, J. S., Kim, H. K., et al. (2020). Deep
learning can generate traditional retinal fundus photographs using ultra-widefield
images via generative adversarial networks. Comput. Methods Programs Biomed.
197, 105761. doi:10.1016/j.cmpb.2020.105761

Zhang, L., Zhang, Q., and Xiao, C. (2015). Shadow remover: Image shadow removal
based on illumination recovering optimization. IEEE Trans. Image Process. 24,
4623–4636. doi:10.1109/TIP.2015.2465159

Zhang, S., Liang, R., and Wang, M. (2019). Shadowgan: Shadow synthesis for virtual
objects with conditional adversarial networks. Comput. Vis. Media 5, 105–115. doi:10.
1007/s41095-019-0136-1

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, 2223–2232.

Frontiers in Cell and Developmental Biology frontiersin.org13

Zhang et al. 10.3389/fcell.2023.1181305

https://doi.org/10.1109/TPAMI.2010.157
https://doi.org/10.1109/TPAMI.2010.157
https://doi.org/10.1111/j.1444-0938.2007.00231.x
https://doi.org/10.1016/j.isprsjprs.2020.01.013
https://doi.org/10.3390/app9051009
https://doi.org/10.1007/s11263-009-0243-z
https://doi.org/10.1109/TPAMI.2006.18
https://doi.org/10.1109/TPAMI.2006.18
https://doi.org/10.1145/2732407
https://doi.org/10.1109/TPAMI.2012.214
https://doi.org/10.1109/TPAMI.2012.214
https://doi.org/10.1109/TPAMI.2019.2919616
https://doi.org/10.1001/jamaophthalmol.2013.750
https://doi.org/10.1109/TPAMI.2015.2462355
https://doi.org/10.21037/atm.2019.11.28
https://doi.org/10.1167/tvst.9.2.3
https://doi.org/10.1109/TIP.2020.3048677
https://doi.org/10.1097/IAE.0b013e3180592b5c
https://doi.org/10.3390/life10120323
https://doi.org/10.3390/life10120323
https://doi.org/10.1177/2515841419899495
https://doi.org/10.4236/jcc.2019.73002
https://doi.org/10.4236/jcc.2019.73002
https://doi.org/10.1016/j.ajo.2019.03.011
https://doi.org/10.1109/tgrs.2012.2190293
https://doi.org/10.1109/TIP.2012.2208976
https://doi.org/10.1016/j.cmpb.2020.105761
https://doi.org/10.1109/TIP.2015.2465159
https://doi.org/10.1007/s41095-019-0136-1
https://doi.org/10.1007/s41095-019-0136-1
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1181305

	Joint conditional generative adversarial networks for eyelash artifact removal in ultra-wide-field fundus images
	1 Introduction
	2 Related works
	2.1 GAN and CGAN
	2.2 Eyelash artifact removal from UWF images
	2.3 Shadow removal

	3 Datasets
	3.1 Paired synthetic eyelashes dataset
	3.2 Unpaired real eyelashes dataset

	4 Proposed method
	4.1 Architecture
	4.2 Loss function

	5 Experimental setup
	5.1 Implementation settings
	5.2 Evaluation criteria
	5.3 Data ablation
	5.4 Module ablation

	6 Discussion
	6.1 Comparative analysis
	6.2 Application to UWF image segmentation
	6.3 Summary

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


