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Background: Cuprotosis is a recently discovered copper-dependent cell death
mechanism that relies on mitochondrial respiration. However, the role of
cuprotosis-related genes (CRGs) in hepatocellular carcinoma (HCC) and their
prognostic significances remain unknown.

Methods: Based on the recently published CRGs, the LASSO Cox regression
analysis was applied to construct a CRGs risk model using the gene expression
data from the International Cancer GenomeConsortium as a training set, followed
by validation with datasets from The Cancer Genome Atlas and the Gene
Expression Omnibus (GSE14520). Functional enrichment analysis of the CRGs
was performed by single-sample gene set enrichment analysis.

Results: Five of the 13 previously published CRGswere identified to be associated
with prognosis in HCC. Kaplan-Meier analysis suggested that patients with high-
risk scores have a shorter overall survival time than patients with low-risk scores.
ROC curves indicated that the average AUC was more than 0.7, even at 4 years,
and at least 0.5 at 5 years. Moreover, addition of this CRG risk score can
significantly improve the efficiency of predicting overall survival compared to
using traditional factors alone. Functional analysis demonstrated increased
presence of Treg cells in patients with high-risk scores, suggesting a
suppressed immune state in these patients. Finally, we point to the possibility
that novel immunotherapies such as inhibitors of PDCD1, TIGIT, IDO1, CD274,
CTLA4, and LAG3 may have potential benefits in high-risk patients.

Conclusion: We constructed a better prognostic model for liver cancer by using
CRGs. The CRG risk score established in this study can serve as a potentially
valuable tool for predicting clinical outcome of patients with HCC.
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Background

Multicellular organisms have a variety of predetermined and precisely
programmed cell death pathways, such as apoptosis, necroptosis
(programmed necrosis), pyroptosis (inflammation mediated), and
ferroptosis (iron regulated cell death) (Yan et al., 2022). Recent
research reported a novel mechanism known as cuprotosis where cell
death is regulated by copper. Thismechanisms can be triggered by copper
ions even when other common cell death pathways are blocked (Tang
et al., 2022). Copper ions directly bind to fatty acylated components of the
tricarboxylic acid (TCA) cycle within the mitochondria, leading to
aggregation of fatty acylated proteins and downregulation of iron-
sulfur cluster proteins, which induces proteotoxic stress and cell death
(Tsvetkov et al., 2022). This novel pathway may have significant
implications for understanding cancer biology and treatment.

Copper concentrations are elevated in the tumor tissues and serum
samples of animals and patients with cancers (Jiang et al., 2022). The
level of copper is associated with liver cirrhosis, acute hepatitis, and liver
cancer. Serum copper may be useful as a marker for liver cancer
detection (Jaafarzadeh et al., 2021). In patients with hepatocellular
carcinoma (HCC), excessive copper concentrations can enhance
tumor development, chemoresistance, and poor prognosis (Fang
et al., 2019). All the above studies indicate that copper may be
related to the occurrence of liver tumors, providing a new perspective
for the treatment of this malignancy (Ge et al., 2022).

Here, we comprehensively explored the clinical relevance of the
expression of cuproptosis-related genes (CRGs), their molecular
alterations, and the tumor immune microenvironment in HCC.
Moreover, our study also constructed a new prognostic model for
HCC with CRGs and laid a foundation for potential therapeutic
development utilizing cuproptosis regulators forHCC targeting and
immunotherapy.

Methods

Data acquisition

Gene expression information and related clinicopathologic data
of 817 HCC patients were retrieved from The Cancer Genome Atlas
(https://portal.gdc.cancer.gov/repository) (TCGA, 231 samples),
International Cancer Genome Consortium (https://dcc.icgc.org)
(ICGC, 231 samples) and Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/) (GEO, GSE14520, 365 samples).
Log2 transformation was performed to normalize the expression
profiles of the gene sets. A total of 370 samples with copy number
variation (CNV) and single nucleotide variant (SNV) relevant to
HCC were downloaded from the TCGA-LIHC site (University of
California Santa Cruz Xena database). Moreover, 13 CRGs were
collected from a previous literature (Tsvetkov et al., 2022) and are
shown in Supplementary Table S1.

Cuproptosis-related prognostic signature
model

The LIRI-JP cohort from the ICGC database was employed
as the training cohort. Overall survival (OS)—related CRGs

were screened via the univariate Cox analysis (p < 0.1). The
prognostic CRG signature was constructed using the LASSO
regression analysis based on 10-fold cross-validation penalized
maximum likelihood estimators. The minimum criteria were
used to choose the optimal penalty parameter (λ) values. The
GSE14520 and TCGA-LIHC datasets were selected as the
external validation cohorts. We calculated the CRG risk score
(RS) for eachHCC patient using the following formula: RS = (β *
ATP7A expression level) + (β * DLAT expression level) + (β *
DLD expression level) + (β * FDX1 expression level) + (β * PDHB
expression level), where β is the coefficient for each gene.
Patients were further assigned into the high- and low-risk
sets in accordance with the median RS. Kaplan-Meier and
time-dependent receptor operating characteristic (ROC)
curves were employed to assess the predictability of the CRG
signature. The design of the study is shown in Figure 1.

Cell lines

The liver cancer cell lines including HEG2, MHCC97-H, HUH-7,
SNU449, PLC-PRF-5, LM3, and LM9, and normal liver cell lines such as
HL7702, WRL68, QSG-7701, and MIHA cells were obtained from Sun
Yat-sen University Cancer Center. The expression data of these CRGs
were obtained from Cancer Cell Line Encyclopedia (CCLE).

Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

Total RNA was extracted from cells using TRIzol reagent
(Takara Bio, Carlsbad, United States) and reverse transcribed
using a cDNA reverse transcription kit (Takara Bio, Carlsbad,
United States) in accordance with the manufacturer’s
instructions, and the obtained cDNA was amplified using TB
Green® Premix Ex Taq (Takara Bio, Carlsbad, United States).
qRT-PCR was performed to detect expression levels of the genes
of interest. Each experiment was repeated three times. The 2−ΔΔCT

methodology was adopted to calculate the relative expression of
genes. The primers used are listed in Supplementary Table S2.

Functional enrichment analysis

The GSEA_4.2.3 software was applied to examine the
physiological pathways that genes in the low- and high-risk
datasets are involved in according to the KEGG and GO
analyses, “c2. cp.kegg.v7.5.1. symbols” and “c5. go.bp.v7.5.1.
symbols”, respectively. Normalized p-value <0.05 was considered
statistically significant. In addition, we calculated the activity of
13 immune-linked networks and 16 immune cell types through the
single-sample gene set enrichment analysis (ssGSEA) (Rooney et al.,
2015). Protein interactions between model-related proteins were
constructed with the STRING algorithm (https://cn.string-db.org).
Genetic variation information in the cancer cell lines was from the
cBioPortal Genomics database. DNA methylation analysis was
performed by methsurv (https://biit.cs.ut.ee/methsurv/)
(Modhukur et al., 2018; Anuraga et al., 2021; Xing et al., 2021).
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Statistical analysis

The Student’s t-test or Wilcoxon test was employed to analyze
continuous data. OS comparisons between two sets were completed
by the log-rank test. The time-ROC package was applied to complete
the ROC curves and estimate the values of the area under the curve
(AUC). The independent prognosis index was estimated by the uni-
and multivariate COX analyses. All statistical analyses were
performed using the R software (Version 4.0.4) or SPSS (Version
25.0). A two-sided p-value <0.05 indicated statistical significance.

Results

Genetic landscape of cuprotosis related
genes

A recent study reported 13 genes related to the cuproptosis
pathway, including ATP7A, ATP7B, DBT, DLA, DLD, DLAT, DLST,
FDX1, GCSH, LIAS, LIPT1, PDHA1, and PDHB (Tsvetkov et al.,
2022). To determine whether these cuproptosis-related genes
(CRGs) are involved in HCC, we extracted their expression levels
from 817HCC patient samples from three databases (TCGA, ICGC
and GEO) for further analysis (Supplementary Figure S1A;
Supplementary Table S1). Many of these CRGs are mutated in
HCC samples and the top 10 mutated genes with the highest
frequencies are showed in the Supplementary Figure S1A.
Among them, the gene with the highest mutation frequency is
ATP7A, accounting for about 10%, followed by DLST, DLD, and

DBT accounting for about 7%. The major mutation type is missense
mutation (43.33%, 13/33), with C>T being the most common
(Figure 2A). The expression levels of most CRGs, except for
FDX1, showed a positive correlation to HCC samples
(Supplementary Figure S1B). In addition, the CRGs, DLAT, DLD,
PDHB, ATP7A, PDHA1, DLST, LIPT1, and LIAS, are also expressed
at significantly higher levels in liver cancer cells than in normal
tissues (Figure 2B). On the other hand, the heatmaps suggested that
expression of ATP7A, DBT, and LIPT1 are lower than other genes,
and lower in tumors compared to controls (Supplementary Figure
S1C). Twelve of theCRGs are significantly differentially expressed in
the TCGA database and analysis also indicated that FDX1 has the
lowest expression (Supplementary Figure S1D). In addition, except
for ATP7A and PDHA1, which are located on the X chromosome, all
other genes are located in the autosomes (Supplementary Figure
S1E). Copy number variation (CNV) analysis showed that most of
the 13 genes have copy number losses, with GCSH and ATP7B being
the most obvious, while DLD showed a copy number gain
(Figure 2C). We further validated the expressions of the CRGs in
liver cancer cell lines and related normal cells and found that the
expression of DLAT and DLA are much higher and FDX1 lower in
cancer cell lines compared to normal cells (Supplementary Figure
S2A). We also validated the same results of CRGs expressions in
HCC cancer cell lines through Cancer Cell Line Encyclopedia
(CCLE) project (Supplementary Figure S2B).

Establishment and validation of a prognostic
model for HCC

Next, we used the ICGC databset to explore the prognostic value
of these 13 CRGs in liver cancer. The forest plot results indicated
that the expressions of five genes (ATP7A, DLAT, DLD, FDX1, and
PDHB) are associated with prognosis. Except for FDX1, expressions
of the other four genes are closely related to poor prognosis
(Figure 2D). The gene correlation results also pointed out that in
addition to FDX1, the other CRGs are associated with at least three
or more other genes (Supplementary Figure S3A). Protein
interaction analysis showed that FDX1 is weakly associated with
the other proteins, while DLD, PDHB, and DLAT have stronger
interactions among these five proteins (Supplementary Figure S3B).
Moreover, the mutational landscape of these five CRGs in different
cancer cell lines indicated that they also have different frequencies of
mutations in tumor cells (Supplementary Figure S3C). Further,
LASSO-Cox regression analysis of these five prognosis-related
CRGs in the ICGC LIRI-JP training dataset showed that they
can be used as a cuprotosis signature (Supplementary Figures
S3D, E).

To further examine the prognostic significance of this five-gene
cuprotosis signature in HCC, we validated this signature in the
GSE14520 and TCGA datasets. A CRG risk score was established
using the expression levels of the five CRGs and the HCC patients
were divided into two groups based on the median CRG risk score.
Patients in different risk categories are scattered in two directions
(Supplementary Figures S4A–C). The scatter charts demonstrated
that patients with high-risk scores have shorter survival time than
patients with low-risk scores (Supplementary Figures S4D–F). This
can also be seen in the Kaplan-Meier analysis showing that high-risk

FIGURE 1
Flow chart of data collection and analysis, LIRI-JP cohort OCHC
database was used as training cohort.
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patients have shorter overall survival than low-risk patients in both
the training and validation datasets (Figures 2E–G). To further
validate the survival prediction of this prognostic CRG signature,
we utilized the time-dependent ROC curves to analyze the AUC
between the specificity and sensitivity of these risk factors in liver
cancer patients. In the training set, theAUCwas more than 0.7, even
at 4 years, and it was also at least 0.5 at 5 years in the validation
datasets (Supplementary Figures S4G–I).

Implications of the CRG risk score for
clinical features and prognosis

To further validate the importance of the CRG risk score in clinical
features and prognosis, univariate andmultivariate analyses were applied
to examine whether the CRG risk score can be an independent
prognostic marker for OS in HCC patients. Univariate Cox analysis
showed that a high-risk score is a poor prognostic indicator of OS in liver

FIGURE 2
Genetic landscape and prognostic significance of CRGs in HCC. (A)Mutation status of 13 CRGs in the TCGA database. (B) Tumor-normal expression
difference of CRGs in TCGA database. (C) CNV situation of CRGs in TCGA database. (D) Forest plot of five prognosis-related CRGs in ICGC database.
(E–G) Kaplan-Meier curves for the OS of patients in the high-risk group and low-risk group in ICGC, GSE14520 and TCGA cohort. (H) Nomogrammodel
built on the ICGC dataset. (I) Calibration curves for nomogram models. (J–L) AUC of time-dependent ROC curves verified the prognostic
performance of merged risk score in 1-year, 3-years or 4 years of ICGC, GSE14520 and TCGA cohort.
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cancers (Supplementary Figures S5A–C). Moreover, when combining
with other well-known prognostic factors, multivariate Cox analysis
suggested that the CRG risk score can also be a significant predictor of
OS in liver cancer (Supplementary Figures S5D–F). Further, heatmap of
clinical features including grade, TNM staging, AFP levels, BCLC
staging, ALT levels, HBV status, and so on indicated that some of
these biomarkers distributed differently in the high- and low-risk groups
(Supplementary Figures S5G–I).

To further expand the clinical applicability of the five-CRG
signature, a nomogram of clinical variables and the CRG risk score
was created as shown in Figure 2H. A total score was obtained for
each patient by combining the scores for each prognostic criterion.
The results suggested that patients with higher total scores have
poorer clinical outcomes. Furthermore, the nomogram calibration
plots are highly consistent with the operating modes of the ideal
model and predicted the 1-, 3- and 4-year survival time (Figure 2I).
The AUC for 1-year overall survival of the merged score group is
0.847 [95% CI: 0.75–0.94], the CRG risk score group is 0.777 [95%

CI: 0.68–0.88], the stage is 0.822 [95% CI: 0.74–0.91], and the gender
is 0.581 [95% CI: 0.46–0.70]. In addition, the AUC for 3-year
survival of the merged score group is 0.785 [95% CI: 0.69–0.88],
the CRG risk score group is 0.760 [95% CI: 0.66–0.86], the stage is
0.657 [95% CI: 0.55–0.76], and the gender is 0.582 [95% CI:
0.48–0.68]. Further, the AUC for 4-year OS of merged score
group is 0.801 [95% CI: 0.64–0.96], the CRG risk score group is
0.751 [95% CI: 0.58–0.92], the stage is 0.513 [95% CI: 0.35–0.68],
and the gender is 0.615 [95% CI: 0.51–0.72]. All these results
suggested that the addition of this five-CRG risk score can
significantly improve the OS prediction efficiency compared to
traditional factors alone (Figures 2J–L).

Functional analyses of the CRG risk model

Since the five-CRG signature described above can distinguish
between high- and low-risk patients, we look wider to asked which

FIGURE 3
Immunoassay correlation analysis of CRGs in HCC. (A–C) Immune-related functions between different risk groups in ICGC, GSE14520 and TCGA
cohort. The correlation of the type I IFN response or type II IFN responsewith risk scorewas displayed on the right panel. The relation valuewas calculated
by pearson analysis. (D–F) The scores of immune cells between different risk groups in ICGC, GSE14520 and TCGA cohort. The correlation of the
macrophages or Treg cells with risk score was displayed on the right panel. The relation value was calculated by pearson analysis. *, p < 0.05; **, p <
0.01; ***, p < 0.001.
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genes are differentially expressed between these patient subgroups.
We applied “limma” to identify the differentially expressed genes
with the criterion (|log2FC| ≥ 1 and FDR <0.05) in the ICGC,
GSE14520 and TCGA datasets. Functional pathway analysis of these
differentially expressed genes using Go terms showed that immune
response pathways of different types of immune cells are more
enriched in the high-risk score group. Moreover, single sample gene
set enrichment analysis (ssGSEA) functional results further
indicated that several different immune-related pathways are
closely associated with the CRG risk score (Supplementary
Figures S6A–C). What caught our attention was that the results
of the refined immunophenotyping analysis suggested that the type I
and II interferon (IFN) response pathway is the only pathway
significantly more enriched in the low-risk score group in all
three datasets (Figures 3A–C). To further determine the
correlation between immune cell infiltration and the CRG risk
score, we quantified and analyzed the enriched fractions of
different immune cell subsets using ssGSEA. We found that NK
cells, Th2, and Treg cells have significant differences between the
high- and low-risk groups in the ICGC dataset. In the
GSE14520 dataset, activated dendritic cells (aDCs), macrophages,
and Treg cells are more enriched in the high-risk group.While in the
TCGA dataset, aDCs, DCs, macrophages, neutrophils, masts, NK
cells, and Treg cells have significant enrichment differences (Figures

3D–F). Interestingly, Treg cells are the only immune cell subtype,
that is, more enriched in the high-risk score group, with significant
differences in all three datasets.

CRG-related immune microenvironment
and therapeutic targets

Cancer immunotherapy has made great breakthroughs and
significantly improved the survival rate of cancer patients (Riley
et al., 2019). Our results showed that the high-risk score is closely
associated with Treg cells, indicating that cuprotosis may affect the
prognosis of HCC patients by regulating the tumor immune
microenvironment. We explored the relationship between the
CRG risk score and immunosuppressive marker molecules
including IL-10, FOXP3, FAP, TGFB1, and IL-6 and found that
the CRG risk score is positively correlated with IL-10 (t = 2.36, p =
0.02), FAP (t = 3.3, p = 1.08e-03), and TGFB1 (t = 4.25, p = 2.75e-05)
(Figure 4A; Supplementary Figure S5D). Therefore, we wondered
whether the current immunotherapy-related drugs can improve the
prognosis of patients in the high-risk group. We investigated the
correlation between the CRG risk score and the known targets genes
of immunotherapy, including PVR, PDCD1, CD96, TIGIT, IDO1,
CD274, CTLA4, and LAG3. Consistent with our predictions, the

FIGURE 4
Immune checkpoint target correlation analysis of CRGs in HCC (A) Relationship between the risk score and immunosuppressive marker molecules
including IL-10, FOXP3, FAP, TGFB1, and IL-6. (B) The correlation between the risk score and the targets of immunotherapy such as PVR, PDCD1, CD96,
TIGHT, IDO1, CD274, CTLA4, and LAG3. The relation value was calculated by pearson analysis.

Frontiers in Cell and Developmental Biology frontiersin.org06

Shao et al. 10.3389/fcell.2023.1180625

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1180625


CRG risk score is positively correlated with PDCD1 (t = 2.2, p =
0.03), TIGIT (t = 3.24, p = 1.32e-03), IDO1 (t = 2.11, p = 0.04),
CD274 (t = 2.51, p = 0.01), CTLA4 (t = 3.76, p = 2.01e-04), and LAG3
(t = 2.67, p = 7.93e-03) (Figure 4B; Supplementary Figure S6D). The
DNA methylation of these genes showed no significant changes
among these genes in HCC (Supplementary Table S3).

Discussion

Copper is an essential nutrient with redox properties that can be
both beneficial and harmful to cells. The role of copper in tumor
biology is gradually being recognized and the understanding of
cuprotosis in tumors is continuously being improved (Riley et al.,
2019). Numerous observations had shown that tumor tissue requires
higher levels of copper than healthy tissue (Shanbhag et al., 2021).
Gene analysis in clear cell renal cell carcinoma suggested that CRGs
play a key role in clinical outcomes of this disease (Xia et al., 2017).

For liver cancer, there are currently insufficient studies supporting a
role for CRGs in this disease. Our study found that the CRGs are
significantly overexpressed in liver cancer. Among the 13 published
CRGs, we found that the expression levels of five genes are correlated
with the prognosis of liver cancer patients. Except for the high expression
of FDX1, which indicated a lower risk of poor prognosis, the other genes,
ATP7A,DLAT,DLD, and PDHB, all correlated with poor prognosis.We
constructed a prognostic score model composed of these five genes and
found that patients with high CRG risk scores tend to have the worse
prognosis in all three datasets. FDX1 and fatty acylation of proteins are
key factors in copper ionophore-induced cell death (Dorsam and Fahrer,
2016). Deletion of FDX1 blocks the progress of theTCA cycle, triggering
the accumulation of pyruvate and α-ketoglutarate in cells and promotes
tumor development (Rayess et al., 2012). DLAT is one of the
components of the pyruvate dehydrogenase (PDH) complex, which
catalyzes the decarboxylation of pyruvate in the TCA cycle to form
acetyl-CoA (Tsvetkov et al., 2022). The expression of ATP7A in breast
cancer tissues is significantly higher than that in normal tissues, and
inhibiting the expression of ATP7A can improve the sensitivity of breast
cancer to cisplatin (Yu et al., 2020). A spectrum of diverse genomic
alterations in PDHB has been found in non-clear cell renal carcinoma
(Durinck et al., 2015). These research support the significance of our
CRG model in the prognostic prediction of HCC.

The tumor microenvironment is intimately involved the
occurrence and development of tumors, and affects the
therapeutic effect of any treatments that targets the tumor
(Kennedy and Salama, 2020). Several studies have shown that
pyroptosis is closely associated with tumor immunity (Gao et al.,
2022). In this study, we emphasized the relationship between the
immune microenvironment and CRGs, and found that in the high-
risk group with high expression ofCRGs, the expression of the type I
and II IFN response pathways are significantly lower than that in the
low-risk group, indicating that the overall immunity of the patients
in the high-risk group is in a suppressed state. In addition, we also
found that immunosuppressive Treg cells are significantly increased
in the high-risk score group. This suggested that the high expression
of CRGs can induce immune disorders to promote the development
of tumors. The novel immunotherapy agents such as inhibitors of
PDCD1, TIGHT, IDO1, CD274, CTLA4 and LAG3 were considered
had potential survival benefit in several cancers. The CD274 and

PDCD1 immune checkpoint interaction could accelerate cancer
progression in the colorectal cancer microenvironment and
elderly non-small cell lung cancer patients (Elomaa et al., 2023;
Tanaka et al., 2023). The SNP of PDCD1, including rs11568821 and
rs2227981 was a prognostic marker in a triple-negative breast cancer
(Boguszewska-Byczkiewicz et al., 2023). Moreover, TIGHT
regulated TWIST1and promoted vasculature remodeling in
bladder cancer (Liu et al., 2022). It also affected autophagy in
leukemia and esophageal squamous cell carcinoma (Gschwind
et al., 2022; Huang et al., 2023). LAG3 was identified as an
important therapeutic target in pancreatic cancer, liver, brain,
breast cancer and melanoma (Gulhati et al., 2023; Huuhtanen
et al., 2023; Ulase et al., 2023; Zou et al., 2023). In this study, we
found that these inhibitors of PDCD1, TIGHT, IDO1, CD274,
CTLA4 and LAG3 had potential benefit in high-risk patients.

Conclusion

With increasing knowledge of the mechanism of copper-driven
cell death in tumors, we demonstrated here that this mechanism is
also likely to be applicable for HCC. Using copper death-related
genes, we constructed a prognostic model that will help to better
understand the relationship between cuprotosis and liver cancer.
The CRG risk score is related to the overall immune status of
patients, particularly the presence of Treg cells. This suggested that
immune checkpoint inhibitor therapies may have better effects in
HCC patients with high CRG risk scores.
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Glossary

TCA Tricarboxylic acid cycle

CRG Cuproptosis related genes

HCC Hepatocellular carcinoma

TCGA The cancer genome Atlas

ICGC International cancer genome consortium

GEO Gene expression omnibus

CNV Copy number variation

SNV Single nucleotide variant

OS Overall survival

LASSO Least absolute shrinkage and selection operator

RS Risk score

ROC Receptor operating characteristic

ssGSEA Single-sample gene set enrichment analysis

AUC Area under the curve

HR Hazard ratio

CI Confidence interval

TNM Tumor node metastasis

AFP Alpha fetoprotein

BCLC Barcelona clinic liver cancer

ALT Alanine amiotransferase

HBV Hepatitis B virus

aDC Activated dendritic cell

APC Antigen presenting cell

CCR Cytokine-cytokine receptor

HLA Human leukocyte antigen

iDC Immature dendritic cell

pDC Plasmacytoid dendritic cell

Tfh T follicular helper cell

TIL Tumor infiltrating lymphocyte

Treg Regulatory T cells

NK Natural killer
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