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Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts
during cardiovascular development. Dot1l-mediated gene transcription in mice is
essential for the development and function of lymphatic ECs (LECs). The role of
Dot1l in the development and function of blood ECs blood endothelial cells is
unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and
LECs were used to comprehensively analyze regulatory networks of gene
transcription and pathways. Dot1l depletion in BECs changed the expression of
genes involved in cell-to-cell adhesion and immunity-related biological
processes. Dot1l overexpression modified the expression of genes involved in
different types of cell-to-cell adhesion and angiogenesis-related biological
processes. Genes involved in specific tissue development-related biological
pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression
altered ion transportation-related genes in BECs and immune response
regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs
led to the expression of genes related to the angiogenesis and increased
expression of MAPK signaling pathways related was found in both Dot1l-
overexpressing BECs and LECs. Therefore, our integrated analyses of
transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate
the unique transcriptomic program of ECs and the differential functions of
Dot1l in the regulation of gene transcription in BECs and LECs.
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1 Introduction

The blood endothelial cells (BECs) line the inner cavity of the vascular system and
provide a physical barrier, transportation of molecules and oxygen, and immune responses
(Galley and Webster, 2004; McCarron et al., 2017). Although, in general, BECs originate
from mesodermal lineages, ample evidence suggests that multiple developmental stages-
and/or organ-type-specific sub-mesoderm origins of BECs exist. The molecular, functional,
and structural heterogeneity in different types of ECs has been identified (Aird, 2007a; Aird,
2007b; Aird, 2012; Jambusaria et al., 2020; Becker et al., 2022; Hou et al., 2022).

Early studies proposed that a specialized mesoderm-origin cell, called a hemangioblast,
differentiates into hematopoietic stem cells and angioblasts after gastrulation. Subsequently,
angioblasts generate BEC progenitors (Chung et al., 2002). In mice, embryonic vasculatures
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arise simultaneously in embryonic and extraembryonic tissues via
vasculogenesis, a process of de novo blood vessel formation (Drake
and Fleming, 2000; Chong et al., 2011). After that, BECs respond to
angiogenic growth factors, sprouting from pre-existing vessels by
angiogenesis (Majesky, 2018) and undergo specialization into
venous or arterial BECs before the formation of mature
vasculature by diverse factors, such as hemodynamic forces and
transcriptional programs (Jain, 2003; Heil et al., 2006; Lin, 2007)
After arterial or venous BEC fate is determined, each BEC expresses
distinct sets of transcriptomes and displays different branching
capacities (Jain, 2003; Torres-Vazquez et al., 2003). Following the
maturation of blood vessels, some of the venous ECs in the anterior
part of the cardinal vein (CV) express Prox1, Lyve1, and Sox18, and
differentiation to lymphatic EC (LECs) begins at approximately
embryonic day (E) 9–10 in mice (Tammela and Alitalo, 2010;
Potente and Makinen, 2017). Accumulating evidence suggests
that LECs of developing mouse organs have heterogeneity in
both cellular origin and function (Klotz et al., 2015; Martinez-
Corral et al., 2015; Pichol-Thievend et al., 2018; Maruyama et al.,
2019; Lioux et al., 2020; Aquino et al., 2021). Furthermore, Prox1 (+)
LECs in the CV are differentiated from Pax3 (+) paraxial mesoderm-
derived LEC progenitor cells (called lymphangioblasts) in mouse
(Stone and Stainier, 2019; Lupu et al., 2022).

During the development of BECs and LECs, various epigenetic
mechanisms, including DNA methylation and histone
modifications are involved in EC development and functions
(Gutierrez et al., 2021; Yu et al., 2021). Furthermore, there are
epigenetic differences in ECs depending on organotypic and
developmental origin factors (Bronneke et al., 2012; Nakato et al.,
2019; Gutierrez et al., 2021; Tacconi et al., 2021). However,
epigenetic modifiers establishing vessel type-specific epigenetic
landscapes that contribute to the development of unique
transcriptomic signatures during development remain elusive.

Dot1l is the only known histone H3K79 methyltransferase that
produces mono-, di-, tri-methyl H3K79 (H3K79me1-3) (Feng et al.,
2002). Dot1l has diverse roles in biological processes, including
DNA repair (Huyen et al., 2004), transcription elongation (Mueller
et al., 2007), telomeric silencing (Jones et al., 2008), regulation of the
cell cycle (Jones et al., 2008), pluripotent stem cell differentiation
(Barry et al., 2009), and immune responses (Kealy et al., 2020). Dot1l
is essential for embryonic blood vessel, heart, and lymphatic vessel
development and functions via transcriptional regulation of
lymphatic genes (Jones et al., 2008; Nguyen et al., 2011; Yoo
et al., 2020). Dot1l loss in BECs leads to decreased tube
formation and sprouting in vitro and vessel network formation in
vivo (Duan et al., 2016). Our group previously showed that Dot1l
loss in both BECs and LECs causes severe defects in LEC
development and function. In particular, we revealed functional
heterogeneity of Dot1l in LEC defects depending on the
developmental origin and organotypes of LECs (Yoo et al., 2020).
However, the regulatory mechanism by which Dot1l functions
differentially in BECs vs. LECs at the molecular level remains
unclear.

Using genome-scale transcriptomic analysis, this study showed
that mouse Dot1l regulates common or distinct transcriptomic
programs in an EC type-dependent manner, providing
background information for identifying factors orchestrating the
transcriptional change together with Dot1l and conditional target

specificity of Dot1l. Furthermore, since BECs and LECs branch off
from the same source (Wigle and Oliver, 1999; Srinivasan et al.,
2007; Francois et al., 2012) and have distinguishable phenotypes,
this study may provide insights into the cell fate decision mechanism
and the function gaining process of these cell types.

This study found that Dot1l loss changes the expression of genes
involved in lipid metabolism in BECs and the chemotaxis in LECs.
Meanwhile, Dot1l overexpression alters the expression of genes
involved in ion transportation and immune response regulation
in both BECs and LECs. Taken together, these findings reveal a
distinct Dot1l function in developing BECs and LECs and the
heterogeneity of the transcriptomic program in the ECs.

2 Materials and methods

2.1 Animals and isolation of skin BECs

The endothelial-specific Dot1l conditional knockout mouse has
been described previously (Yoo et al., 2020). Briefly, E15.5 Tie2-
Cre(+); Dot1l2f/2f (cKO), and Tie2-Cre(−); Dot1l2f/2f (Cont) embryo
skins were harvested and dissociated in media containing type II and
IV collagenase and DNase I (LS006333; Worthington Biochemical
Corp.) for 20 min at 37°C. Cells that passed through 40-µm cell
strainers were incubated with anti-CD45 and anti-F4/80 antibodies
(13–0451 and 13–4801, eBioscience) for 1 h at room temperature to
deplete macrophages. F4/80 (−)/CD45 (−) cells were collected and
incubated with Lyve1 antibody (13–0443, eBioscience) to collect
LECs. Together with the LECs, isolated F4/80 (−)/CD45 (−)/Lyve1
(−) BECs were subjected to RT-qPCR or RNA-seq analysis. All
animal studies were reviewed and approved by the Institute of
Animal Care and Use Committee (IACUC) of Konkuk
University (IACUC#KU18027).

2.2 Lentivirus-mediated Dot1l
overexpression in BECs and LECs

The overexpression of Dot1l has been described in a previous
study (Yoo et al., 2020). Briefly, guide RNAs targeting the Dot1l
promoter were designed and subcloned into the BbsI sites of the
vectors (cat. #53186, #53187, #53188, and #53189, Addgene). The
vectors were then cloned into a lentivirus vector (59791, Addgene)
containing catalytically dead Cas9 (dCas9) fused with VP64, guide
RNAs targeting Dot1l promoter regions and enhanced green
fluorescent protein genes (Figure 3A). The Dot1l overexpression
vector with lentiviral packaging vectors [psPAX2 (cat. #12260,
Addgene) and pMD2.G (cat. #12259, Addgene) vectors] was
transfected into HEK293T cells to produce lentiviral particles.
Mouse embryonic dermal LECs (C57-6064L, Cell Biologics) and
embryonic yolk sac BECs (CRL-2581, ATCC) were used for viral
transduction. Each cell line was maintained according to the
manufacturer’s instructions. Once ECs reached approximately
50% confluency, viral particles were added to BECs and LECs for
Dot1l overexpression. ECs transduced with empty lentivirus were
used as controls. EGFP(+) cells were sorted using FACS Aria
(BD Biosciences) and used for RT-qPCR and RNA-sequencing
analysis.
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2.3 RNA isolation and quantitative RT-PCR
(RT-qPCR)

Dot1l cKO ECs from E15.5 skins and cultured Dot1l
overexpression ECs were used for RT-qPCR. Total RNAs were
extracted using RNeasy Plus Mini Kit (Qiagen). SMARTer Pico
PCR cDNA synthesis kit (Takara) along with Advantage 2 PCR Kit
(Takara) and TOPscript RT DryMix cDNA synthesis kit
(Enzynomics) were used for cDNA synthesis of Dot1l cKO ECs
and Dot1l overexpression ECs, respectively. RT-qPCR was
performed on StepOnePlusTM platform (Thermo Fisher Scientific)
using Fast SYBR® Green Master Mix (Thermo Fisher Scientific).
Gene expression in each sample was normalized to the expression of
Gapdh. The sequences for primers used for RT-qPCR are as follows:
Gapdh; 5′-CATGGCCTTCCGTGTTCCTA-3′, 5′-GCCTGCTTC
ACCACCTTCTT-3′, Dot1l; 5′-TGGCAAGCCTGTCTCCTACT-
3′, 5′-CTGCTCCTCCCTGAGTTTTG-3′, Mmp3: 5′- ACATGG
AGACTTTGTCCCTTTTG-3′, 5′-TTGGCTGAGTGGTAGAGT
CCC-3′ and Cldn1 5′-GGGGACAACATCGTGACCG-3′, 5′-
AGGAGTCGAAGACTTTGCACT-3′.

2.4 RNA-seq analysis

For the RNA-sequencing (RNA-seq) analysis in the Cont and
cKO BECs, pooled total RNAs isolated from BECs of 2–3 E15.5 pup
skins, with RNA integrity number (RIN) greater than 7, were used to
make a library for each genotype. The BEC RNAs were from the
same embryos which the previously described LEC RNAs were
extracted from (Yoo et al., 2020). For control and Dot1l
overexpression BECs or LECs, cells from 2 to 3 T25 flask
cultures were harvested to make libraries for each genotype. For
RNA extraction, RNeasy Plus Mini Kit (Qiagen) was used according
to the manufacturer’s instructions and total RNA isolated from
BECs and LECs were used to prepare RNA-sequencing (RNA-seq)
libraries using the ScriptSeq v2 kit (Illumina) according to the
manufacturer’s instructions. Sequencing of the library was
performed to produce single raw data for each genotype and cell
type combination. RNA-seq data generated in the E15.5 Tie2-
Cre(+); Dot1l2f/2f and Tie2-Cre(−); Dot1l2f/2f embryonic skin LECs
(GSE104811) were downloaded and analyzed.

For post-sequencing data analysis, adapter sequences in the raw
reads were trimmed with skewer (v0.2.2) (Jiang et al., 2014) with -L
75 and -e options specified. The skewer output reads were aligned to
the mm10 UCSC mouse reference genome using a STAR read
aligner (v2.7.9a) (Dobin et al., 2013). We quantified the mapped
reads using VERSE (v0.1.5) (Zhu et al., 2016) with the -S option.
Samples were normalized with the median of ratios method using
the DESeq2 (v1.36.0) (Love et al., 2014) package in R (v4.2.0). Genes
with normalized expression values ≥ 5 and values exceeding three
times the value of the sample in comparison were defined as
differentially expressed genes (DEGs) in Dot1l cKO samples, and
those with normalized expression values ≥ 3 and values exceeding
three times the value of the sample in comparison were defined as
DEGs in OE samples. Genes with normalized expression values ≥
5 and under three times the value of the sample in comparison were
defined as unchanged genes (none-DEGs). DEG lists were used as
inputs for GO enrichment analysis conducted on DAVID for GO

terms in the biological pathway subset or KEGG pathways
(v2022q2) (Huang da et al., 2009; Sherman et al., 2022). 10 GO
terms or KEGG pathways with the lowest p-value were presented
from each analysis. In Gene Set Enrichment Analysis (GSEA),
“weighted” was selected for enrichment statistics and “log2 ratio
of classes” was selected for metric of ranking genes (Subramanian
et al., 2005). Gene expression change was presented using
heatmap2 function of gplots R package (Warnes et al., 2022).
Integrative genomic viewer (IGV) was used to verify the
expression of the representative genes (Robinson et al., 2011).

2.5 ChIP-seq analysis

For chromatin immunoprecipitation-sequencing (ChIP-seq)
analysis of H3K79me2 in LEC, the data was downloaded from
Gene Expression Omnibus (GEO) under the accession code
GSE104811. Adapters were trimmed from the raw reads using
skewer (v0.2.2) (Jiang et al., 2014) using -L and -e options, and
the reads were aligned to mm10 UCSC mouse genome using
bowtie2 (v2.3.4.2) (Langmead and Salzberg, 2012). BedGraph files
were constructed using MACS3 (v3.0.0b1) (Zhang et al., 2008) from
the output of read alignment. The file was used to create
H3K79me2 profile on the gene bodies using deepTools (v3.5.1)
(Ramirez et al., 2016).

3 Results

3.1 Depletion of Dot1l transcripts in BECs
leads to global transcriptomic changes

To analyze Dot1l function in BECs, we performed RNA-
sequencing (RNA-seq) analysis of Dot1l-depleted BECs isolated
from E15.5 Tie2-Cre(+); Dot1l2f/2f (conditional knockout, cKO)
embryonic skin (Figure 1A). BECs isolated from E15.5 littermate
Tie2-Cre(−); Dot1l2f/2f embryonic skin were used as the control
(Cont). As shown in Figure 1B, 794 genes were upregulated and
369 genes were downregulated in cKO BECs. Dot1l cKO was
validated using RT-qPCR (Figure 1C). Gene ontology (GO)
analysis of these DEGs in cKO BECs revealed associations
between the downregulated genes and lipid catabolic process, cell
adhesion, and immune response, and between the upregulation of
genes and peptide cross-linking, positive regulation of gene
expression, and immune response (Figure 1D). Pathway analysis
of the DEGs showed that the genes involved in the tumor necrosis
factor (TNF) signal-, peroxisome proliferator-activated receptor
signal-, and interleukin (IL)17-related pathways were
downregulated, and genes involved in drug metabolism and
cytokine/receptor-related pathways were upregulated (Figure 1E).

3.2 Dot1l regulates common or distinct
transcriptome in BECs and LECs

Next, we analyzed the regulatory function of Dot1l in the
transcription of BECs and LECs. We previously showed that
Dot1l loss represses genes involved in cell adhesion and
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angiogenesis in E15.5 skin LECs (Yoo et al., 2020). In this study, we
compared the transcriptomic changes induced by Dot1l cKO in
BECs and LECs (Figures 2A,B). The gene set repressed uniquely in
the cKO LECs included genes related to cell adhesion, nervous
system development, and angiogenesis (out of 2,134 genes)
(Figure 2C). Meanwhile, genes related to immune response were
enriched in cKO BECs repressed gene set (24 out of 227 genes,
10.6%; Figure 2C, Supplementary Figure S1A). The cKO LEC GO
analysis of uniquely enhanced gene set also exhibited enrichment of
immune response-related genes (375 out of 2,401 genes, 15.6%;
Figure 2D). We further investigated expression pattern change of
immunity-related genes using Gene Set Enrichment Analysis to
identify which category of the immune system was up- or
downregulated in each case (Subramanian et al., 2005). 18 child
terms of the term “immune response” was obtained from the
Amigo2 database (Carbon et al., 2009). Out of the 18 child
terms, all 18 terms were significantly more upregulated in the

Dot1l cKO LECs, while cKO BECs exhibited downregulation of
“innate immune response in mucosa”, “organ or tissue specific
immune response”, “immunological memory process” and “type
2 immune response” (Figure 2E; Supplementary Figure S2). This
result attributes to decreased expression of genes such as Il6, Arg2,
and Irf1 in the cKO BECs (Supplementary Figure S1A).

To investigate whether the DEGs in Dot1l cKO ECs are a result
of differential H3K79 methylation, LEC H3K79me2 ChIP data from
our previous study was reanalyzed (Yoo et al., 2020). Reduction of
H3K79me2 levels upon Dot1l inhibition by EPZ-5676 (also known
as pinometostat) was observed in the gene bodies of commonly
unchanged (none-DEGs) and downregulated DEGs but not in the
commonly upregulated DEGs (Supplementary Figure S1C). The
result provides additional evidence for association with the change
of Dot1l-mediated H3K79 methylation and transcriptional
activation. At the same time, the decrease of methylation level
in the gene bodies of unchanged genes suggests that Dot1l is

FIGURE 1
RNA-seq analysis of Dot1l cKO BECs. (A) Schematic diagram of the isolation of BECs from E15.5 cKO or control embryos. Cell surface markers used
for BEC isolation were macrophage markers (F4/80/CD45)-negative, LEC marker (Lyve1)-negative, and BEC marker (CD31)-positive. (B) Scatterplot of
differentially expressed genes (DEGs) according to a cutoff value, ≥5 normalized read counts, and fold change ≥3. (C) RT-qPCR results for validation of
Tie2-Cre mediated Dot1l cKO. Expression of Dot1l is normalized to the expression value of Gapdh. (n = 1) (D) GO term analysis of down- and
upregulated DEGs. (E) KEGG pathway analysis with down- and upregulated DEGs. Abbreviations: cKO, conditional knockout; LV, lymphatic vessel; LEC,
lymphatic endothelial cell and BEC, blood endothelial cell.
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FIGURE 2
Comparison of DEGs between cKO BECs and LECs. (A) Venn diagram showing numbers of common and BEC- and LEC-only downregulated genes
in cKO cells. (B) Venn diagram showing numbers of common and BEC- and LEC-only upregulated genes in the cKO. (C)GO terms identified for BEC- and
LEC-only downregulated genes. (D) GO terms identified for BEC- and LEC-only upregulated genes. (E) Bar graph of normalized enrichment score (NES)
of 18 child terms of the term “immune response”. Positive NES indicates enrichment in the control ECs and negative NES indicates enrichment in the
Dot1l cKO ECs.
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involved in transcription-independent cellular and molecular
mechanisms.

The analysis of overlapping DEGs revealed 142 and
364 commonly repressed and elevated genes, respectively, in both

ECs as a result of Dot1l depletion (Figures 2A,B). Analysis of GO
terms revealed that downregulated genes were associated with
glucose metabolism and upregulated genes were associated with
cell-to-cell adhesion, and immunity-related terms (immune system

FIGURE 3
RNA-seq analysis in the Dot1l-overexpression (OE) BECs and LECs. (A) Schematic diagram showing lentivirus-mediated OE in either LECs or BECs
via hUbC-VP64-dCas9-dCas9-T2A-GFP-gRNA (for Dot1l) vector and fluorescence-activated cell sorting of transduced cells (green fluorescent protein-
positive [GFP+] cells). (B) RT-qPCR results for validation of lentiviral transduction mediated Dot1l OE. Dot1l expression is normalized to the expression
value of Gapdh. (n = 2) (C) IGV track confirming Dot1l overexpression in LECs or BECs. (D) Scatter plot showing DEGs between control andOE-BECs.
(E) Scatter plot showing DEGs between control and OE-LECs. Analysis of GO terms with down- or upregulated DEGs in OE-BECs (F) and OE-LECs (G).
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process, inflammatory response, and others) (Supplementary Figure
S1B). Representative genes visualized in the IGV tracks included
Cldn11 (downregulated in BECs and LECs), CD84 (upregulated in
BECs and LECs), Socs3 (downregulated in BECs), Spink5
(upregulated in BECs), Cdh5 (downregulated in LECs), and Tnf
(upregulated in LECs) (Supplementary Figure S1D).

3.3 Forced Overexpression of Dot1l
transcripts changes distinct gene sets in
BECs or LECs

Next, we induced Dot1l overexpression in BECs (OE-BECs) or
LECs (OE-LECs) to investigate its role in the regulation of gene
transcription (Figure 3A). Overexpression of Dot1l and expression
alteration of Mmp3 and Cldn1 in both types of cells were confirmed
by RT-qPCR and in the IGV (Figures 3B,C; Supplementary Figures
S3A, B). RNA-seq analysis identified 1,175 upregulated and
723 downregulated genes in OE-BECs, and 384 upregulated and
289 downregulated genes in OE-LECs (Figure 3D). Analysis of GO
terms revealed OE-BECs had enhanced expression of genes
associated with cell adhesion, development, and positive
regulation of angiogenesis, and repressed expression of genes
associated with positive regulation of angiogenesis, extracellular
matrix (ECM) organization, cell adhesion, and cell proliferation.
OE-LECs displayed enhanced transcriptional activity of genes
associated with cellular response to interferon-beta and response
to virus and immune system processes, and repressed activity of
genes associated with ECM organization, cell adhesion, extracellular
signal-regulated kinase (ERK)1 and ERK2 cascade, and
establishment of the endothelial barrier (Figures 3F,G).

Next, we sought to identify genes that are highly dependent on
Dot1l for their expression by comparing gene expression change
between the cKO and OE samples. To that end, genes with
normalized expression values that were either more than three
times higher or less than one-third of the expression value in the
control were selected. In total, there were 16 genes for BECs and
22 genes for LECs (Supplementary Figure S3C). Notably, GO term
analysis in the cKO vs. OE DEGs of LECs revealed an enrichment of
genes related to cell adhesion and blood vessel remodeling among
the selected genes (Supplementary Figure S3D). The genes Stab2,
Fat2, Emp2, and Sulf1 were associated with the term cell adhesion,
and Sema3c and Axl were associated with the term blood vessel
remodeling.

3.4 Comparison of transcriptomic
alterations between OE-BECs and OE-LECs

We then compared genes that were up- or downregulated in OE-
BECs and OE-LECs (Figures 4A,B). As shown in Figure 4A, out of a
total of 76 genes, genes associated with ECM organization,
differentiation, EC proliferation involved in wound healing, and
cell adhesion were commonly downregulated in OE-BECs and OE-
LECs (Figure 4A). Of a total of 86 genes, those associated with
positive regulation of cell migration, chemotaxis, and inflammatory
response were commonly upregulated in OE-BECs and OE-LECs
(Figure 4B). Interestingly, common and related terms, such as

positive regulation of angiogenesis, extracellular matrix
organization, cell adhesion, positive regulation of MAPK cascade,
and ERK1 and ERK2 cascade, were found in the most significantly
enriched terms in downregulated DEG sets of both types of OE-ECs
(BEC: 38 out of 723 genes, 5.3%; LEC: 28 out of 289 genes, 9.7%;
Figures 3E,F). The term positive regulation of ERK1 and
ERK2 cascade were also enriched in GO term analysis results of
the commonly upregulated gene set of both Dot1l OE-ECs (5 out of
86 genes, 5.8%; Figures 4B,C). This implies a close connection
between Dot1l-mediated transcriptional regulation and MAPK/
ERK signaling pathway during EC development. In the analysis
result of upregulated genes, OE-BEC upregulated genes are enriched
in GO terms such as cell adhesion and ion transport, while OE-LEC
upregulated genes are enriched in immunity related GO terms
(Figures 3F,G). GO term analysis of the overlapping DEGs from
each comparison presented enrichment in both calcium ion
transport and inflammatory response terms (Figures 4B,D).

4 Discussion

Dot1l has critical roles in cardiovascular development and
function. Dot1l loss leads to defects in heart development and
function in vivo (Nguyen et al., 2011), LEC development and
function in vivo (Yoo et al., 2020), and BEC function in vitro
(Duan et al., 2016). Using genetic and epigenomic approaches,
we previously provided evidence that Dot1l is essential for LEC
differentiation from the hemogenic endothelium and takes part in
the transcriptional regulation process. Consistent with our previous
study, another study showed that Dot1l is a critical factor that
regulates human LEC migration (Williams et al., 2017). A genome-
wide study showed that LECs require multiple-layered signaling
pathways systemically regulated by each other. However, the
function of Dot1l in BECs, especially function in transcriptional
regulation, remains unclear. Furthermore, to the best of our
knowledge, no study has directly compared the transcriptomes of
BECs and LECs in which epigenetic factors are depleted. However, it
has been clearly shown that epigenetic mechanisms involved in
establishing, diversifying, and maintaining endothelial function
depend on their location in different organs, their function, and
cell type (BEC vs. LEC) (Bronneke et al., 2012; Yan and Marsden,
2015; Schlereth et al., 2018; Nakato et al., 2019; Gutierrez et al., 2021;
Tacconi et al., 2021).

A well-known regulatory function of Dot1l in gene transcription
is mediated through H3K79 methylation. The H3K79 methylation
promotes the euchromatin state and consequent transcription factor
recruitment and transcription initiation (Steger et al., 2008; Wang
et al., 2008; Sarno et al., 2020). Using the previous H3K79me2 ChIP-
seq analysis in cKO LECs after EPZ-5676 treatment, we found
decrease in methylation level of gene bodies of Dot1l cKO common
downregulated DEGs (Supplementary Figure S1C). H3K79 di-/tri-
methylation is strongly correlated with active gene transcription
(Steger et al., 2008) and other active histone markers in mammalian
cells. Dot1l knockdown impaired the differentiation potential of
KIND1 and HES3 cells by reducing NKX2.5 expression (Pursani
et al., 2018) and Dot1l cKO caused lymph vessel development failure
by reducing Sox18, Vegfr3, Ramp2, Foxc2, Efnb2, and
Eph4 expression. On the other hand, Dot1l-mediated
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transcriptional repression has also been reported in a number of
studies. H3K79me3 has been demonstrated to localize more at silent
promoters than active promoters except for narrow region
surrounding TSS (Barski et al., 2007). Dot1l-depleted
hematopoietic progenitor cells (HPCs) exhibited increased
expression of genes involved in HPC differentiation induction
(Borosha et al., 2022). Non-cardiomyocyte related genes were

increased in Dot1l KO neonatal cardiomyocytes (Cattaneo et al.,
2022). GO term analysis of SGC0946 Dot1l inhibitor treatment or
Dot1l KO upregulated genes found enrichment of inflammatory
response and related terms in macrophages (Willemsen et al., 2022).
Consistently, our analysis suggests repressive activity of Dot1l by
demonstrating that Dot1l cKO can induce increased gene expression
and Dot1l OE can induce reduced gene expression. Specifically,

FIGURE 4
Comparison of DEGs between OE-BECs and OE-LECs. (A) Venn diagram showing numbers of common and BEC- and LEC-only downregulated
genes in an analysis of GO terms. (B) Venn diagram showing numbers of common and BEC- and LEC-only upregulated genes in an analysis of GO terms.
(C)Heatmap representing expression change of genes related to positive regulation of angiogenesis and MAPK/ERK pathway. (D) Heatmap representing
expression change of genes related to ion transport and immune response.
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genes associated with immune responses were increased in Dot1l
cKO BECs and LECs and genes associated with cell adhesion was
repressed in OE-BECs and OE-LECs (Supplementary Figure S1B;
Figure 4A). Furthermore, the decrease of H3K79 methylation level
in the gene bodies of common none-DEGs suggests that Dot1l could
be involved in transcription independent functions such as DNA
repair (Huyen et al., 2004) and increased H3K79me2 level does not
necessarily result in increased gene transcription (Supplementary
Figure S1C). Further research is required to identify factors working
in conjunction with Dot1l or Dot1l-mediated H3K79methylation in
transcription regulation.

Neighboring ECs are tightly held together via the expression of
various types of adhesion molecules by the cells. These include tight
junction species, including junctional adhesion molecules, EC-
selective adhesion molecules, and claudins, as well as adherens
junction species that include vascular endothelial cadherin
(Dejana et al., 2009; Giannotta et al., 2013; Reglero-Real et al.,
2016). Furthermore, cell adhesion molecules, such as claudin 1
(CLDN1) and CLDN11, are differentially expressed in an
organotypic manner (Nakato et al., 2019). It is interesting to note
that CLDN11 expression was repressed in both cKO BECs and cKO
LECs. These DEGs are most likely mediated by differential
epigenetic marks and/or priming (Matouk and Marsden, 2008;
Turgeon et al., 2020). Enrichment of GO term hemophilic cell
adhesion via plasma membrane adhesion molecules was also
highlighted in our analysis of genes diminished in both cKO EC
types. Protocadherin beta 2 (Pcdhb2), Pcdhb18, Pcdhb, Pcdhb3,
Pcdhb12, Pcdhb11, and Pcdhb10 genes were found to be involved
(Supplementary Figure S1A). The PCDH family is a member of the
cadherin superfamily and is essential for neural development (Sano
et al., 1993; Hayashi and Takeichi, 2015). PCDHs can be divided into
two subgroups: clustered and non-clustered PCDHs (Colas-Algora
andMillan, 2019). The genes encoding clustered PCDHs include the
PCDHα, β, and γ families and they are located closely to each other
within a small region in the genome, while the genes encoding non-
clustered PCDHs are dispersed throughout the genome. In our
analysis, the expression change was prominent in the PCDH β
family. The function of PCDHB genes should be further explored, as
no study has clearly provided their function in EC development.

Owing to their location in vessels, ECs are continuously exposed
to pathogens, immunogenic signals, or stimuli (Amersfoort et al.,
2022). Therefore, it is important that ECs promptly respond to these
signals via gene transcription. Evidence suggests that a subset of ECs
acts as immune cells by modulating immunity (Pober and Sessa,
2007; Shao et al., 2020). Furthermore, some ECs display typical
features of immune cells, in which ECs express co-inhibitory and co-
stimulatory receptors (Carman and Martinelli, 2015), induce
apoptosis of tumor cells (Motz et al., 2014), secrete cytokines,
and act as antigen-presenting cells (Daar et al., 1984a; Daar et al.,
1984b). Endothelial hepatitis A virus cellular receptor 2 that is
upregulated in both cKO ECs enhances defense mechanism
against Rickettsia heilongjiangensis (Yang et al., 2016).

In our analyses, cell migration was ranked as themost enriched GO
term in the analysis of commonly upregulated genes in OE BECs and
LECs. C-X-C motif chemokine ligand 10, one of the upregulated genes
in OE-Dot1l BECs and LECs, promotes the migration of cardiac
microvascular ECs (CMEC), likely by regulating the p38/focal
adhesion kinase pathways without changing CMEC proliferation

and viability (Xia et al., 2016). A recent study showed that LETR1,
an LEC-dominant long noncoding RNA, modulates the expression of
semaphorin 3C, one of the upregulated genes in OE-Dot1l BECs and
LECs, and promotes the growth and migration of LECs by changing
chromatin structure (Ducoli et al., 2021).Williams et al. have performed
a series of siRNA screening assays by targeting individual protein-
coding genes and identified 111 genes critical for BEC and/or LEC
migration (Williams et al., 2017). We have found that the mouse
homologs of their screening results were present in our DEG list.
Among the overlapping genes, Cwc22 has been identified to be
downregulated in both cKO ECs but not in the OE ECs, and Hpdl
and Ugt1a9 were upregulated in both OE ECs and not in the cKO ECs.
On the other hand, Abcc3 and Gcgr were upregulated in both cKO ECs
and not in the OE ECs. Cwc22, Hpdl and Ugt1a9 represent the
transcriptional activation, and Abcc3 and Gcgr represents the
transcriptional repression mediated by Dot1l in genes related to cell
migration (data not shown). Furthermore, using the mouse LEC
H3K79me2 ChIP data from our previous research, we have
confirmed that H3K79me2 levels in their gene bodies reduce when
Dot1l function is inhibited by EPZ-5676, providing evidence for Dot1l
regulated transcription (data not shown). Genes which do not show a
Dot1l-dependent expression pattern are expected to be regulated by
Dot1l-independent mechanism or represent the difference between the
mouse and human ECs.

Positive regulation of the ERK1/ERK2 cascade was identified as
the one of the most significantly enriched GO term among the
uniquely downregulated genes of OE-LECs (Figure 3F).
VEGFR3 signaling activates ERK1/2 signaling and induces LEC
proliferation (Qin et al., 2021). Interestingly, OE-Dot1l in BECs
selectively led to repression of genes related to positive regulation
of angiogenesis, whereas OE-Dot1l in the LECs induced a set of genes
involved in the function of cell adhesion. In contrast, cellular response
to interferon-beta related genes were enriched in OE-LECs
upregulated gene set. The comprehensive analysis demonstrates EC
type-dependent transcriptional regulation of angiogenesis-related
genes by Dot1l. Histone modifications are significant contributors
to the regulation of angiogenic gene expression. A recent study clearly
showed common (or core) and diverse gene signatures and epigenetic
landscapes across developmental time and organotypic space in
developing mouse and adult BECs (Gutierrez et al., 2021). Our
study further demonstrates that a single epigenetic factor can
differentially function and build-up unique chromatin structure to
regulate gene transcription even in the developmentally close cells.
Recently, Kanki et al. (2022) showed that the genes of immediate-early
angiogenic transcription factors exclusively acquire protein regulator
of cytokinesis (PRC)1.3/PRC2-mediated bivalent histone markers
(both H3K4me3-and H3K27me3-positive) after VEGF stimulus. In
addition, Ezh2, a component of the PRC2 complex, inhibits the
endothelial expression of Fosl1, Creb3l1, Klf5, and Mmp9 to
maintain vascular integrity during embryonic development
(Delgado-Olguin et al., 2014). Lysine demethylase 3A (Kdm3a)
expression is induced in BECs by hypoxia. Its elevated expression
accelerates matrix metalloproteinase 12 expression via histone
H3K9 demethylation and facilitates trophoblast invasion and
uterine vascular remodeling (Chakraborty et al., 2016). The
Jmjd6 histone arginine demethylase regulates the expression and
splicing of the angiogenic factor Flt1 and controls the angiogenic
sprouting of BECs (Boeckel et al., 2011).
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Gene OE experiments frequently result in suboptimal
physiological protein levels, potentially enabling the formation of
transcriptional complexes that would not typically occur (Moriya,
2015). Nevertheless, ECs in our OE experiments exhibited 2~3-fold
upregulation of Dot1l expression, suggesting that it falls within the
physiological range (Figure 3B). Therefore, the result of our study
can be used for understanding the Dot1l-mediated transcription
regulation. As for Dot1l expression in disease condition, it was
shown to potentially contribute to the development of multiple
cancers including leukemia (Okada et al., 2005; Bernt et al., 2011),
breast cancer (Cho et al., 2015; Nassa et al., 2019), ovarian cancer
(Zhang et al., 2017), prostate cancer (Vatapalli et al., 2020), and
other cancers (Jacinto et al., 2009; Campbell et al., 2016; Zhu et al.,
2018; Liu et al., 2020). Given that tumor metastasis is positively or
negatively mediated by lymphatics (Dieterich et al., 2022; La et al.,
2022), the identified genes regulated by Dot1l can be targets for the
detection or prevention of cancer progression. Indeed, studies
suggest that Dot1l itself can serve as a prognostic biomarker for
ovarian cancer and gastric cancer (Zhang et al., 2017; Song et al.,
2020), and pharmacological inhibition of its activities with EPZ-
5676 has a beneficial effect in patients with mixed lineage leukemia
(Stein et al., 2018).

In the present study, we directly compared the capability of
mouse Dot1l in the regulation of gene transcription in BECs and
LECs. Common and distinct sets of genes regulated by Dot1l
were identified depending on EC types and H3K79me2 levels in
LEC has also provided insight into the relationship between
epigenetic modification and transcriptional regulation. To the
best of our knowledge, this is the first study to delineate the
regulatory functions of a specific epigenetic factor in two
different ECs, in which its function is abolished or
strengthened. Nevertheless, analysis of H3K79 methylation in
BECs and investigation of histone methylation-independent
transcriptional change in aberrant Dot1l expression could
provide more thorough understanding of molecular
mechanism governing EC type-specific functions.
Additionally, follow-up studies on changes and differences in
transcriptomic and epigenetic landscapes in developing and
adult ECs in multiple organs would be helpful in precisely
understanding the cellular heterogeneity of ECs.
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SUPPLEMENTARY FIGURE S1
(A) Heatmap representing expression change of genes under the GO term
immune response, glucose metabolism and cell-to-cell adhesion. (B) GO
terms identified for commonly up- or down-regulated genes. (C)
H3K79me2 profiles on DMSO and EPZ-5676 treated LEC. The gene body
profiles of none-DEGs, down- and up-regulated DEGs are shown. (D) IGV
visualization of Cont and cKO EC RNA-seq for representative genes.

SUPPLEMENTARY FIGURE S2
Results of Cont and cKO EC comparison in 18 child terms of the term
“immune response” shown in GSEA enrichment plot.
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SUPPLEMENTARY FIGURE S3
(A) RT-qPCR results of Mmp3 and Cldn1. Gene expression is normalized to
the expression value of Gapdh in Cont and OE EC. (n=2) (B) IGV track
visualization of Cont and OE EC RNA-seq for Mmp3 and Cldn1. (C)

Heatmap representing expression change of Dot1l dependent genes. (D)
Upper panel shows the GO term analysis results for the Dot1l dependent
genes in the BECs and the lower panel shows the GO term analysis results
for the LECs.
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