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Editorial on the Research Topic
The evolving role of lipid droplets: Advancements and future directions

Lipid droplets (LDs), traditionally known as fat storage organelles in all cell types, have
emerged as crucial players in diverse cellular functions, including protein trafficking and
sequestration, endoplasmic reticulum (ER) stress responses, lipid trafficking, innate
immunity, and assembly of viral particles [reviewed in (Welte and Gould, 2017;
Olzmann and Carvalho, 2019)]. While LDs usually are key to maintaining lipid
homeostasis, they can also cause severe pathologies including obesity, fatty liver, type-2
diabetes, atherosclerosis, neurological diseases, and cancer [reviewed in (Henne et al., 2019;
Nagarajan et al., 2021; Islimye et al.)]. Although the biogenesis of LDs occurs in virtually all
cell types, and huge progress has been recently made toward an understanding the
mechanisms of this pathway, our knowledge is far from complete. Recent evidence
suggests that LD biogenesis occurs at specialized subdomains of the ER network in a
stepwise fashion. Many important LD assembly factors have been identified that orchestrate
and ensure the fidelity of this process (Gao et al., 2019; Renne et al., 2020; Rao and Goodman,
2021; Schneiter and Choudhary, 2022). In this Research Topic, both original research and
reviews highlight the novel insights into the dynamic functions of LDs and our current
understanding of how alterations in LD homeostasis are implicated in disease pathogenesis.

LD biogenesis is driven by the accumulation of neutral lipids (NL), triglycerides (TAG)
and steryl esters (SE), within the hydrophobic core of the ER membrane. Nascent LDs
thereafter emerge from the ER toward the cytoplasm, enveloped in a phospholipid
monolayer, and are covered by a specific set of LD-resident proteins (Walther et al.,
2017; Chapman et al., 2019). Recent studies have revealed role of proteins, lipids, and
biophysical properties that determine assembly of nascent LDs at discrete ER subdomains, a
pre-requisite for maintaining ER homeostasis (Choudhary et al., 2020;Wang et al., 2018; Ben
M’barek et al., 2017; Santinho et al., 2020). Seipin is one of the key proteins that determines
sites where LD assembly machinery gets recruited to initiate phase separation of neutral
lipids, and in doing so controls the number, size, and morphology of LDs (Chung et al., 2019;
Choudhary et al., 2020; Zoni et al., 2021; Schneiter and Choudhary, 2022). Absence of seipin
results in ectopic TAG packaging, leading to numerous tiny or few supersized LDs, many of
which lack the full complement of LD surface proteins. Thus, an impaired adipogenesis
results in abnormal distribution of body fat and insulin resistance.
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In this Research Topic, Salo reviews the recent literature about
the molecular function of seipin (Salo). He describes how the
presence of seipin drives nucleation of TAG-lenses at a lower
concentration in the ER than TAG alone, and hence, seipin
defines the LD biogenesis sites. Lack of seipin results in
accumulation of neutral lipids in the ER (Cartwright et al., 2015).
Interestingly, recent cryo-EM structures of human, fly and yeast
seipin revealed that it is comprised of a large membrane-embedded
ring-shaped oligomer that is crucial for its function (Sui et al., 2018;
Yan et al., 2018; Arlt et al., 2022). These structures have provided an
insight into the role of different domains that allows nanoscale
clustering of NLs thereby priming LD formation. Interestingly,
mammalian and fly seipins contain hydrophobic helices (HH)
within the luminal domain that are predicted to interact with the
bilayer, where they can bind to NL. This domain, however, is absent
in the yeast counterpart but may be provided by Ldb16, a seipin-
binding partner (Klug et al., 2021; Arlt et al., 2022). Seipin associates
with LDAF1, the likely homolog of yeast Ldo proteins, to form a
stable complex that co-purifies with TAG thereby facilitating LD
biogenesis in vivo. Molecular dynamic simulations suggests that
seipin transmembrane domains contribute to clustering of TAG
within the ER membrane (Kim et al., 2022). Seipin has been shown
to be essential for the formation and maintenance of steryl ester-rich
LDs (Cartwright et al., 2015; Renne et al., 2022). Moreover, the
presence of seipin at multiple ER contact sites might play a vital role
in the maintenance of these contacts and regulate trafficking
occurring at these junctions (Salo).

Aberrant LDs due to the lack of seipin can have serious
reproductive effects. Cao and coworkers provide evidence that
loss of seipin/SEIP-1 in the oocyte of C. elegans results in
embryogenesis defects and perturbation of eggshell formation.
They report that a specific population of seipin-positive LDs is
utilized after fertilization to form lipid-rich permeability barrier
necessary for proper eggshell development. Surprisingly, the defect
of the permeability and decrease of progenies in seipin-null worms
were rescued by deleting LD coat protein, PLIN-1, and this rescue
required the presence of RAB-18 (Cao et al.). The authors propose
SEIP-1-dependent and -independent mechanisms involving LDs
that act in parallel to control the packaging and export of lipid-rich
permeability barrier constituents.

Besides eggshell formation in worms, trafficking of LDs is
essential for milk production in mammals, where they are
secreted by epithelial cells in the mammary gland. Prior to
secretion, LDs bind to the apical plasma membrane to make LD-
APM junctions, are enwrapped by the PM and then secreted (Heid
and Keenan, 2005). The perilipin Plin2 is a part of the LD-APM
junction, but its role in secretion has been unclear. Monks et al. now
report that Plin2 is not required for milk droplet secretion (Monks et
al.). However, it modulates all steps in this process, as shown in
Plin2-knockout mice. In these animals the composition of the LD-
APM is altered and its width (i.e., distance between the LD surface
and plasma membrane) is shortened, the enwrapping step is
prolonged, and secretion at the onset of lactation is sluggish.

The fat stored in all LDs, including those in the mammary gland,
is principally esterified fatty acids, both saturated and unsaturated.
Danielli et al. summarize an exploding field of the role of LDs in
polyunsaturated fatty acid (PUFA) storage, release, and function
(Danielli et al.). Storage of PUFAs in TAG and other esterified forms

appears to be a double-edged sword. For example, it is widely
believed that LDs protect cells from ferroptosis in part by
sequestering PUFAs from lipid peroxidation, and this is certainly
true in many cases, but in others, peroxidation may be promoted
within the LD, making these organelles into time bombs. The review
also points out that targeting LDs by drugs to release PUFAs and
cause their oxidation and cell ferroptosis may be important for
therapy of resistant cancers. Evidence for the emerging role of LDs in
providing PUFA precursors of eicosanoids and docosanoids,
essential signaling molecules, is also discussed.

The extent of NL storage in LDs reflects a balance of fat
biosynthesis and mobilization. Lipid metabolism can be
coordinated between cell types in a tissue. Growing evidence
suggests that defects in lipid metabolism and its coordination
among cells play a major role in neurodegeneration. Islimye and
coworkers review the recent advances about the role of LDs in glial,
neurons, and neural stem cells during health and disease (Islimye
et al.). Lipid metabolism in human brain appears to be highly cell-
type specific. Under physiological conditions, glia, ependymal cells,
and microglia store LDs. Neurons contain few, if any, detectable LDs
in vivo, however, because they actively turnover TAG, thus favoring
lipolysis over biosynthesis under physiological conditions. In
contrast, ectopic accumulation of LDs in neurons serve as a
hallmark of several neurodegenerative diseases, ageing, and
stresses including redox imbalance and lipotoxicity (Teixeira
et al., 2021; Islimye et al.).

Proper lipid storage and mobilization depend on LD-associated
proteins, the targeting of which has been intensively studied.
Interestingly, the localization of proteins to LDs and
peroxisomes, which can oxidize fatty acids, are linked. Pex19, a
protein that is farnesylated, is well known for its ability to target
membrane proteins to peroxisomes (Theodoulou et al., 2013). The
contribution of Lyschik et al. now shows that Pex19 has an
important function for LDs (Lyschik et al.). The authors
generated HeLa cell lines where Pex19 is deleted or replaced by a
C296S mutant preventing its farnesylation. They report that
Pex19 farnesylation is not required for peroxisomal assembly or
function. More interestingly, perhaps, is the finding that
farnesylation is critical for a novel role of the protein, the
targeting a subset of proteins to LDs. In an observation that
could be related, farnesylation of Pex19 was also shown to be
required to fully deplete LDs of TAG under catabolic conditions.

The original function of Pex19, seipin, and most other proteins
involved in organelle assembly were discovered through forward
genetics or proteomics. Sánchez-Álvarez et al. present a near-
exhaustive review of progress made from unbiased approaches on
the roles of LDs in several cell functions, including proteostasis, lipid
metabolism, inter-organellar communication, and innate immunity.
The authors start with comparing the advantages of several model
systems and continue with genetic approaches (such as RNAi screens)
with a visual (such as fluorescent microscopic) output. Next, the
advantages of proteomic approaches are compared, including cutting
edge interpretive methods such as hierarchical clustering of data. A
review of methods that are coupled with perturbations of the system,
such as starvation, ER stress, or exposure to bacterial lipoprotein is
offered. Finally a thoughtful presentation of possible future directions of
functional genomics and metabolic profiling to learn more about LDs
concludes the review.
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In summary, the present Research Topic of reviews and research
articles highlight the recent advances in the field of LDs with novel
insights into the mechanisms of LD assembly and function, and the
ways in which disruption of LD homeostasis have important effects
on diverse functions. However, several perplexing questions remain
unanswered. Some revolve around sites of LD formation. A key
question for subsequent studies is to determine how membrane
geometry alters lipid and protein composition that promote LD
formation. Seipin must play a role in this process, but many
important details are not resolved. Does seipin traffic to
preexisting specialized ER domains for LD formation (based on
membrane lipid or protein composition), or is the domain defined
by where seipin happens to be when it encounters NL diffusing
through the membrane? What is the spatial relationship between
sites of NL synthesis and LD assembly? Does seipin change its
structure as LD bud from the bilayer? Ultimately, the role of seipin in
preventing lipodystrophy is incompletely understood. For example,
what are the relative contributions of seipin in adipocyte formation
vs. maintenance?

Once LDs are formed, they are well known to associate with
other organelles. Although several tethering proteins have been
recently identified at these contacts, key issues have yet to be
resolved. The dynamics of LD-mediated contact formation and
release in response to environmental cues are poorly understood,
as are the resulting changes in lipogenesis, lipolysis, and lipid
transfer that often result. In addition, there may be other, presently
unknown, communication modalities at these junctions.
Acquiring a deep understanding of the biology of LD contacts
will be essential to determining the impact that dysfunctional LD
contact sites have in human pathologies such as neurological
diseases. Work in the new few years will likely reveal much
more of how sites for LDs are selected and the normal role of
this organelle in intracellular communication and energy
metabolism at levels of the cell, tissue, and whole organism, as
well as more insight into pathological situations when these
processes go awry. We are optimistic that with improved
understanding of such normal and pathological mechanisms
involving LDs, new therapeutic interventions will be developed
to improve the health of individuals suffering from diseases of
aberrant lipid storage and utilization.
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