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Background: Artificial intelligence (AI) is used in ophthalmological disease
screening and diagnostics, medical image diagnostics, and predicting late-
disease progression rates. We reviewed all AI publications associated with
macular edema (ME) research Between 2011 and 2022 and performed
modeling, quantitative, and qualitative investigations.

Methods:On 1st February 2023, we screened theWeb of Science Core Collection
for AI applications related to ME, from which 297 studies were identified and
analyzed (2011–2022). We collected information on: publications, institutions,
country/region, keywords, journal name, references, and research hotspots.
Literature clustering networks and Frontier knowledge bases were investigated
using bibliometrix-BiblioShiny, VOSviewer, and CiteSpace bibliometric platforms.
We used the R “bibliometrix” package to synopsize our observations, enumerate
keywords, visualize collaboration networks between countries/regions, and
generate a topic trends plot. VOSviewer was used to examine cooperation
between institutions and identify citation relationships between journals. We
used CiteSpace to identify clustering keywords over the timeline and identify
keywords with the strongest citation bursts.

Results: In total, 47 countries published AI studies related to ME; the United States
had the highest H-index, thus the greatest influence. China and the United States
cooperated most closely between all countries. Also, 613 institutions generated
publications - the Medical University of Vienna had the highest number of studies.
This publication record and H-index meant the university was the most influential
in the ME field. Reference clusters were also categorized into 10 headings: retinal
Optical Coherence Tomography (OCT) fluid detection, convolutional network
models, deep learning (DL)-based single-shot predictions, retinal vascular disease,
diabetic retinopathy (DR), convolutional neural networks (CNNs), automated
macular pathology diagnosis, dry age-related macular degeneration (DARMD),
class weight, and advanced DL architecture systems. Frontier keywords were
represented by diabetic macular edema (DME) (2021–2022).

Conclusion: Our review of the AI-related ME literature was comprehensive,
systematic, and objective, and identified future trends and current hotspots.
With increased DL outputs, the ME research focus has gradually shifted from
manual ME examinations to automatic ME detection and associated symptoms. In
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this review, we present a comprehensive and dynamic overview of AI in ME and
identify future research areas.
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bibliometric analysis, deep learning, artificial intelligence,macular edema, ophthalmology,
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1 Introduction

Macular edema (ME) is a common, critical disease caused by
retinal vein occlusion, diabetic retinopathy (DR), chronic uveitis,
and eye injury, of which, macular lesions are the leading cause of
disease. Clinically significant ME is manifested by retinal thickening
which impacts the macula center, is defined by central retinal
thickness >250–300 μm, and examined using Optical Coherence
Tomography (OCT) (Hee et al., 1995). ME also involves fluid
accumulation in retinal layers which is a common morphological
manifestation in different retinal diseases (Daruich et al., 2018).
Therefore, it is vital to quantitatively analyze ME research areas, the
disease status quo, and future prospects related to disease
progression.

Bibliometrics is used to analyze different knowledge carriers
using mathematics and statistics (Cancino et al., 2017). It evaluates
development trends in target disciplines/scientific fields by
analyzing database and document characteristics to identify
research hotspots and key research directions. In recent years,
bibliometric analysis have been successfully used in orthopedics,
ophthalmology, and gynecology (Qiu et al., 2018; Huang et al., 2020;

He J. et al., 2021). Additionally, the approach is invaluable for
writing guidelines, making clinical decisions, and importantly,
treating different diseases. However, bibliometric analyses related
to ME in ophthalmology remains under-studied (Narotsky et al.,
2012; Seriwala et al., 2015; Khan et al., 2016), therefore, we
systematically investigated this research area to characterize the
status quo and identify research hotspots.

2 Materials and methods

On 1st February 2023, we downloaded data from the Web of
Science Core Collection (2011–2022) using: “machine learning”
OR “deep learning” OR “convolutional neural network*” OR
“CNN*” OR “Recurrent neural network*” OR “RNN” OR “Fully
Convolutional Network*” OR “FCN*” search terms. The parallel
search subject was ME and relevant studies included basic
information on: authors, abstracts, keywords, titles,
institutions, journals, countries/regions, and references.
Indexed database studies were included, but meeting
abstracts, book chapters, data papers, proceedings, editorials,

FIGURE 1
Study flow chart showing bibliometric analyses and selection criteria of macular edema studies.
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and repeat articles, and unpublished studies containing limited
data were excluded. A summary of this process is shown
(Figure 1).

We also examined publication characteristics: keywords,
institutions, countries/regions, and journals. We also used the
H-index which evaluates the scientific value of research and
measures author/journal scientific productivity (Eyre-Walker and
Stoletzki, 2013). To represent collaborative networks across
journals/institutes/countries/keywords and facilitate co-occurrence
investigations, we used R language bibliometrics software (Massimo
Aria and Corrado Cuccurullo), CiteSpace (Drexel University, PA,
United States), and VOSviewer (Leiden University, Holland). The R
language bibliometric package is widely used in statistical
computation and graphics (Aria and Cuccurullo, 2017) and was
used to extract the top 10 keywords and cluster them into themes/
evolution/hierarchical clustering/topic trends. From collaborative
data, we used the VOSviewer to provide a comprehensive and
detailed view of bibliometric maps. We also generated a
cooperation relationship diagram between institutions and also a
reference relationship diagram between foresight to analyze
cooperation outputs between institutions and reference
relationships between disciplines. CiteSpace was used to
investigate knowledge from the literature and visualize data
(Chen, 2004). We also generated knowledge maps, performed
discipline evolution analyses, and determined burst keywords
(BKs) to identify recurrent keywords.

3 Results

3.1 Study distribution (year of publication)

We observed that AI in ME research commenced in 2011. From
2011 to 2022, we identified 297 papers and identified AI-associated ME
publication trends (Figure 2). While this type of research emerged in
2011, it fell silent from 2012 to 2015. However, from 2016, in-depth
learning approaches combined with ophthalmology led to increased
ME research outputs, and paper outputs increased year on year
suggesting an important research trend had been established.

3.2 Institutes/countries/regions

Forty-seven countries/regions published ME studies - the top
10 countries (Table 1) and collaborations (Figures 3, 4) are indicated.
China published the most studies (101), then the United States (73),
India (48), and the United Kingdom (23). Some countries
(United States, China, and the United Kingdom) showed high
centrality (dark blue—Figure 3) suggesting important regional
roles in/contributions to ME research. H index is a mixed
quantitative index, which can be used to evaluate the quantity
and level of academic output of a country or institution. Because
the United States has the highest H-index, it has the greatest
influence in the field of macular edema.

FIGURE 2
Macular edema publications; publication trends between 2011 and 2022 (publication years).
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In total, 613 institutes generated ME publications; the top ten are
shown (Table 1). Institutions are also outlined (Figure 5). The Medical
University of Vienna had the most publications (15), followed by the
National University of Singapore (12), the University of California (12),
and the Singapore National Eye Center (11).

We also cataloged research institutions with outstanding
contributions to the ME field (Figure 5) using VOSviewer.
Regional institutional distributions showed distinct aggregation
effects, indicating that academic research was concentrated to a
few countries. From a literature perspective, most institutions were
based in universities and scientific research institutions and
generally reflected the ME research status. A possible reason

could be that the ME research field is highly academic in nature
and not currently economically feasible, thus enterprises and other
institutions may currently eschew the field. The Medical University
of Vienna and the National University of Singapore were major
prominent organizations which had significant ME research
outputs.

3.3 Journals

Across all academic fields, knowledge exchange in/between
fields is often reflected in reference relationships between

TABLE 1 Top ten institutions and countries/regions.

Rank Countries/Regions Count Citations H-index Institutions Count H-index

1 China 101 3,286 23 Medical University Of Vienna 15 11

2 United States 73 7,302 28 National University Of Singapore 12 10

3 India 48 4,026 14 University Of California System 12 7

4 England 23 1,419 10 Singapore National Eye Center 11 9

5 Singapore 21 718 11 Shanghal Jiao Tong University 10 6

6 Saudi Arabia 18 157 7 Egyptian Knowledge Bank EKB 9 3

7 Australia 17 613 8 Indian Institute Of Technology System IIT System 9 7

8 Austria 17 1,011 11 Isfahan University Medical Science 9 5

9 Pakistan 15 157 8 Shantou University 9 4

10 Iran 14 349 7 Cleveland Clinic Foundation 8 6

FIGURE 3
Collaboration map showing how countries/regions contributed to/collaborated on macular edema publications.
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academic journals. Citing papers are knowledge frontiers, while
referenced papers are knowledge bases. As indicated (Figure 6;
Table 2), the major journals contributing to ME research
included, Biomed Opt Express, Ieee T Med Imaging,
Ophthalmology, Med Image Anal, and Invest Ophth Vis
Sci—with high centrality, these were the most popular journals
publishing ME research.

A journal dual-map overlay (Figure 7) showed citing (left) and
cited (right) journals, while citation associations were indicated by
colored lines—these investigations demonstrated that studies in
computer/medicine/molecular journals were typically cited in
ophthalmology/mathematics/clinical journals.

3.4 References

Reference analysis is an important index in bibliometric—typically,
often-cited studies significantly impact certain research areas. Therefore,
we used Citespace to cluster references from data to generate a reference
clustering diagram (with a timeline) to analyze ME research.

A co-citation reference network was used to assess the relevance
of studies (Figure 8). Cluster setting: g-index K = 5 and #years/slice =
1. The modularity Q score was 0.8306 (>0.5), thus the network was
adequately split into loosely coupled clusters. Theweightedmean silhouette
score was 0.9621 (>0.5), thus cluster homogeneity was reasonable.

Index items, as cluster markers, were extracted from studies. The
largest clusters were cluster #0 “retinal oct fluid detection” (Lee et al.,
2017; Venhuizen et al., 2018; Girish et al., 2019), cluster #1
“convolutional network model” (Gargeya and Leng, 2017; Porwal
et al., 2020; Singh and Gorantla, 2020; Dai et al., 2021), cluster #2
“deep learning-based single-shot prediction” (Rasti et al., 2018; Das
et al., 2019; Tsuji et al., 2020), cluster #3 “retinal vascular disease”

(Karri et al., 2017; Ehlers et al., 2019; Figueiredo et al., 2020; Rasti
et al., 2020), cluster #4 “diabetic retinopathy” (Ting et al., 2017;
Raumviboonsuk et al., 2019; Ting et al., 2019), cluster #5
“convolutional neural network” (Kermany et al., 2018; Hwang
et al., 2019), cluster #6 “automated macular pathology diagnosis”
(Chang and Lin, 2011), cluster #7 “dry age-related macular
degeneration” (Kafieh et al., 2013; Srinivasan et al., 2014a; Rathke
et al., 2014; Karri et al., 2016), cluster #8 “class weight”(Wan et al.,
2018; Li et al., 2019b; Huang et al., 2019), and cluster #9 “recent
advanced deep learning architecture” (Schmidt-Erfurth et al., 2018;
Bogunovic et al., 2019; Gu et al., 2019; Lu et al., 2019).

3.5 Keywords

Keyword analyses help summarize research themes and explore
research hotspots and trends in a given field. The top 20 keywords
fromME studies are shown (Table 3). Temporal trend/hotspot shifts
(from seven keywords with the strongest citation burst) in
2016–2019; BKs were Image Analysis (2016–2019), OCT Imaging
(2017–2019), Layer Segmentation (2017–2019), and Age Related
Macular Degeneration (AMD) (2017–2019). BKs in 2020–2022 were
validation (2020), system (2020), and the hotspot, Diabetic Macular
Edema (DME) (2021–2022). (Figure 9).

4 Discussion

4.1 General data

Between 2011 and 2022, 297 ME studies, conforming to
inclusion/exclusion criteria and search terms, were identified.

FIGURE 4
Diagram showing how the most cited countries/regions contributed to/collaborated on macular edema publications.
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China generated the most studies (101, 34.007%), with the
United States in second place (73, 24.579%). Two of the top ten
institutions were in China. The most common ME publication
journal, and the major contributor to ME research, was
BIOMEDICAL OPTICS EXPRESS. The top study (cited
2,936 times) was by Gulshan et al. in JAMA-JOURNAL OF THE
AMERICAN MEDICAL ASSOCIATION (Gulshan et al., 2016).
The second top study (cited 1,474 times) was by Kermany et al. in
CELL (Kermany et al., 2018).

4.2 Knowledge base

Previously DL-related technologies and associations with ME
generated several major achievements. When co-cited references
were clustered (Figure 8), key clustering nodes were used to
identify knowledge bases in ME research: #0 “retinal oct fluid
detection,” #1 “convolutional network model,” #2 “deep
learning-based single-shot prediction,” #3 “retinal vascular
disease,” #4 “diabetic retinopathy,” #5 “convolutional neural
network,” #6 “automated macular pathology diagnosis,” #7
“dry age-related macular degeneration,” #8 “class weight,” and

#9 “recent advanced deep learning architecture.” In the following
sections, we outline knowledge bases according to different
clusters.

#0 “Retinal OCT fluid detection”; Lee et al. (2017) generated a
model formulated on encoding and decoding mechanism and
outlined improved segmentation intraretinal fluid (IRF)
methods, which showed good IRF segmentation results in
OCT images. Roy et al. (2017) developed an AI approach
(Relay Net) which segmented multiple retinal layers and
generated fluid bag descriptions in OCT eye images. The
model displayed excellent performance in object segmentation.
Fundus dropsy can lead to ME. These methods were used to
segment retinal fundus dropsy and automatically detected ME in
OCT and affected segmented parts.
#1 “Convolutional network model”; Gargeya and Leng. (2017)
designed a convolution network model to facilitate automatic DR
recognition. Abramoff et al. (2016) compared this convolutional
network with other automatic detection methods (IDx-DR X2.1)
to automatically detect DR, mainly evaluating the analysis
software that IDx-DR X2.1 runs on the server maintained and
controlled by IDx. Porwal et al. (2020) generated a dataset for

FIGURE 5
Institutional cooperation/contributions to publications.
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Indian populations with DR which provided normal retinal and
typical DR structures at pixel levels. Image information was also
provided for DR and DME severity, and facilitated image
algorithm development and evaluations for early DR
detection. DR is one of the most common diabetic
microvascular complications. Retinal microvascular leakage
and occlusions caused by chronic progressive diabetes causes
different fundus diseases. DR is one of the main inducements of
ME. Importantly, automated DR screening combined with a
convolutional network model can effectively and economically
prevent ME.
#2 “Deep learning-based single-shot prediction”; Rasti et al.
(2018) used a DL-based single-shot prediction method
(MCME) to predict macular OCT categories. The model
performed category predictions based on minimum
preprocessing requirements and helped to automatically
classify macular OCT in clinical settings. The method by
Srinivasan et al. (2014b) automatically detected diabetic ME
and DARMD in OCT images. Using Histogram of Oriented
Gradient descriptors and SVMs to classify spectral domain-OCT
images, the method may be used to remotely diagnose some
ophthalmic diseases.
#3 “Retinal vascular disease”; Karri et al. (2017) used a DL
technique to identify DME or DARMD in retinal vascular

diseases from OCT images. The strategy used transfer learning
and the pre-trained GoogLeNet as a classification model to allow
for faster convergence with less data. Li et al. (2019a) combined
four classification models to automatically detect four retinal
vascular diseases in OCT images: choroidal neovascularization,
DME, DRUSEN, and NORMAL. The method had a classification
accuracy = 0.973, which met or exceeded ophthalmologist
expectations.
#4 “Diabetic retinopathy”; a DL system by Ting et al. (2017) was
used to rapidly and accurately screen DR and related eye diseases.
Abramoff et al. (2018) diagnostically evaluated an autonomous
AI system (mtmDR) to automatically detect DR and DME; the
approach improved early DR detection rates and reduced pain
induced by vision loss and blindness. Thus, to some extent, these
methods helped limit ME.
#5 “CNN” is one of the representative DL algorithms (Gu et al.,
2018). Gulshan et al. (2016) developed a CNN algorithm to detect
DR in retinal fundus images and detect referential diagnostic
retinopathy. Kermany et al. (2018) formulated an effective
transfer learning algorithm which processed medical images
and identified key pathology traits in images. The algorithm
was primarily used to analyze retinal OCT images, while
combination with a CNN helped clinicians effectively
diagnose ME.

FIGURE 6
Network map showing how cited journals contributed to publications.
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TABLE 2 Top ten macular edema artificial intelligence citations.

Rank Source titles Title of References Count Interpretation of findings

1 Jama-Journal Of The American Medical
Association

Development and Validation of a Deep Learning
Algorithm for Detection of Diabetic Retinopathy

in Retinal Fundus Photographs

2,919 Detecting diabetic retinopathy (DR) using deep
learning (DL)

2 Cell Identifying Medical Diagnoses and Treatable
Diseases by Image-Based Deep Learning

1,465 Using an artificial intelligence (AI) algorithm for
retinal optical coherence tomography (OCT)

image diagnoses

3 Nature Medicine Clinically applicable deep learning for diagnosis
and referral in retinal disease

952 Establishing a referral recommendation
framework based on DL algorithms for retinal

diseases which endanger vision

4 Investigative Ophthalmology and Visual Science Improved Automated Detection of Diabetic
Retinopathy on a Publicly Available Dataset

Through Integration of Deep Learning

460 Using a convolutional network method to
automatically detect DR when compared with
other automated detection methods (IDx

DR X2.1)

5 Biomedical Optics Express Automatic segmentation of nine retinal layer
boundaries in OCT images of non-exudative
AMD patients using deep learning and graph

search

306 A new framework automatically segmenting
nine-layer boundaries in retinal OCT images

6 Biomedical Optics Express ReLayNet: retinal layer and fluid segmentation of
macular optical coherence tomography using

fully convolutional networks

297 A Relay Net strategy to segment multiple retinal
layers and delineate fluid pockets in OCT images

7 Progress In Retinal and Eye Research Artificial intelligence in retina 278 Introducing AI to the retina

8 Ophthalmology Fully Automated Detection and Quantification
of Macular Fluid in OCT Using Deep Learning

233 A DL method which automatically detects and
quantifies intra retinal cystic and subretinal fluid

9 Biomedical Optics Express Deep-learning based, automated segmentation
of macular edema in optical coherence

tomography

181 A segmentation method based on DL and
segmented intraretinal fluid

10 Progress in Retinal and Eye Research Deep learning in ophthalmology: The technical
and clinical considerations

171 Technologies and considerations are outlined for
the construction of DL algorithms in
ophthalmological/clinical settings

FIGURE 7
Dual-map overlay showing journal contributions to studies.
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#6 “Automated macular pathology diagnosis”; Chang and Lin
(2011) introduced a software package for SVM
algorithms—the LIBSVM library—which is one of the most

widely used SVM software programs. The algorithm
effectively supported automatic macular pathological
diagnoses using SVM.

FIGURE 8
Reference co-citation map showing macular edema studies (2011–2022).

TABLE 3 The top 20 keywords and associated strength data.

Rank Keyword Occurrence Link strength Rank Keyword Occurrence Link strength

1 Optical coherence tomography 110 356 11 Diabetic-retinopathy 35 108

2 Diabetic macular edema 94 329 12 Automated detection 32 138

3 Deep learning 87 337 13 Images 32 106

4 Macular edema 75 226 14 Artificial intelligence 30 136

5 Diabetic retinopathy 62 225 15 Ranibizumab 30 86

6 Degeneration 57 208 16 Retina 28 120

7 Classification 52 196 17 Prevalence 26 85

8 Segmentation 50 182 18 Fluid 25 86

9 Retinopathy 48 212 19 Diseases 24 113

10 Validation 37 156 20 Machine learning 24 96
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#7 “Dry age-related macular degeneration”; Chiu et al. (2015)
designed a method to automatically segment diabetic ME in OCT
images. The authors first estimated fluid and retinal layer
positions using a classification method based on kernel
regression, and then used classification estimates to accurately
segment retinal layer boundaries using dynamic programming
frameworks and graph theory. The method was the first to be
validated, fully-automated, seven-layered, and fluid segmented
for analyzing severe real-world DME images. Karri et al. (2016)
generated a structured learning algorithm which enhanced layer
specific-edge detection in OCT retinal images. Simultaneously,
the algorithm identified layers and corresponding edges so that
layer-specific edge computation were calculated to within 1 s.
#8 “Class weight”; Huang et al. (2019) formulated a layer-guided
CNN to classify OCT retinal images. The method was divided
into; 1), a segmentation network (ReLayNet) extracted
segmentation maps from retinal layers, and 2), two disease
related layers (RPE-BrM and ILM-RPE) were taken from layer
segmentation graphs. The network may be applied to other
retinal diseases (macular hole and macular telangiectasia) and
also retinopathy detection and segmentation.
#9 “Recent advances in deep learning architecture”; Bogunovic
et al. (2019) reviewed the standards and models used in retinal
OCT fluid detection and segmentation, and showed that >50% of
clinical teams selected UNet and its derivative model structure as
a basic network architecture to segment OCT images. Schlegl
et al. (2018) generated a DL strategy to automatically quantify
and detect subretinal fluid (SRF) and intra-retinal cystic fluid
(IRC). The method included a CNN with encoder/decoder
architecture, which identified IRC and SRF. In the ME
research field, codec structures (similar to UNet) have become
popular DL network architecture approaches.

4.3 Frontiers and hotspots

Keywords typically highlight research ideas, while BKs reflect
research frontiers and trends. Citespace captured BKs and

identified ME research frontiers; e.g., DME in 2021–2022. We
forecast these words will highlight future research frontiers ME
research.

DME represents retinal thickening or hard exudative deposition
caused by extracellular fluid accumulation in the optic disc diameter,
in the macular fovea. OCT image are important tools for diagnosing
diabetic macular disease, and AI-related methods for identifying and
segmenting disease related ME diabetes in OCT image are key
modalities for clinicians who treat and screen diseases and help
reduce medical costs.

When AI correlation methods were used to assess OCT images,
(Sunija et al., 2021; Nazir et al., 2021; Tayal et al., 2021; Wu et al.,
2021; Atteia et al., 2021) used DL to automatically recognize ME-
related lesions in OCT images. Similarly, He et al. provided accurate
image support for doctors when diagnosing ME by layering retinas
in images.

Sunija et al. (2021) used a lightweight DL algorithms to
determine if patients had DME from OCT images. The algorithm
network comprised six deep CNN layers and had accuracy and recall
rates of 99.69% and 99.69%, respectively.

He Y. et al. (2021) formulated a unified framework for
segmenting structured layer surfaces which generated
continuous structured and smooth layer surfaces, with
ordered topology, in an end-to-end DL strategy. DME was
effectively observed by layering the retinal surface, and
generating sub-pixel surface positions in single feed-forward
propagation with full connection layers, thereby improving
segmentation accuracy.

Nazir et al. (2021) proposed an automatic DR and DME
screening method. The algorithm used DenseNet-100 as the basic
CNN architecture and was greatly improved. The approach also
extracted representative information from low-intensity/noisy
images and accurately classified them.

The diagnostic method by Tayal et al. (2021) automatically
detected DME and used three different CNN models (five, seven,
and nine layer approaches) to classify and recognize four eye
diseases. The strategy generated high F1 scores, accuracy and
sensitivity outputs, and greatly reduced detection times.

FIGURE 9
Keywords with the strongest citation bursts in macular edema studies (2011–2022).
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Wu et al. (2021) developed a DL model to detect morphological
DME patterns based on OCT images using a VGG-16 network
strategy. The model was trained using ME manifestations in OCT
images (diffused retinal thickening, cystoid ME, and serous retinal
detachment) and greatly facilitated disease diagnostics.

Atteia et al. (2021) formulated a transfer-based stacked
autoencoder neural network system, which used four standard
pre-training depth networks to extract information from small
input datasets. With a maximum classification accuracy = 96.8%
and specificity = 95.5%, the approach allowed clinicians to
automatically detect and diagnose DME.

5 Conclusion

We performed a bibliometric investigation of ME research
related to DL, machine learning, FCN, CNN, RNN, and other AI
fields. We identified the ME knowledge base, future trends, and
current research hotspots. The knowledge base included: retinal
OCT fluid detection, convolutional network models, DL-based
single-shot predictions, retinal vascular disease, DR, CNNs,
automated macular pathology diagnosis, DARMD, class
weight, and recent advances in DL architecture. DME was also
identified as a future research trend and Frontier. The current
research focuses on disease classification in OCT images,
segmentation and segmentation of disease regions based on
OCT images.

Our study had some limitations; we only identified studies
between 2011 and 2022, therefore, some research may have been
missed, thus we possibly and inadvertently introduced publication
bias into our investigation which impacted our conclusion.
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