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With the discovery of the role of the nuclear envelope protein lamin in human
genetic diseases, further diverse roles of lamins have been elucidated. The roles of
lamins have been addressed in cellular homeostasis including gene regulation, cell
cycle, cellular senescence, adipogenesis, bone remodeling as well as modulation
of cancer biology. Features of laminopathies line with oxidative stress-associated
cellular senescence, differentiation, and longevity and share with downstream of
aging-oxidative stress. Thus, in this review, we highlighted various roles of lamin as
key molecule of nuclear maintenance, specially lamin-A/C, and mutated LMNA
gene clearly reveal aging-related genetic phenotypes, such as enhanced
differentiation, adipogenesis, and osteoporosis. The modulatory roles of lamin-
A/C in stem cell differentiation, skin, cardiac regulation, and oncology have also
been elucidated. In addition to recent advances in laminopathies, we highlighted
for the first kinase-dependent nuclear lamin biology and recently developed
modulatory mechanisms or effector signals of lamin regulation. Advanced
knowledge of the lamin-A/C proteins as diverse signaling modulators might be
biological key to unlocking the complex signaling of aging-related human
diseases and homeostasis in cellular process.
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1 Lamins and laminopathies

Lamins are the inner nuclear membrane proteins, which associate filament assembly in
nuclear proteins to contribute the integrity of nuclear envelope and perform various cellular
functions, including fibrous organization of the nuclear envelope, gene regulation, cellular
senescence, and differentiation (Aaronson and Blobel, 1975; Aebi et al., 1986; Fisher et al.,
1986; Goldman et al., 2002; Dechat et al., 2008). The mammalian lamins generally consist of
two major types, A and B, encoded by LMNA and LMNB, respectively. The cDNA sequences
of lamin-A and its isoform C are similar and comprise alternative splice variants that possess
partial amino acid sequence identity, whereas the B-type lamins (Lamin B1 and B2) are
different (Fisher et al., 1986; Prokocimer et al., 2009). B-type lamins localize in all types of
nuclei and are especially involved in brain organogenesis (Evangelisti et al., 2022; Matias
et al., 2022), whereas lamin-A proteins are regulated during development (Prokocimer et al.,
2009; Vidal et al., 2012) and are involved in the signaling mechanism of various tissues,
including liver tissue, hepatocarcinoma cells (Aebi et al., 1986; Hytiroglou et al., 1993),
prostate cancer cells (Kong et al., 2012), fibroblasts (Pekovic et al., 2007), osteoblasts (Akter
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et al., 2009), and bone marrow-derived mesenchymal stem cells
(MSCs) (Bermeo et al., 2015). Structurally, lamin-A/C consists of
N-terminal head domain, central coiled-coil rod domain, and
C-terminal tail domain including nuclear location signal, and
CXXF amino acid-specific motif (Figure 1) (Steinle et al., 2004;
Ahn et al., 2019). Nuclear lamin proteins localize inner nuclear
membrane to provide nuclear structural maintenance through the
interaction with nuclear proteins directly or indirectly (Crisp and
Burke, 2008; Prokocimer et al., 2009). In addition, lamin proteins
bind to DNA and chromatin to maintain nuclear matrix
homeostasis (Luderus et al., 1994; Baricheva et al., 1996). Thus,
the features of structure-function crosstalk provide mechanical
support of nuclear structure and determination of cellular fate.

Since the identification of the lamin-A/C, more than 600 LMNA
mutations have been discovered in the human genome and
mutations of LMNA mediate defects in nuclear filament assembly
and impaired maturation of lamin A (Ho and Hegele, 2019; Lazarte
and Hegele, 2021). Its diversities of mutation have been identified in
various human diseases such as Hutchinson–Gilford progeria
(HGP) syndrome (Mounkes et al., 2003; Goldman et al., 2004),

Emery–Dreifuss muscular dystrophy (EDMD) (Bonne et al., 1999),
cardiomyopathy (Ben Yaou et al., 2006; Lu et al., 2011), limb-girdle
muscular dystrophy type 1 B (Muchir et al., 2003), Dunnigan-type
familial partial lipodystrophy (Merideth et al., 2008), and
Charcot–Marie–Tooth syndrome type 2B1 (Mounkes et al.,
2003). Various studies have addressed the multiple disordered
spectra of lamin mutations, which have terms as laminopathies,
based on recent advances.

Since lamin-A/C have been addressed as structural “guardians of
the soma” (Vidal et al., 2012), various roles of lamins and its
modulator signals have been addressed past few decades.
Function-associated nuclear structure of lamins and its
interacting nuclear molecules (Figure 2) reveal tissue-specific
manner and are extensively reviewed (Worman and Schirmer,
2015; Pradhan et al., 2020; Patil and Sengupta, 2021).

Genetically, LMNA mutations are also multiple and reveal
various disturbed cellular functions. Moreover, dysregulated
LMNA gene is often associated with aging and redox
homeostasis-associated features. For example, cells from patients
with laminopathies reveal the enhanced reactive oxygen species level

FIGURE 1
Structural illustration of lamin-A/C. The lamin-A and its isoform C comprise alternative splice variants. NLS, nuclear location signal.

FIGURE 2
Structural illustration of lamin-A/C-interacting molecules with filamentous structure. NPC, nuclear pore complexes, LINC, linker of nucleoskeleton
and cytoskeleton, LEM domain-containing proteins (Emerin, LAP2, and MAN1), BAF: barrier to autointegration factor, LBR: lamin B receptor, NET: nuclear
envelope transmembrane proteins (Patil and Sengupta, 2021).
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(Caron et al., 2007; Malhas and Vaux, 2011; Lattanzi et al., 2012).
The phenotypic spectrum of laminopathies is very broad because of
the high genetic heterogeneity and phenotypic variability and its
features seems to share with downstream of aging-oxidative stress.
Thus, we focused various roles of lamin-A/C based on its variability
throughout the cellular system and summarized recently identified
effector signals on lamin-A/C regulation based on the experimental
evidences (Figure 3).

2 Cellular roles of lamin-A/C

2.1 Modulation of nuclear morphology and
cell cycle

It is well known that lamin plays a role in the morphological and
mechanical maintenance of the nuclear shape (Gotzmann and
Foisner, 2006; Prokocimer et al., 2009; Worman, 2012). Although
the roles of lamins are described in chromatin modulation and
highlighted in Drosophila, Xenopus, and Caenorhabditis elegans, we
summarized mammalian-based or disease-related lamin-A/C
research. It has been well determined the role of lamin in the
structural maintenance of chromatin modulation, cellular
signaling, cell proliferation, and emerging roles in viral infection
(Cenni et al., 2008; Dechat et al., 2008; Parnaik, 2008; Prokocimer
et al., 2009; Piekarowicz et al., 2017). Maintenance of lamin shows
the modulating sign of cellular fate. Proteolytic cleavage of lamin-A
enhances the destruction of the nuclear shape and cellular apoptosis
(Rao et al., 1996; Takahashi et al., 1996). Non-cleaved mutants of
lamin-A or -B induce abnormal chromatin morphology and delayed
apoptosis (Rao et al., 1996). A premature aging disorder, the HGP
syndrome is caused by a human lamin-A (LMNA) mutation and
presents aged appearances such as osteoporosis and loss of hair
(Eriksson et al., 2003). Cells transfected with 50 amino acid-deleted
lamin A and HGP syndrome–derived cells (G608G mutation in the
LMNA gene) reveal enhanced deformity of the nuclear envelope and
chromatin structure (Goldman et al., 2004).

In addition to nuclear maintenance role of lamin, lamin-A/C
binds to lamina-associated polypeptide LAP-2α and is anchored to

retinoblastoma protein Rb (pRb) (Markiewicz et al., 2002).
Depletion of lamin-A/C leads to mislocalization of pRb and pRb
protein family p107 and reduced cell cycle arrest in fibroblasts and
the human osteosarcoma cell line U2OS (Johnson et al., 2004).
Expression of lamin-A/C also regulates the proteasomal degradation
of pRb (Johnson et al., 2004; Dorner et al., 2006), suggesting lamin-
A/C has a critical role in stability of pRb and modulation of pRb-
associated cell cycle. More recently, LMNA existence or mutations
affect interaction with binding proteins such as emerin or nesprin-1
(Vaughan et al., 2001; Dilsaver et al., 2018; Sur-Erdem et al., 2020).
Homozygous mutation of LMNA at Y259X in fibroblasts reveals an
abnormal shape of nuclei and mislocalization of the nuclear protein
emerin to the endoplasmic reticulum (Muchir et al., 2003).
Overexpression of wild-type lamin-A/C in LMNA-mutated
(nonsense Y259X mutation) fibroblasts restores the localization
of nuclear membrane proteins emerin and nesprin-1α (Muchir
et al., 2003). Emerin and lamins are implicated in cardiac and
muscle-related diseases, as well as cancer metastasis (Mislow
et al., 2002; Holaska, 2008; Liddane and Holaska, 2021).
Additionally, lamin mutations (Lmna knock-out, LmnaN195K,
LmnaH222P, LMNAR249W, LMNAG449V, LMNAL489P, LMNAW514R,
LMNAR453W, and LMNAR541P) induce rupture of nuclear envelope
and DNA damage in skeletal muscles of mouse models and human
biopsy samples with LMNAmuscular dystrophy (Earle et al., 2020).
Although the roles of lamin protein in nuclear morphology and cell
cycle regulation are summarized in this section, its categorization is
convergent, hence, we separately and more precisely discussed the
aging-related role of lamin in next section cellular senescence.

2.2 Cellular senescence

Patients with LMNA mutation, caused by most frequently
nucleotide substitution (1824C to T), show accelerated aging,
potentially caused by gradual changes in nuclear structure and
aberrant lamin-mediated functions such as nuclear organization
and assembly (Goldman et al., 2004). Lmna homozygous mutant
mice (LmnaL530P/L530P) show a broad range of laminopathy
symptoms, such as premature aging appearances including

FIGURE 3
Various roles of lamin-A/C on multiple cellular systems. Various studies have addressed the multiple disordered spectra of lamin mutations and we
summarized the diversity of lamin-A/C function.
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hyperkeratosis, bone loss, and decreased hair follicle density
(Mounkes et al., 2003), which are similar to those of patients
with progeria. Human fibroblasts with LMNAD47Y, LMNAL92F,
LMNAL387V, LMNAR399H, LMNAL421P, and LMNAR482W, which
accumulate prelamin-A, also enhance oxidative stress and
mediate premature features (Caron et al., 2007). Large scale
genome mapping in laminar interaction reveals several linker
proteins such as LAP2α, which is associated with telomeres
(Dechat et al., 2004; De Vos et al., 2010). Damage to telomeres,
the physical ends of chromosomal DNA, activates production of
mutant LMNA gene progerin, and induces a broad range of changes
in various genes such as cytoskeleton or cell cycle-related genes in
JH-1 and JH-2 fibroblast cells (Cao et al., 2011). In addition, during
senescence of human MSCs with high passage, nuclear laminar
proteins, including lamin-A, exacerbate the production of telomere
aggregates (Raz et al., 2008), suggesting that the lamin and telomere
complex are involved in nuclear structural organization. Lamins are
also involved in the modulation of telomere homeostasis. During the
investigation of interaction between telomere dynamics and LMNA
mutation, LMNAR133L or LMNAL140R mutations lead to genomic
instability and degradation of telomeric repeat-binding factor 2
(TRF2) and accelerate telomere shortening (Saha et al., 2013). It
is also identified that its physical interaction between TRF2 and
lamin-A/C is required interstitial telomeric loops at chromosome
ends (Smith et al., 2018). Lamin-A/C also affects telomere position
and long linker region (aa286-488, referred as udTRF2) of TRF2, an
essential regulatory domain to interact with lamins (Travina et al.,
2021). Telomere shorting or DNA damage is considered the
downstream of oxidative stress and subsequent process of cellular
senescence (Hutchison, 2011; Sieprath et al., 2012). Thus, cellular
and tissue longevity is closely related to functional or structural
stability of lamins. Additionally, structural features such as bone loss
or enhanced fat mass are associated with aging-related features, we
separated the effect of lamin on the differentiation of bone and
adipocytes and extensively discuss in Section 3. We summarized the
lamin-A/C mutations and its related mechanism (Table 1).

Several studies have addressed that tumor cells possess a
mechanism that is protected by cellular senescence, which is
considered an onco-suppression process. For example, the
involvement of the nuclear envelope protein nestin, which
stabilizes lamin-A/C through interaction with the rod domain of
nestin, is reported against proteasomal degradation of lamin-A/C in
non-small-cell lung carcinoma A549 cells (Zhang et al., 2018).
Knockdown of nestin enhances cellular senescence, whereas

increased lamin-A/C levels in nestin-null cells reduce cellular
senescence (Zhang et al., 2018). The mutant allele at L647R of
prelaminar-A as well as the S22A mutant of progerin accelerates
tumor cell senescence (Moiseeva et al., 2015). Inoculation of the
S22A mutant of progerin into nude mice inhibits tumor progression
through impaired mitosis and induces cell senescence (Moiseeva
et al., 2015). Cellular senescence is considered as an inhibitory effect
on tumor progression; however, it also has both pro- and anti-tumor
effects (Campisi, 2013). Although the approach to nuclear lamina
protein might be an attractive strategy to investigate the aging
process, an anti-tumor strategy through the regulation of cellular
senescence should be carefully considered and evaluated in future
studies.

2.3 Modulatory roles of lamin on cellular
signaling and inflammation

The roles of lamin in gene expression and regulation of
transcriptional activity have been extensively reviewed, and
diverse roles of lamin have been reported in signal transduction
(Zastrow et al., 2004; Broers et al., 2006; Heessen and Fornerod,
2007; Marmiroli et al., 2009). Briefly, lamin-A acts as a binding
partner with several signaling molecules, such as c-Fos, and its
interaction negatively regulates the activity of the activating protein-
1 transcription factor (Ivorra’ et al., 2006). Lamin-A also binds to
extracellular signal-regulated kinase (ERK)1/2 (Gonzalez et al.,
2008) and protein phosphatase PP2Aa (Van Berlo et al., 2005).

In addition, laminopathies on inflammatory signaling are
addressed as shown in aging-dependent pathologies (Afonso
et al., 2016; Tran et al., 2016). LMNA mutations such as
LMNAD47Y, LMNAR133L, and LMNAR482W promote the mRNA
expression of inflammatory cytokines such as interleukin (IL)-6,
IL-33, and monocyte chemoattractant protein (MCP)-1 in vascular
smooth muscle cells (Afonso et al., 2016). LmnaG608G/G608G mice also
reveal the enhanced serum IL-6, chemokine C-X-C motif ligand-1,
and tumor necrosis factor-α (Osorio et al., 2012). Mice with
overexpressed Lmna mutation (G608G) show several
inflammatory cytokine genes such as S100A8 (known as
myeloid-related protein MRP8), S100A9 (known as MRP14),
small proline-rich protein 2D, and IL-1 receptor antagonist in
skin (McKenna et al., 2014). Although accumulating evidences
reflect the relationship between laminopathies and inflammation,
the precise mechanism is still not known. Thus, roles of lamin on

TABLE 1 Summary of lamin-A/C mutations and related mechanisms.

Mutation type Related mechanism References

Depleted Lmna Mislocalization of pRb → Reduction of cell cycle arrest Johnson et al. (2004); Dorner
et al. (2006)

Depleted Lmna, LmnaN195K, LmnaH222P, LMNAR249W, LMNAG449V, LMNAL489P,
LMNAW514R, LMNAR453W, LMNAR541P

Rupture of nuclear envelope and DNA damage in
skeletal muscles

Earle et al. (2020)

LMNAR133L LMNAL140R Degrade TRF2 and acceleration of telomere shortening Saha et al. (2013)

LMNAD47Y, LMNAL92F, LMNAL387V, LMNAR399H, LMNAL421P, LMNAR482W Accumulate prelamin-A → Enhanced oxidative stress
and premature features

Caron et al. (2007)

aAbbreviations: pRB, retinoblastoma protein; TRF2, Telomeric repeat-binding factor 2.
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inflammatory signaling should be elucidated beyond one of aging-
associated phenotypes.

3 Roles of lamin-A/C on aging features

3.1 Adipogenesis in MSC and muscle

In an effort to discover the binding partners of lamins, a yeast
two-hybrid screening technique reveals the involvement of sterol
response element binding protein 1 (SREBP1) and SREBP2 in
mouse adipocyte 3T3-L1 cells (Lloyd et al., 2002). Among SREBP
isoforms, SREBP1 is a specific isoform of adipocytes, and lamin-A
binds to SREBP1, especially to its N-terminal transcription factor
domain (Lloyd et al., 2002). This interaction can be explained by that
laminopathy with fat deficiency is caused by a reduced interaction
between SREBP1 and lamin-A (Lloyd et al., 2002). Polypeptides of
SREBP1 reveal the signal sequence for modulation of localization in
the nucleus. Wild type lamin A and its gene variants bind to the
SREBP1 signal sequence and cause SREBP1 localization (Duband-
Goulet et al., 2011). In addition, as a genetic disorder of Dunnigan-
type familial partial lipodystrophy, LMNAR482W fails to regulate
SREBP1 activity (Vadrot et al., 2015).

Differentiated cells are required protein farnesylation for
adipogenesis, which is differentiation process of white fat into
mature adipocytes (Klemm et al., 2001). The inhibition of
farnesylation with farnesyltransferase inhibitor (FTI)-277 arrests
MSC differentiation, enhances prelamin-A and subsequently
reduces SREBP1 expression, peroxisome proliferator activator
gamma (PPARγ) expression, and PPARγ activity during bone
marrow adipogenesis (Rivas et al., 2007). The role of lamins has
also been addressed in osteopenia and sarcopenia through the
regulation of adipocyte differentiation (Tong et al., 2011). Lmna-
null mice and LmnaH222P/H222P mice show reduced WNT/β-catenin
signaling, suggesting that lamins are involved in muscle and bone
strength (Le Dour et al., 2017) and defects in lamins enhance
adipogenic factors such as PPARγ and fat infiltration in
myofibers (Tong et al., 2011). These studies address that the loss
of lamin mediates frailty syndrome-related sarcopenia and
osteopenia and reflects consistent features of aging (Figure 4).

3.2 Bone remodeling

The HGP syndrome is characterized by premature osteoporosis
and reduced bone mass. It was also assumed that the lamin-A/C
mutation is involved in osteoblast differentiation. Knockdown of
lamin-A/C reduces osteoblastogenetic process of MSCs and reduces
osteoblast differentiation markers Runt-related transcription factor 2
(Runx2) and osteocalcin levels as well as alkaline phosphatase activity,
whereas it enhances osteoclastogenesis marker protein receptor
activator of NF-κB ligand (RANKL)/osteoprotegerin ratio and
tartrate-resistant acidic phosphatase (TRAP)-positive staining (Akter
et al., 2009; Rauner et al., 2009). Bone remodeling is a coordinated
process between osteoblasts and osteoclasts. Impaired osteoblastic
function and osteoclastogenesis lead to changes in bone content.
Thus, bone formation by osteoblasts and bone resorption by active
osteoclasts are essential homeostatic processes in bone remodeling
(Kang et al., 2020). Differentiated osteoclasts, also known as
osteoclastogenesis, possess bone resorption activity through the
stimulation of RANKL and macrophage colony-stimulating factor
(Yasuda et al., 1998). Accordingly, reduced lamin-A/C facilitates the
process of osteoporosis such as inhibited osteoblastic function,
enhanced osteoclastogenesis, and increased bone resorption area
(Rauner et al., 2009). Lamin-A/C–deficient animal studies have also
addressed the inhibition of osteoblastic differentiation and the
reduction in bone formation (Li et al., 2011). Thus, lamin-A/C is
required for osteoblast differentiation and normal bone biogenesis (Li
et al., 2011; Vidal et al., 2012). LMNA-overexpressing human MSCs
enhance osteoblastic differentiation of MSCs, the level of nuclear β-
catenin, and its transcriptional activity, whereas knockdown of lamin-
A/C with siRNA dramatically reduces nuclear β-catenin levels (Bermeo
et al., 2015). In addition, adipocyte differentiation is attenuated by
LMNA overexpression in human MSCs (Bermeo et al., 2015). Above
all, loss of lamin-A/C mediates reduced osteoblasts differentiation and
enhances adipogenic differentiation of MSCs (Figure 5).

3.3 Keratinocyte differentiation

The essential role of lamin-A/C in keratinocyte differentiation
has been described in several studies. For example, the HGP

FIGURE 4
Schematic illustration of aberrantly expressed lamin-A/C in MSCs. Downregulated lamin-A/C induces adipogenesis and aging feature such as
osteopenia and sarcopenia. MSC, mesenchymal stem cell; PPARγ, peroxisome proliferator activator gamma.
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syndrome mutation reveals skin phenotypes such as hyperplastic
epidermis feature, inflammatory response in dermal layer, and
hypodermal fat layer (McKenna et al., 2014) and mice with
LmnaG608G mutation reveals abnormal skin development
(Sagelius et al., 2008). Knockdown of Akt1 in mouse
keratinocytes enhances lamin-A/C expression (Naeem et al.,
2015). Degradation of lamin-A/C is prevented by blocking Akt
function. Nuclear lamin is retained by preventing phosphorylation
at Akt phosphorylation sites, S404 and S301 (Bertacchini et al.,
2013). The S301 mutant reveals a reduction in keratinocyte
differentiation markers such as loricrin, keratin 1/10, and
filaggrin, and enhances the expression of bone morphogenetic
protein 2 (BMP2)/Smad1 (Naeem et al., 2015). The terminal
differentiation of keratinocytes requires nuclear degradation in
the cornified layer of the skin. Thus, the retention of nuclear lamin
is involved in parakeratosis, such as enhanced BMP2 signaling,
which is observed in psoriasis, eczema, and atopic dermatitis
(Sakurai et al., 2002). More recently, it has been addressed that
keratinocyte differentiation is required Akt1-dependent nuclear
lamin A/C distribution (Rogerson et al., 2021).

Nuclear remodeling is essential process during the keratinocyte
differentiation. However, verification of network between nuclear
proteins such as lamin-A/C and keratinocyte differentiation has not
been extensively studied. Thus, further work is required to determine the
precisemechanismofmolecular network in various skin diseases. Above
all, considering the significance of the differentiation mechanism, the
regulatory role of lamin-A/C might be critically associated with
chromosomal functions such as regulation of DNA transcription
including the maintenance of nuclear envelope. The expression of
lamin-A/C is clearly differentially regulated in different tissues and
precise verification of lamin modulation in differentiated tissues would
be next challengeable issues. We illustrated the role of lamin in
keratinocyte differentiation systems (Figure 6).

3.4 Cardiac maintenance

The involvement of lamin-A/C in the cardiac system has also been
investigated in various studies. Gene defects of LMNA reveal abnormal
cardiac function and dilated cardiomyopathy (Bonne et al., 1999; Fatkin

FIGURE 5
Schematic illustration of aberrantly expressed lamin-A/C in bone system. Abnormal expression of lamin induces osteoporosis which caused by
upregulated RANKL and bone resorption and downregulated osteoblastic function, RunX2, osteocalcin, and phosphatase activity. RANKL, Receptor
activator of NF-κB ligand; Runx2, Runt-related transcription factor 2.

FIGURE 6
Schematic illustration of lamin-A/C in skin development. Abnormal overexpression of lamin-A/C induces hyperproliferative keratinocyte with
upregulated signaling modulators. BMP2, bone morphogenetic protein 2.
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et al., 1999; Bonne et al., 2000; Ben Yaou et al., 2006; Jacob and Garg,
2006; Sylvius and Tesson, 2006). To understand laminopathies in
cardiac tissue, a mutant mouse model of Lmna is developed.
Summary of lamin mutations (lamin-null, -mis-sense, -transgenic
lines) is addressed (Lu et al., 2011) and is beneficial for
understanding various laminopathies. Cardiomyopathy symptoms
occur in Lmna-null (Sullivan et al., 1999), LmnaH222P/H222P (Arimura
et al., 2005; Muchir et al., 2007; Muchir et al., 2012; Le Dour et al., 2017),
LmnaN195K/N195K (Mounkes et al., 2005), and LmnaM371K (Wang et al.,
2006) lines. With an effort to discover effects of lamin-A mutation on
gene expression with genome-wide expression profiles, the involvement
of MAPK and its downstream signaling pathway are reported in the
cardiomyopathic laminopathy of LmnaH222P/H222P (Muchir et al., 2007).
Moreover, WNT/β-catenin signaling is decreased in LmnaH222P/H222P

mice, whereas activation of β-catenin signaling by treatment with 6-
bromoindirubin-3′-oxime (6BIO, inhibitor of glycogen synthase kinase
3β) to prevent the destruction of β-catenin enhances cardiac function in
Lmna mutant mice (Le Dour et al., 2017). Restoration of β-catenin
signaling by 6BIO treatment protects myocardial dysfunction from
aging (Guo et al., 2020). Regulation of WNT/β-catenin signaling is a
promising strategy against an aging heart with cardiomyopathy
(Figure 7). Aging features owing to defects of lamin function could
be modulated by the application of potential signaling regulators. In
addition, it has been recently addressed that cytoplasmic intermediate
filament protein desmin mis-localizes in cardiomyocytes of
LmnaH222P/H222P mice (Galata et al., 2018). Overexpression of heat
shock protein αB-crystallin rescues cardiomyopathy with Lmna
mutation (LmnaH222P/H222P) including desminopathy (Galata et al.,
2018). These results indicate that cytoplasmic filament protein
desmin is associated with nuclear lamin network in cardiomyopathy
and αB-crystallin is suggested to rebuild the cytoskeleton-nucleoskeleton
network (Galata et al., 2018;Maggi et al., 2021). Although an overview of
the management of cardiac disease in LMNA-associated laminopathy
has been provided (Chen et al., 2019; Kirkland et al., 2023; Wang and
Dobreva, 2023), treatment of cardiomyopathy caused by laminopathies
is remains a challenging issue.

4 Role of lamin-A/C on oncology

Altered nuclear lamin as an oncogenic signaling pathway has
been observed in various cancer tissues. Lamin expression in

cancerous tissues is highly diverse. It has been reported that loss
of lamin-A/C expression in lung (Machiels et al., 1995) and colon
cancer cells, which are different from lamin-A/C expressed
hepatic tumor cells (Aebi et al., 1986; Hytiroglou et al., 1993).
Knockdown of lamin-A/C using shRNA reveals nuclear
morphological deformation of primary breast epithelial cells,
be similar to phenotype of cancer cells (Capo-chichi et al.,
2011b). In cancer system, it is difficult to define high or low
levels of lamin-A/C expression. 47% of ovarian cancer lacks
lamin-A/C expression (Capo-chichi et al., 2011a). Non-
cancerous ovarian epithelial cells show morphological
deformities of nuclear shape with deletion of lamin-A/C using
small interfering RNA (Capo-chichi et al., 2011a). In addition to
ovarian cancer, 17.8% of colon cancer tissue reveals low lamin-A/
C expression, whereas 82.2% of colon cancer shows high lamin-
A/C expression (Belt et al., 2011). Gastrointestinal cancers (Wu
et al., 2009) such as gastric carcinoma show loss of lamin
expression, whereas prostate (Kong et al., 2012; Khan et al.,
2018) and breast cancers (Zhang and Lv, 2017) show both
characteristics, and colorectal cancer (Willis et al., 2008)
reveals different patterns of lamin expression. Thus, in this
section, although experimental evidences possess limitation,
we highlighted individually the tissue-selective expression
pattern of lamin-A/C as a negative or positive regulator of
cancers.

Immunohistochemical analysis of lamin reveals that
the primary isolated colonic and gastric adenocarcinoma
tissues show a reduction or absent in nuclear lamin-A/C
and -B1 expression and cytoplasmic detection of lamin (Moss
et al., 1999). Other tissues, including cervical
squamous carcinoma, uterine adenocarcinoma, prostate
adenocarcinoma, breast adenocarcinoma, and non-small cell
lung carcinoma, also reveal immunohistochemically reduced
or absent lamin expression (Moss et al., 1999). Reduced lamin
protein levels are considered a common feature in tumor tissues.
Additional experimental evidence is available for gastric
carcinomas. mRNA and protein expression in addition to
immunohistochemical analysis have revealed reduced
expression of lamin-A/C in primary gastric carcinoma (Wu
et al., 2009). Additionally, loss of lamin enhances migration in
ovarian cancer HO-8910 cells (Wang et al., 2019). As a potential
negative biomarker, lamin-A/C can be used for the diagnosis of

FIGURE 7
Schematic illustration of laminmutations in cardiac system. Cardiomyopathy symptoms are occurred bymisregulation of MAPK andWNT/β-catenin
in mutant mouse models of Lmna (Lmna-null, LmnaH222P/H222P, LmnaN195K/N195K, and LmnaM371K).
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gastric cancer, colon cancer, or ovarian cancer HO-8910 cell
lines.

However, as a risk biomarker, several experimental evidences on
lamin expression have revealed the opposite. More recently,
although sample size is restricted, deep hybrid machine learning
technique is revealed that nuclear A and B type of lamins are newly
addressed as potent diagnostic markers of ovarian cancers (Sengupta
et al., 2022). Moreover, lamin-A/C is expressed in colonic stem cells
and the ectopically expressed lamin-A colorectal cancer cell line
SW480 shows enhanced morphological changes and invasive or
motile properties (Willis et al., 2008). GFP-tagged lamin-A enhances
actin-associated protein T-plastin and reduces cellular adhesive
protein E-cadherin in SW480 cells (Willis et al., 2008). As shown
in colorectal cancer, Kong et al. reported that enhanced lamin-A/C
expression increases the risk of invasive characteristics of prostate
cancer through the involvement of the phosphoinositide 3-kinase
(PI3K)/Akt signaling pathway (Kong et al., 2012). These results
indicate that lamin-A/C–positive colorectal and prostate cancers
possess stem cell-like features.

It has been demonstrated that lack of lamin-A/C was revealed in
human leukemia cell HL-60 (Paulin-Levasseur et al., 1988), early-
stage lymphocytes (Guilly et al., 1990), lymphoblastic leukemia, and
non-Hodgkin’s lymphoma cells (Stadelmann et al., 1990). However,
more recently, lamin-A/C is expressed in CD30 (+) Reed-Sternberg
cells from Hodgkin’s lymphoma, not in CD20 (+) non-neoplastic
lymphocytes B (Jansen et al., 1997). Additionally, three-dimensional
structure of lamin was identified in Reed-Sternberg cells (Contu
et al., 2018).

Several evidences are limitedly provided or experimental cellular
states are clearly undefined in oncology. Why does the expression of
lamin play different roles in different cancers and is this expression
of lamin dependent on the motility of cancer cells? Based on current
experimental evidences, type of cancers and cancerous
circumstances may reflect lamin expression. Especially, the cell
suspension state has been shown to modulate lamin-A/C
expression. Suspended breast cancer cells promote reattachment
through enhanced lamin-A/C, suggesting that the cellular status
may provide a broad spectrum of lamin and cytoskeletal proteins
(Zhang and Lv, 2017; Ovsiannikova et al., 2021; Zhao et al., 2022).

Therefore, type of cancer or physical cellular state should be
carefully considered on the aspect of laminopathies and the diversity
of the role of lamins in various cancers also should be considered in
future studies. Above all, although various roles of nuclear lamin-A/
C in human diseases are highlighted in this review, potential roles of
lamin in human diseases is not limited to several specific issues.

5 Various modulating factors and
effector signals on lamin-A/C
expression

Understanding the relationship between lamin and signaling
modulators might be an effective strategy for various laminopathies-
associated pathogenesis, which are currently no therapy strategy.
Thus, modulatory mechanism or effector signals of lamin-associated
biology are elucidated in this section. Using proteomic-based
analysis, the substrates of the serine/threonine kinase Akt are
identified as the modulating factor of lamin expression (Cenni

et al., 2008). Akt phosphorylates the lamin-A precursor
prelamin-A at Ser404 and modulates the transcription of Lmna
(Cenni et al., 2008; Bertacchini et al., 2013). Phosphorylation of
lamin-A/C at Ser404 is mediated by insulin treatment, whereas no
phosphorylation responses to Akt stimulation are triggered in
primary fibroblast from patient with LMNAR401C-EDMD2 (Cenni
et al., 2008). Its Akt-mediated lamin phosphorylation is critical for
lamina degradation. Akt/protein kinase B (PKB) signaling regulates
both Lmna and prelamin-A stability (Bertacchini et al., 2013;
Rogerson et al., 2021). In contrast, the Akt1-depleted cornified
layer restores lamin-A/C expression and mediates parakeratosis,
which is abnormal retention of nuclei, in cornified layer (Naeem
et al., 2015).

Farnesylation process also regulates lamin-A/C expression.
Accumulated farnesylation of prelamin-A is associated with
genetic diseases in mice with HGP syndrome mutation
LmnaG608G (Yang et al., 2005; Yang et al., 2008). Application of
farnesyltransferase inhibitor FTI-277 reduces prelamin-A
expression and adipogenic differentiation in bone marrow MSCs
(Rivas et al., 2007) and ABT-100 also reduces rib bone fracture and
enhances the survival of mice with LmnaG608G (Yang et al., 2008).

In addition to farnesylation, matrix microenvironment
influences cellular motility and differentiation. Matrix stiffness
and strength modulate lamin expression. The soft matrix
phosphorylates lamin-A at Ser22, Ser390, Ser404, and Thr424
(Swift et al., 2013). Matrix stiffness is associated with myosin II
activity, and lamin-A/C expression is enhanced by reduced nuclear
stress (Buxboim et al., 2014). Reduced stiffness dephosphorylates
lamin-A/C at Ser22, which mediates lamina signaling (Buxboim
et al., 2014; Virtanen et al., 2023) and differential expression of
lamin-A/C as an extracellular matrix-dependent mechanosensor
protein has also been suggested (Ovsiannikova et al., 2021;
Urciuoli et al., 2021). More recently, phosphorylation of lamin-
A/C at Ser22 modulates voltage-gated NaV1.5 channel activity
(Olaopa et al., 2021). These results may provide the potent role
of lamin on the transitional pattern of adhesion to suspension.

Kinase-dependent lamin-A/C expression is also addressed in
several studies. The cyclin-dependent kinase (Cdk) inhibitor
RO3306 inhibits the phosphorylation of lamin-A/C and its
degradation (Buxboim et al., 2014). The proliferation of vascular
smooth muscle cells is affected by cyclic stretching, and its
mechanosensitive application modulates nuclear proteins such as
emerin and lamin-A/C expression (Qi et al., 2016). Hypertensive
mechanical application enhances emerin and lamin-A/C expression,
indicating that emerin and lamin-A/C inhibit the hyper-
proliferation of vascular smooth muscle cells (Qi et al., 2016).
Moreover, nestin depletion leads to the activation of Cdk5, which
is involved in the phosphorylation and degradation of lamin-A/C
(Zhang et al., 2018). The oncogenic focal adhesion kinase (FAK) is
also involved in cellular senescence-related signaling. Inhibition of
FAK with its enzymatic inhibitor PF-573228 enhances
p53 expression and reduces lamin-A/C expression in lung cancer
cells (Chuang et al., 2019). FAK-downregulated p53 expression is
related to cellular senescence, and FAK inhibition enhances
β-galactosidase activity, which is a cellular senescence marker
(Chuang et al., 2019). Thus, modulation of FAK signaling
mediates changes in lamin-A/C expression and cellular
senescence programs in lung cancer.
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As another process of lamin modulation, the lamin structure is
cleaved by caspase-6, and the subsequent lamin cleavage induces
apoptosis in colon cancer cells (Lee et al., 2006). Recently, cyclic
stretch–induced microRNA-214-3p is shown to bind to Lmna and
reduces lamin-A/C protein expression, and subsequently induces
the apoptosis of vascular smooth muscle cells (Bao et al., 2020).
Treatment with dexamethasone is shown to enhance lamin-A/C
nuclear content in ataxia telangiectasia fibroblasts (Ricci et al., 2021).
More recently, we addressed that histamine-mediated calcium/
calmodulin-dependent kinase II activation and reactive oxygen
species generation are involved in the enhancement of lamin-A/C
expression in lung adenocarcinoma cell line A549 (Kim et al., 2022).
We presented a summary of effector signals and molecules on
lamin-A/C expression in Table 2 and future detailed
investigations could provide the regulatory mechanism of nuclear
lamin biology to improve the current knowledge of lamin
pathophysiology on cellular and tissue longevity.

6 In conclusion and perspectives

Lamin proteins regulate various nuclear activities that are implicated
in the nuclear architecture, cellular senescence, differentiation, and
signaling modulation. Lamins also possess attractive roles in
numerous cellular mechanisms, such as aging, tumor suppression,
maintenance of nuclear shape, and sensing of extracellular matrix
stiffness. Although lamin-associated disease features share several
oxidative process such as cellular senescence, posttranslational
modification of lamin is also affected by oxidative stress (Eaton et al.,
2003; Pekovic et al., 2011). Although various experimental evidences are
addressed, precise evidences and molecular mechanism still remain
verification. Further studies of laminar signaling continue to present
several questions and challenges with regard to crosstalk between aging
phenotype, differentiation, and cellular redox homeostasis. Moreover,
extracellular matrix, cellular stress, and kinase-dependent mechanism
are illuminated and gradually developed in lamin modulation. Thus,

regulatory signals and treatment drugs for lamin modulation,
compositional changes in lamin, and precise and differential roles of
lamin in various cancer cells are ongoing issues. Thus, understanding
nuclear lamin biology as an attractive decoding tool is the Rosetta stone
of cellular longevity-associated human diseases, including aging, redox
potential, or modulation of tumorigenesis might provide extended
therapeutic applications on human longevity.
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TABLE 2 Summary of effector signals and molecules on lamin expression.

Related mechanism Effect on lamin modulation References

Intracellular Ca2+ increase/CaMKII Enhanced lamin-A/C in adenocarcinoma cell line Kim et al. (2022)

Oxidative stress (dopaminergic
neurotoxin 6-hydroxydopamine)

Induced lamin phosphorylation Nakamura et al. (2006)

Akt/PKB Induced lamin phosphorylation Bertacchini et al. (2013); Naeem et al. (2015)

Inhibition of farnesylation (FTI-277,
ABT-100)

Inhibited lamin-A/C phosphorylation Rivas et al. (2007); Yang et al. (2008)

Inhibition of Cdk (RO3306) Inhibited lamin-A/C phosphorylation Buxboim et al. (2014)

Inhibition of FAK (PF-573228) Reduced lamin-A/C expression Chuang et al. (2019)

Matrix stiffness Soft matrix enhanced lamin-A/C expression Buxboim et al. (2014); Urciuoli et al. (2021)

Cell suspension state Enhanced lamin-A/C in breast cancer Zhang and Lv (2017); Zhao et al. (2022)

Cyclic stretch-induced miR-214-3p Reduced lamin-A/C protein expression Bao et al. (2020)

Hypertensive mechanical application Enhancement of lamin-A/C expression in VSMC Qi et al. (2016)

aAbbreviations: Akt/PKB, Akt/protein kinase B; cdk, cyclin-dependent kinase; FAK, focal adhesion kinase; VSMC, vascular smooth muscle cell; miR, microRNA; Ca/CaMKII, Calcium/

Calmodulin-dependent protein kinase II.
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