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Gastric cancer (GC) is the fifth most common cancer worldwide. Cuproptosis is
associated with cell growth and death as well as tumorigenesis. Aiming to lucubrate
the potential influence of CRGs in gastric cancer, we acquired datasets of gastric
cancer patients from TCGA and GEO. The identification of molecular subtypes with
CRGs expression was achieved through unsupervised learning-cluster analysis. To
evaluate the application value of subtypes, the K-M survival analysis was conducted
to evaluate the clinical prognostic characteristics. Subsequently, we performed
Gene Set Variation Analysis (GSVA) and utilized ssGSEA to quantify the extent of
immune infiltration. Further, the K-M survival analysis was used to identify the
prognosis-related CRGs. Next, signature genes of diagnostic predictive value were
screened using the least absolute shrinkage and selection operator (LASSO)
algorithm from the expression matrix for TCGA, as well as the signature gene-
related subtype was clustered by the “ConsensusClusterPlus” package. Finally, the
immunological and drug sensitivity assessments of the signature gene-related
subtypes were conducted. A total of 173 CRGs were identified, most of the
CRGs undergo copy number variation in gastric cancer. Under different patient
subtypes, immune cell levels differed significantly, and the subtype exhibiting high
expression of the CRGs had a better prognosis. Furthermore, we selected 34 CRGs
that were highly correlated with the prognosis of gastric cancer. By constructing a
multivariate Cox proportional-hazardsmodel and a hazard scoring system,wewere
able to categorize patients into high- and low-risk groups based on their hazard
score. K-M analysis demonstrated a significant survival disadvantage in the high-risk
group. Based on Lasso regression analysis, we screened 16 signature genes, a
multivariate logistic regression model [cutoff: 0.149 (0.000, 0.974), AUC:0.987] and
a prognosis network diagram was constructed and their prediction efficiency for
gastric cancer prognostic diagnosis was well validated. According to the signature
genes, the patients were separated to two signature subtypes. We found that
patients with higher CRGs expression and better prognosis had lower levels of
immune infiltration. Finally, according to the results of drug susceptibility analysis,
docetaxel, 5-Fluorouracil, gemcitabin, and paclitaxel were found to be more
sensitive to gastric cancer.
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1 Introduction

Gastric cancer (GC) is currently the fifth most common
malignancy in the world, with more than 1 million new cases per
year, and is the third leading cause of cancer-related death (Thrift
and El-Serag, 2020). Owing to the low specificity of symptoms such
as indigestion, loss of appetite or early satiety, weight loss, and
abdominal pain, which are common in GC, its early diagnosis rate is
low and more than 70% of GC patients have developed to the end-
stage, making it difficult to cure (Song et al., 2017; Smyth et al.,
2020). This situation makes our attention on GC centered on
developing prognostic-related biomarkers or predictive models
that can contribute to the diagnosis and treatment of GC
(Arnold et al., 2020). Studies of GC models based on ferroptosis
have provided a broader perspective on the clinical practice of GC
(Li et al., 2022a; Xu et al., 2022). Therefore, optimizing the early
detection, treatment, and prognosis prediction of GC from the
perspective of apoptosis is indispensable.

As an essential trace metal for human body, copper is a
component of the active site of many enzymes with multiple
roles. In normal physiological conditions, the human body can
keep intracellular copper concentrations at extremely low levels
through the excretion of bile, fecal and active homeostasis
mechanisms working across concentration gradients (Kim et al.,

2008; Linder, 2020; Ge et al., 2022). However, several studies have
demonstrated the potential of copper to inhibit GC growth and
induce anti-tumor activity in the treatment of GC (Xia et al., 2019;
Liu et al., 2022). It is now known that excess copper concentrations
in cells can trigger a distinct form of cell death that is different from
apoptosis, ferroptosis, pyroptosis, and necrosis (Kahlson and
Dixon, 2022). Lately, Todd Golub’s team first discovered and
proposed that copper ions bind in a direct way to lipid acylated
components in the tricarboxylic acid cycle, which leads to the lipid
acylated protein aggregation and the consequent iron sulfide
cluster loss, as this in turn causes proteotoxic stress and
eventually cell death (Tsvetkov et al., 2022). Meanwhile, they
observed FDX1, a key driver of copper death, as well as
lipoylated proteins, were highly correlated in human tumors,
and that cuproptosis is more sensitive to cell lines with high
levels of lipoylated proteins (Tsvetkov et al., 2022). Therefore, it
is possible that tumor cells can be killed by activating cuproptosis.
Optimizing the early detection, treatment plan and prognosis
model of cancer-based on cuproptosis has a broad application
prospect and clinical significance (Zhang et al., 2020; Jiang et al.,
2021).

However, there has not been a comprehensive GC prognostic
model based on cuproptosis yet. To fill this blank field, we developed
a prognostic model related to cuproptosis to explore the prognostic

FIGURE 1
(A) Thewaterfall plot of TCGA-GC. The ordinate referred to patients, and the top of barplot referred to TMB. The numbers on the right referred to the
mutation frequency for each regulator. (B,C) The CNV variation frequency. Green dot referred to the deletion frequency, and The red dot referred to the
amplification frequency. (D) The positions of CNV changes in CRGs.
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effect in GC patients. It will make a contribution to striving for
making accurate prognosis predictions of GC patients, providing
directions for their clinical medication and improving the
therapeutic effect of GC.

2 Materials and methods

2.1 Data acquisition for GC

We acquired RNA-Seq, somatic mutation, along with clinical
data of GC based on the TCGA (https://www.cancer.gov/) and
subsequently extracted and merged the data using R 4.1.
0 software. GSE84437 (based on platform GPL6947, including
443 GC tissue samples), the series of GC was obtained from the
GEO (https://www.ncbi.nlm.nih.gov/geo/). The samples of TCGA
and GEO were merged after removing the batch effects with sva
package.

2.2 Patient classification

We used the ConsensusClusterPlus to make unsupervised
learning-cluster analysis for patients. Using this algorithm, we
stratified GC patients into distinct subtypes in accordance with
the expression of CRGs, which were subsequently visualized through
the principal component analysis (PCA) algorithm.

2.3 Clinical prognosis, immune infiltration,
and function enrichment of subtypes

To analyze the application value of different subtypes, we
analyzed their differences in prognostic characteristics, immune
infiltration, and function enrichment. We evaluated the clinical
prognostic characteristics by log-rank test and took the Kaplan-
Meier (K-M) curve. Afterwards, we performed Gene Set Variation
Analysis (GSVA) using the hallmark gene set (c2.cp.kegg) obtained

FIGURE 2
(A) Screening of molecular subgroups through unsupervised learning-cluster analysis. (B,C) Principal component analysis (PCA) of different
subtypes, shows a exceptional difference in transcriptome between different classifications. (D) The expression level of CRGs in different CRG clusters.
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from the Molecular Signatures Database (https://www.gsea-msigdb.
org/gsea/msigdb). We then employed single-sample Gene Set
Enrichment Analysis (ssGSEA) to quantify the degree of immune
infiltration. The criteria for the statistical significance was p < 0.05.

2.4 Construction of cuproptosis hazard
scoring system

The K–M survival analysis was used to identify the prognosis-
related CRGs. A Cox proportional-hazards model was constructed
with the prognosis-related genes and the risk scores were further
calculated for each patient. Depended on the median value of the risk
score, the samples were separated to high- and low-risk groups, and
the differences survival of the groups were evaluated through K-M
survival analysis. A multivariate cox proportional-hazards model was

used to analyze the value of risk score and TNM stage in the prognosis
of GC. p < 0.05 was considered statistically significant.

2.5 Screening of signature gene and
signature gene-related cluster

To lucubrate the influence of CRGs in GC development, we
randomly split the TCGA-GC dataset, of which 80% was used as the
training set and 20% as the test set, as well as filtered the prognostic-
related CRGs as signature genes by lasso regression. Subsequently,
the GeneMANIA (http://genemania.org/) was used to discover
genes with functional similarity to the signature gene. The SCNA
module of the TIMER (https://cistrome.shinyapps.io/timer/)
examined the effect of different copy states of the signature gene
on immune infiltration in GC compared to normal tissue. Lastly, we

FIGURE 3
(A) Survival analysis for the three CRGclusters. Kaplan-Meier curves with Log-rank p-value 0.010 showed a significant survival difference among
three clusters. (B,C) Immune cell infiltration in three clusters. (D) Venn diagram of functional distinctions among three clusters.
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employed cluster analysis, utilizing the ConsensusClusterPlus
package, to classify the signature gene-associated clusters based
on their expression profiles.

2.6 Correlation of signature gene-related
cluster with prognosis and immune
infiltration

For the purpose of further understanding the application value of the
signature gene-related cluster, we analyzed its prognostic characteristics
and immune infiltration level. The K–M survival analysis was purposed
to identify the prognosticative characteristics of the signature gene-
related cluster. Subsequently, the immune infiltration of different
modules were appraised using ssGSEA and ESTIMATE.

2.7 Drug susceptibility analysis

To assess whether clusters predict drug sensitivity, we used the
pRRophetic to appraise the IC50 and performed a comparison
between signature gene-related clusters. The statistical
significance was determined using a criterion of p < 0.05.

3 Results

3.1 Genetic and transcriptional alterations

In the following study, we analyzed 173 CRGs. A total of
144 samples (49.83%) were mutated in the TCGA-GC cohort,
with TPRAP having the highest mutation frequency, followed by
PRKDC (Figure 1A). The CNV analysis showed that CNV changes
were common in 173 CRGs, and 66.47% of which were concentrated
in copy number amplification (Figure 1B), while copy number
deletions were common in 47 CRGs cases including CDKN2A
and SSBP1 (Figure 1C). Figure 1D shows the positions of CNV
changes in CRGs on chromosomes.

3.2 Patient classification based on CRGs

To analyze the expression of CRGs in GC patients, we
performed an unsupervised learning-cluster analysis in the
combined gene dataset and classified the patients into CRG
subtype A, CRG subtype B, and CRG subtype C (Figure 2A).
The PCA analysis revealed that the different subtypes were well
differentiated (Figures 2B, C). Among them, the expression level of

FIGURE 4
(A) Kaplan–Meier curves of CRGs with high correlation to prognosis. (B) The hazard ratio is shown as hazard ratio (95% confidence interval). (C)
Distribution of Hazard Scores: The black dotted line represents the median hazard score cutoff, which dichotomizes patients into low-risk and high-risk
groups. (D) The hazard ratio is shown as hazard ratio (95% confidence interval). (E) K‒M curves showing survival probability stratified by risk group.
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CRGs was higher in CRG subtype C, followed by CRG subtype B,
and the lowest in CRG subtype A (Figure 2D).

3.3 Clinical prognosis, immune infiltration,
and function enrichment of different
molecular subtypes

In order to assess the clinical difference of different subtypes, we
analyzed their prognostic characteristics, immune, and functional
mechanisms. Survival analysis revealed a statistically significant
difference in prognosis between CRG clusters A, B, and C, with
the latter exhibiting a more favorable outcome (Figure 3A). The
ssGSEA analysis showed that there were significant differences in
the level of immune cell infiltration among the 3 clusters (Figures 3B,
C). KEGG-GSVA enrichment analysis demonstrated that the
functional distinctions among the three different types of patients
were mainly focused on the CALCIUM, HEDGEHOG, MAPK, and
P53 signaling pathway (Figure 3D; Supplementary Table S1).

3.4 Hazard scoring system

To construct a hazard scoring system, we screened 173 CRGs
according to their prognostic characteristics. By constructing the
K–M survival analysis, we screened 34 CRGs that were highly

correlated with prognosis, including AASDHPPT, ATPAF2,
C6orf136, COX18, CYCS, DHX15, EARS2, FASTKD5, FDX1,
GATC, GPX4, HARS2, HCCS, IDH3A, LARS2, LIAS, LIPT1,
MARS2, MBTPS2, MRPS14, MRPS33, MRRF, NDUFA8,
NDUFA9, OXA1L, PDE12, PDHA1, POT1, PRKDC, RPAIN,
RPUSD3, TARS2, TFAM, and TUBGCP4 (Figures 4A, B). We
constructed a cox proportional hazard model in accordance with
the above genes and calculated the risk score, followed by a cox
proportional-hazards model with the risk score and TNM as
independent variables, which yield the risk score HR = 1.935
(95% CI: 1.624-2.306) with independent predictive value (Figures
4C, D). Then we performed survival analysis between the high-risk
group and low-risk group, noting that the prognosis of patients in
the high-risk group was worse than that those in the low-risk group
(p < 0.001, Figure 4E).

3.5 Screening of signature gene and
signature gene-related cluster

With the aim of further screening CRGs related to prognosis, we
randomly split the TCGA-GC dataset and screened the above
34 prognostic-related CRGs by lasso regression, obtaining a total
of 16 signature genes (Figures 5A, B). From the construction of a
multivariate logistic regression model, we found that the signature
genes had excellent diagnostic and predictive performance [cutoff:

FIGURE 5
(A,B) Signature genes screened out by lasso analysis. (C) Multivariate logistic regression model of signature genes had excellent diagnostic and
predictive performance (cutoff: 0.149 [0.000, 0.974], AUC: 0.987). (D) Prognosis network diagram. The interaction betweenCRGs-related regulators. The
circle size showed the influence of regulator on the prognosis, and the range of values considered by log-rank test was p < 0.001, p < 0.01, and p < 0.05.
(E) The consensus matrix heatmaps of consensus k-means clustering. (F) Consensus matrix for DNA methylation classification. This clustering is
based on only 16 gene expression levels for unsupervised learning-cluster analysis.
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0.149 (0.000, 0.974), AUC: 0.987] (Figures 5C, D). Given the list of
signature genes to query, GeneMANIA used a large amount of
genomics and proteomics data to discover the 20 genes with the
highest functional similarity (Supplementary Figure S2). The results
of the TIMER database portray the effect of the different copy states
of the 16 signature genes in GC on six types of immune infiltrating
cells compared to normal tissue (Supplementary Figure S3).

Through unsupervised learning-cluster analysis, we divided the
signature genes into two signature gene-related clusters, in which the
CRGs expression was generally elevated in cluster B (Figures 5E, F).

3.6 Correlation of signature gene-related
cluster with prognosis and immune
infiltration

To evaluate the clinical application value of signature gene-
related cluster, we analyzed its prognostic characteristics and
immune infiltration level. Kaplan-Meier analysis demonstrated
that Cluster B exhibited a more favorable prognosis than Cluster
A (Figure 6A). By calculating the differences in immune
microenvironment, we found that Cluster A was generally higher

than Cluster B in terms of immune cell infiltration (Figure 6B). By
calculating the TME score between the two types, we noticed that the
Cluster A immune score was significantly better than Cluster B, and
in the meantime, Cluster A has higher HLA gene expression level
than Cluster B (Figures 6C, D).

3.7 Drug susceptibility analysis

As for the therapeutic value of the signature gene-related cluster,
we compared the expression level of PD-L1 between the signature
gene-related clusters where Cluster A was discovered lower than
Cluster B (p < 0.001) (Figure 7A); Meanwhile, we appraised the drug
sensitivity among signature gene-related clusters and screened the
4 GC-related therapeutic drugs, namely: docetaxel, 5-Fluorouracil,
gemcitabin, paclitaxel (Figure 7B).

4 Discussion

Copper has a tight relationship with cancer, the imbalance of
copper homeostasis can lead to cell death. Contrary to recognized

FIGURE 6
(A) Kaplan–Meier survival curves. The prognosis in cluster B was better than cluster A. (B) Cluster A was generally higher than cluster B in different
immune infiltration and function. (C,D) TME score was utilized to differentiate the TME cluster in GC.
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pathways of cell death, copper has an impact on biological functions
including mitochondrial respiration, glucose, and lipid metabolism,
inducing oxidative stress and cytotoxicity, which ultimately leads to
cell death (Wooton-Kee et al., 2020; Ge et al., 2022; Tsvetkov et al.,
2022). However, the association between cuproptosis and GC is
unclear.

In this study, data on gene mutations were collected from the
TCGA database and 173 CRG were identified. And 173 CRGs were
identified. CNV analysis shows that widespread CNV variation is
common in CRGs. Then, using cluster analysis based on CRG
expression levels, we discovered that immune cell numbers varied
significantly between clusters. Apart from that, the functional
analyses indicated that many pathways including mitogen-
activated protein kinase (MAPK) signaling pathway, Calcium
signaling pathway and Hedgehog signaling pathway participated
in the process. Hedgehog signaling pathway has been demonstrated
to have a crucial function in GC tumorigenesis (Fattahi et al., 2021).
By downregulating cyclin D1 through the Hedgehog signaling
pathway, it can inhibit the growth and cycle process of GC cells
(Peng et al., 2019). Since the MAPK signaling pathway is considered
an important bridge from extracellular signals to intracellular
responses, relevant drugs can exert significant antitumor effects
on GC through the MAPK signaling pathway (Shao et al., 2022). A
territory-wide study demonstrated that the utilization of calcium
channel blockers was correlated to a decreased chance of developing
GC, which in part reflects the link between calcium signaling
pathways and GC (Li et al., 2021).

To further evaluated GC patients’ prognosis, a multivariate Cox
regression model based on 34 CRGs was constructed. It is split into
two risk subgroups according to the median value from its risk score.
A prognosis model based on 16 signature risk scores was constructed
and validated. The ROC curve showed that the risk score performed
well in predicting survival. Among 34 CRGs, the increased

expression of DHX15, one of the DEXD/H box helicase family,
activated p38-MAPK signal pathway and led to the inhibition of
proliferation and metastasis in GC (Xiao et al., 2016). GPX4 could
reduce intracellular reactive oxygen species (ROS), thereby
inhibiting ferroptosis and promoting GC metastasis (Li et al.,
2022b; Sugezawa et al., 2022). Knockdown of PRKDC, POT1-
AS1, Mars2 suppressed growth of GC cells by inhibiting cell
proliferation and cell cycle (Zhang et al., 2019; Gu and Chu,
2021; Jiang et al., 2022). Alternatively, the GeneMANIA database
showed that the signature genes and their functionally similar genes
were linked to a diverse array of biological processes such as cellular
respiration, oxidoreductase complex, energy derivation by oxidation
of organic compounds and mitochondrial protein complex. Our
finding is consistent with the earlier study by Peter Tsvetkov et al.
(Cui et al., 2021; Ge et al., 2022; Tsvetkov et al., 2022). These findings
indicates that cuproptosis may affect GC by mediating
mitochondrial respiration, and redox signaling.

Then, we further gained more insight into the relationship
between risk scores and immune components and confirmed that
CRGs might play essential roles in immune infiltration and tumor
immune microenvironment in GC. Between high-risk and low-risk
groups, differences in the tumor immune microenvironment were
also assessed. GSEA results revealed that the “high-risk” group’s
tumor microenvironment (TME) score was higher compared to that
of the “low-risk” group. There is intricate crosstalk between cancer
cells and immune cells in TME.MacrophagesM1,Macrophages M2,
and Tregs (T regulatory cells) showed higher infiltration in patients
with CRGs of the low-risk subgroup, whereas Plasma cells, NK cells
resting, and T follicular helper (Tfh) cells had higher infiltration in
the low-risk subgroup. Tumor-associated macrophages (TAMs)
have a dual effect, which can be separated into two major types:
classically activated M1 with antitumor activity, as well as replacing
activated M2 that supports cancer development (Gambardella et al.,

FIGURE 7
(A) The cluster expression of PD-L1. (B) The 4 GC-related therapeutic drugs.
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2020). High infiltration level of macrophages is correlated with a
poor overall survival rate of GC, which has a correlation in
promoting inflammation, angiogenesis, hypoxia pathway, and
avoiding immune surveillance (Zeng et al., 2019; Gambardella
et al., 2020). Tregs participate in homeostatic regulation and
tumor immune escape. GC cells secreted cytokines to recruit
Tregs, whereas inducing CD4+ naïve T cells to differentiate into
Tregs via TGF-β and induced immunosuppression (Kalamohan
et al., 2014; Liu et al., 2019). Previous researches have shown that
the high abundance of tumor-associated lymphocytes, like CD8+

T cell, CD4+ T cell, and NK cell, have a positive impact on the
prognosis of GC by enhancing the antitumor response (Ma et al.,
2022). Being a subset of CD4+ helper T cells, Follicular helper T cells
promote tumor-associated lymphocyte activity, enhancing immune
responses (Crotty, 2014; Binnewies et al., 2019). These findings
suggested that CRGs may have a potential effect on immune cell
dysfunction in GC, providing new ideas for subsequent
immunotherapy.

Immune checkpoint inhibitors (ICIs) improve the prognosis of
GC patients, among which PD-L1/PD-1 inhibitors have good anti-
tumor immunological effectiveness (Chen et al., 2021; Chen et al.,
2022). PD-L11/PD-1 inhibitors are recommended according to the
PD-L1 score of GC. Pembrolizumab is commonly used as a third-
line treatment option for patients with PD-L1 positive (CPS ≥1)
gastric adenocarcinoma (Joshi and Badgwell, 2021; Zhang et al.,
2022). The expression of PD-L1 has a positive tight correlation with
multiple GC-specific molecular subtypes and is closely associated
with immune cell infiltration such as CD8 cells (Gu et al., 2017;
Shitara et al., 2020). In the study, the gene expression in PD-L1 was
lower compared to that of low-risk group. Therefore, the prognostic
model may forecast immune checkpoint expression levels and
potentially directimmunotherapy decisions. Apart from that, the
drug sensitivity between signature modules was calculated as well as
4 GC-related therapeutic drugs were screened. Research have shown
that the addition of docetaxel is effective with few safety concerns in
stage III GC patients (Yoshida et al., 2019). As a new fluorinated
anti-metabolite, gemcitabine contributes to enhancing the
individual anti-tumor activity of either 5-Fluorouracil or
oxaliplatin (Nam et al., 2013). Paclitaxel is a chemotherapeutic
agent that has been applied to treat various types of cancer, and
its monotherapy can significantly ameliorate the tumor response
and prognosis of GC (Lei et al., 2022). Immunotherapy and
chemotherapy combined may provide precise treatment with
various risk scores.

There are several limitations of this study. Firstly, this 16-gene
prognostic model was built and verified using retrospective data
from public databases. More prospective clinical data are needed for
further clinical validation. Second, the link between CRGs and the
tumor immune microenvironment and its mechanism requires
further experimental examination.

In conclusion, our study established a new prognostic model
consisting of 3 molecular subtypes based on CRGs. This model was
shown to be independently associated with the prognosis of GC and
was shown to be valuable in the tumor microenvironment and drug
sensitivity, providing insights into predicting GC prognosis. Further

research is still needed to investigate the potiential mechanism
between CRGs and GC.
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