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Phosphatidylserine (PS) is a lipid component of the plasma membrane. It is
asymmetrically distributed to the inner leaflet in live cells. In cells undergoing
apoptosis, phosphatidylserine is exposed to the outer surfaces. The exposed
phosphatidylserine acts as an evolutionarily conserved “eat-me” signal that
attracts neighboring engulfing cells in metazoan organisms, including the
nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and
mammals. During apoptosis, the exposure of phosphatidylserine to the outer
surface of a cell is driven by themembrane scramblases and flippases, the activities
of which are regulated by caspases. Cells undergoing necrosis, a kind of cell death
frequently associated with cellular injuries and morphologically distinct from
apoptosis, were initially believed to allow passive exposure of
phosphatidylserine through membrane rupture. Later studies revealed that
necrotic cells actively expose phosphatidylserine before any rupture occurs. A
recent study in C. elegans further reported that the calcium ion (Ca2+) plays an
essential role in promoting the exposure of phosphatidylserine on the surfaces of
necrotic cells. These findings indicate that necrotic and apoptotic cells, which die
through different molecular mechanisms, use common and unique mechanisms
for promoting the exposure of the same “eat me” signal. This article will review the
mechanisms regulating the exposure of phosphatidylserine on the surfaces of
necrotic and apoptotic cells and highlight their similarities and differences.
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Introduction

The plasma membrane of eukaryotic cells is composed of the lipid bilayer and various
membrane proteins. The lipid bilayer comprises glycerophospholipids, sphingomyelins, and
cholesterol (Harayama and Riezman, 2018). Phosphatidylserine (PS), one type of
glycerophospholipids, is a major component of the plasma membrane. In living cells, PS
is almost exclusively localized to the inner leaflet of the plasmamembrane (Balasubramanian
and Schroit, 2003). PS exposure is observed when cells undergo apoptosis, a type of cell death
that features cell shrinkage, chromatin condensation, nuclear DNA fragmentation, and a
well-maintained plasma membrane integrity (Balasubramanian and Schroit, 2003; Kroemer
et al., 2009). PS presented on the surfaces of apoptotic cells is an “eat-me” signal that attracts
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phagocytes to engulf apoptotic cells (Balasubramanian and Schroit,
2003; Segawa and Nagata, 2015). PS exposure also occurs in living
cells under various physiological conditions. For example,
mammalian platelets activated by vascular injuries expose PS,
which recruits blood coagulation factors, and initiates blood
clotting (Bevers et al., 1983; Dachary-Prigent et al., 1995). The
exposure of PS on living cells and its biological significance have
been extensively reviewed in another article (Shin and Takatsu,
2020) and is not covered here. Necrosis is another type of cell death
that displays cell and organelle swelling, excessive intracellular
membranes, and the subsequent rupture of intracellular and
plasma membranes (Kroemer et al., 2009). Various conditions
induce necrosis in cells, such as extreme temperature change,
physical injury, hypoxia, hypo-osmotic shock, bacterial infection,
ligands of transmembrane receptors such as the death receptors, and
Ca2+ excitotoxicity (McCall, 2010; Moquin and Chan, 2010; Vlachos
and Tavernarakis, 2010; Zhou and Yuan, 2014). Necrosis is closely
associated with various diseases such as stroke, chronic
inflammation, cancer, and neural and retinal degeneration
(Yamashima, 2004; Noch and Khalili, 2009; Challa and Chan,
2010; Whelan et al., 2010; Nikoletopoulou and Tavernarakis,
2014; Shan et al., 2018; Zhang et al., 2023). For example, the
hyperexcitation of neurons or glial cells induced by the
constitutively active ion channels and related proteins causes
excitotoxic necrosis (Noch and Khalili, 2009; Lai et al., 2014).
Excitotoxic necrosis is a leading cause of neuronal damage in the
brain ischemia (Tymianski, 2011; Lai et al., 2014). It also contributes
to various aging-associated neurodegenerative disorders (Martin,
1999). Like apoptotic cells, necrotic cells are also engulfed and
degraded by phagocytes (Hall et al., 1997; Krysko et al., 2006a;
Poon et al., 2010b; Li et al., 2015; Schwegler et al., 2015). Efficient
clearance of apoptotic and necrotic cells is essential for tissue
homeostasis, tissue repair, and the suppression of harmful
inflammatory and auto-immune responses caused by the
contents of the dying cells during animal development and
adulthood (Krysko et al., 2006a; Poon et al., 2010b; Poon et al.,
2014). In addition, clearance of necrotic and apoptotic neurons helps
to resolve the wounded area and facilitates tissue regeneration and
the recovery from brain injury (Martin, 1999; Tymianski, 2011; Lai
et al., 2014; Tovar-y-Romo et al., 2016; Tremblay et al., 2019). On the
other hand, microglial cells, the professional phagocytes in the
central nervous system, may also be activated by degenerating
neurons and further enhance neural inflammation (Apolloni
et al., 2014; Tremblay et al., 2019; Butler et al., 2021). Therefore,
identifying cell clearance mechanisms is highly relevant to human
health.

How necrotic cells are recognized and engulfed remained elusive
for a long time. PS has been reported to serve as an “eat me” signal to
recruit phagocytes for necrotic cells (Brouckaert et al., 2004;
Schwegler et al., 2015; Budai et al., 2019). Whether the
intracellular mechanisms that drive PS exposure are common or
different between apoptotic and necrotic cells remains largely an
unanswered question. Although besides PS, other “eat me” signals
that attract phagocytes to necrotic cells were also identified (Gaipl
et al., 2001; Böttcher et al., 2006; Poon et al., 2010a), this article will
focus on PS-exposure mechanisms. Here we review the recent
discoveries regarding the molecular mechanisms driving PS
exposure on the surfaces of necrotic cells and how these

mechanisms contribute to the phagocytosis of necrotic cells.
Furthermore, we will compare these newly identified mechanisms
to that driving PS exposure on the surfaces of apoptotic cells and
discuss how these findings shed light on the roles of caspase 3 and
Ca2+ in regulating PS exposure and dying cell-clearance.

PS on the surfaces of both apoptotic
and necrotic cells acts as an “eat me”
signal that attracts phagocytes

The molecular mechanisms of PS-dependent phagocytosis of
apoptotic cells were extensively reviewed previously (Elliott and
Ravichandran, 2016; Nagata, 2018; Atkin-Smith, 2021). In
summary, in mammals, PS exposed on apoptotic cells is
recognized by phagocytic receptors via two alternative

FIGURE 1
PS is detected on the surfaces of necrotic and apoptotic cells in
Caenorhabditis elegans. MFG-E8 is a high-affinity PS-binding protein.
Secreted MFG-E8mKate2 (the PS reporter) interacts explicitly with PS
exposed on cell surfaces. (A) A diagram showing the positions
and names of the six Caenorhabditis elegans touch neurons. (B)
Differential Interference Contrast (DIC) and epifluorescence images of
the tail of a mec-4(d) L1-stage larva carrying the MFG-E8::
mKate2 reporter. Arrowheads mark the necrotic PLML and PLMR
neurons. (C) DIC and epifluorescence images of a mid-stage embryo
expressing MFG-E8::mKate2. Arrows indicate three apoptotic cells
that expose PS.
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mechanisms: phagocytic receptors such as Tim-1 and Tim-4,
stabilin 1 and 2, and BAI1 on neighboring engulfing cells directly
interact with the PS molecules on the surfaces of apoptotic cells to
trigger phagocytosis (Miyanishi et al., 2007; Park et al., 2007;
Ichimura et al., 2008; Park et al., 2008; Park et al., 2009). On the
other hand, some phagocytotic receptors recognize PS indirectly via
binding to the bridging molecules secreted into the extracellular
space to interact with PS. For example, the αVβ3 integrin binds PS via
the bridging protein MFG-E8 (Hanayama et al., 2002), and the
Tryo3–Axl–Mer (TAM) family of receptors interact with PS via the
bridging molecules Protein S or GAS6 in mammalian cells (Rothlin
et al., 2015). PS on the surfaces of dying cells is directly recognized by
the phagocytic receptor CED-1 in Caenorhabditis elegans (Zhou
et al., 2001b; Li et al., 2015) and by Draper, the homolog of CED-1 in
Drosophila (MacDonald et al., 2006; Tung et al., 2013). CED-1 was
also proposed to interact with PS through TTR-52, a bridging
molecule (Wang et al., 2010), indicating that it can use both
mechanisms to recognize apoptotic cells. In the brain of
mammals, microglia and astrocytes are known to engulf and
degrade various extracellular materials (Uddin and Lim, 2022).
MEGF10, the mammalian CED-1 ortholog, is expressed in
astrocytes where it functions to phagocytose apoptotic cells
(Scheib et al., 2012; Iram et al., 2016), synapses (Chung et al.,
2013; Lee et al., 2021), and amyloid β aggregates (Singh et al.,
2010; Fujita et al., 2020), demonstrating the functional conservation
among the CED-1 family of proteins in phagocytosis.

In the nematode C. elegans, dominant (d) mutations in specific
subunits of the DEG/ENaC super-family of sodium channels, Ca2+

channels, and trimeric G proteins induce specific neurons to undergo
excitotoxic necrosis (Vlachos and Tavernarakis, 2010). In particular,
dominant mutations in mec-4, which encodes a core subunit of a
multimeric DEG/ENaC sodium channel expressed explicitly in the six
mechanosensory (touch) neurons (Figure 1A), trigger the necrosis of
these neurons during embryogenesis (Chalfie and Sulston, 1981;
Driscoll and Chalfie, 1991). In mec-4(d) mutants, necrotic neurons
swell to many times their original sizes and are easily distinguishable
from living or apoptotic cells under Differential Interference Contrast
(DIC) microscope (Figures 1B, C) (Chalfie and Sulston, 1981; Hall
et al., 1997). Unlike apoptosis, mec-4(d)-induced necrosis does not
require the CED-3 caspase activity (Ellis and Horvitz, 1986). Instead,
the MEC-4(d) mutations render the mechanosensory Na+ channel
permeable to Ca2+ by altering the channel conformation and in this
manner, induce touch neurons to undergo excitotoxic necrosis
(Driscoll and Chalfie, 1991; Bianchi et al., 2004). PS on the
surfaces of necrotic cells can be detected by a secreted,
fluorescently-tagged MFG-E8 reporter, a high-affinity and high-
specificity PS-binding protein (Figure 1B) (Hanayama et al., 2002;
Li et al., 2015). In addition to the touch neurons, other sensory
neurons, motor neurons, and interneurons that undergo necrosis also
expose PS, indicating that PS exposure is not a cell type-specific
phenomenon (Furuta et al., 2021). That PS is detected on the surfaces
of both the necrotic and apoptotic cells indicates that PS could serve as
a common “eat me” signal for cells that die of different mechanisms to
attract engulfing cells. Indeed, in C. elegans, the PS molecules on the
necrotic and apoptotic cells’ surfaces are recognized by the phagocytic
receptor CED-1 localized on the plasma membrane of neighboring
hypodermal cells, which subsequently engulf these cells (Li et al.,
2015).

Similarly, in mammals, PS has been reported to serve as an “eat
me” signal for necrotic cells, although other “eat me” signals that
attract phagocytes to necrotic cells, including the complement
factors and histidine-rich glycoproteins, were also reported (Gaipl
et al., 2001; Böttcher et al., 2006; Poon et al., 2010a). Please see
(Krysko et al., 2006b; Westman et al., 2019), two excellent reviews
for detailed descriptions of these other “eat me” signal molecules for
necrotic cells. Reports have demonstrated that PS is externalized on
the surfaces of necrotic mouse hybridoma cells induced by heat
(Cocco and Ucker, 2001), necrotic human peripheral blood
lymphocytes induced by heat (Böttcher et al., 2006), and necrotic
mouse thymocytes induced by heat or H2O2 (Budai et al., 2019), all
of which eventually attract macrophages. Various cells undergoing
necroptosis, a death receptor-mediated programmed necrosis,
including mouse fibrosarcoma cells, mouse embryonic fibroblast,
human myelomonocyte, human keratinocyte, and mouse bone
marrow-derived macrophage also externalize PS (Brouckaert
et al., 2004; Gong et al., 2017; Zargarian et al., 2017). In addition,
cells undergoing other types of regulated necrosis, such as pyroptosis
and ferroptosis, also expose PS on their surfaces (de Vasconcelos
et al., 2019; Klöditz and Fadeel, 2019). PS exposure promotes the
engulfment of these cells (Brouckaert et al., 2004; Zargarian et al.,
2017). Like in apoptotic cells, the PS receptors Tim-4, αVβ3 integrin,
and the TAM receptors were reported to mediate the PS-dependent
phagocytosis of necrotic mouse thymocytes (Budai et al., 2019).

The mechanisms of PS exposure on the
surfaces of apoptotic cells

Molecular mechanisms of PS exposure of apoptotic cells have been
extensively reviewed previously (Segawa and Nagata, 2015; Nagata et al.,
2020). This article will briefly describe the findings reported in the
literature. Inmammalian living cells, PS ismaintained almost exclusively
in the inner leaflet of the plasma membrane, at least partly by the
flippases (also called aminophospholipid translocases), the P4-type
ATPases ATP11A and ATP11C, which flip PS from the outer to the
inner leaflet in an ATP-dependent manner (Segawa et al., 2014; Segawa
et al., 2016). In addition, CDC50A, a chaperon protein, plays an essential
role in ensuring the plasma membrane localization and activities of
ATP11A and ATP11C (Segawa et al., 2014; Segawa et al., 2016).
CDC50A also acts as a chaperon for nine additional P4-type
ATPases (Shin and Takatsu, 2020). ATP11C facilitates phospholipids
translocation in all leukocytes (Yabas et al., 2016). ATP11C knockout
mice display severe B-cell deficiency due to the remaining of PS on the
surfaces of B cell precursors, which stimulates the engulfment of pre-B
cells by phagocytes (Yabas et al., 2011; Segawa et al., 2018). This defect
demonstrates that the asymmetrical enrichment of PS in the inner leaflet
of the plasmamembrane is essential for protecting cells fromphagocytes.

In mouse W3 cells and human Jurkat cells induced to undergo
apoptosis, activated caspase 3 has been reported to cleave and inactivate
ATP11A and ATP11C (Segawa et al., 2014) (Figure 2A). However,
mere inactivation of these flippases is not sufficient for maintaining a
substantial level of PS exposure on the surfaces of apoptotic cells.
Phospholipid scramblases, which bidirectionally translocate
phospholipids between the two membrane leaflets (Bevers and
Williamson, 2016), play active roles in exposing PS to the outer
surfaces of apoptotic cells in both mammals and C. elegans. Suzuki
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et al. (2013) have identified the essential function of XK-related protein
8 (Xkr8), a phospholipid scramblase, in the exposure of PS on the
surfaces of apoptotic cells from multiple human and mouse cell lines.
Xkr8 has a caspase-recognition site that is cleaved by the activated
mammalian caspase 3 in the cells undergoing apoptosis; this cleavage
event activates the scramblase activity of Xkr8 (Suzuki et al., 2013)
(Figure 2A). A recent study indicates that in addition to caspase
cleavage, phosphorylation of XKr8 also promotes PS exposure
(Sakuragi et al., 2019). Studies of Xkr8 knockout mice found that
Xkr8 mediates the exposure of PS on the surfaces of apoptotic
lymphocytes and aged neutrophils; furthermore, the lack of
Xkr8 results in lupus-like autoimmune disease due to the defect of
the clearance of apoptotic lymphocytes and aged neutrophils, indicating
that the lack of PS exposure on apoptotic cells perturbed their removal
(Kawano and Nagata, 2018). In mammalian apoptotic cells, in addition
to Xkr8, the mammalian ATP Binding Cassette Subfamily A Members
1 and 7 (ABCA1 and ABCA7) transporters contribute another PS
externalization activity (Alder-Baerens et al., 2005; Quazi and Molday,
2013). Both ABCA1 and ABCA7 facilitate the clearance of apoptotic
cells (Hamon et al., 2000; Jehle et al., 2006), although controversial
results have also been reported (Williamson et al., 2007). So far, whether
ABCA1 and ABCA7 transporters are regulated by caspase activity
remains elusive.

PS exposure of apoptotic cells was also extensively studied in C.
elegans, and most key molecular mechanisms are evolutionarily
conserved. Caenorhabditis elegans have a close homolog for each of
the mammalian ATP11A (TAT-1) (Darland-Ransom et al., 2008), Xkr8
(CED-8) (Stanfield and Horvitz, 2000), and ABCA1 (CED-7) (Wu and

Horvitz, 1998a). These proteinswere reported to function similarly to their
mammalian homologs in regulating the exposure of PS on cell surfaces,
that is, CED-8 and CED-7 promote PS exposure (Venegas and Zhou,
2007; Chen et al., 2013; Suzuki et al., 2013), whereas TAT-1 is proposed to
maintain the asymmetric distribution of PS in the plasma membrane of
living cells (Darland-Ransom et al., 2008). Both TAT-1 and CHAT-1, the
C. elegans homolog of CDC50A, are required for the PS distribution to the
cytoplasmic side of intracellular vesicles in the endocytosis pathway, yet
the role ofCHAT-1 in thePS exposure onplasmamembranehas not been
tested (Chen et al., 2010). The cleavage of CED-8 byCED-3, theC. elegans
ortholog of caspase 3, is reported to activate the PS-exposure activity of
CED-8 (Chen et al., 2013; Suzuki et al., 2013). Whether CED-3 activates
CED-7 and inactivates TAT-1 through protease cleavage remains to be
examined. In addition, an independent report indicates that knocking
down tat-1 via RNA interference abrogates PS exposure instead of
facilitating it (Zullig et al., 2007), casting some doubt on the proposed
role of TAT-1 in suppressing PS exposure on living cells.

Cytoplasmic Ca2+ induces PS exposure
on excitotoxic necrotic cells

PS is exposed on the surfaces of necrotic
cells before cell rupture

Despite the common belief that PS is detected on the surfaces of
necrotic cells due to the rupture of necrotic cell membranes (Atkin-
Smith, 2021), the C. elegans necrotic neurons expose PS while

FIGURE 2
Mechanisms of PS exposure on apoptotic cells and necrotic cells (A) Protein names in paratheses are the Caenorhabditis elegans homologs of the
mammalian proteins. In apoptotic cells, activated caspase-3 cleaves PS scramblases Xkr8 or CED-8 to trigger PS scrambling activity and cleaves the
flippases ATP11A and ATP11C to inactivate the PS flipping activity. It is unclear whether theCaenorhabditis elegans homolog TAT-1 is inactivated by CED-
3. Furthermore, ABCA1 and CED-7 are necessary for PS exposure on apoptotic cells. The black question mark indicates whether the caspase
regulates these transporters remains elusive. (B) Protein names in paratheses are the mammalian homologs of the Caenorhabditis elegans proteins. In
excitotoxic necrotic cells, Ca2+ influx through various ion channels elevates cytoplasmic Ca2+ levels in ER-dependent or ER-independent mechanisms.
InsP3R (InsP3 receptor) and RyR (Ryanodine receptor) are ER Ca2+- release channels. SERCA (Sarco-Endoplasmic Reticulum Ca2+ ATPase) is a Ca2+

reuptake pump. Two ER chaperons, calreticulin, and calnexin are essential in establishing the Ca 2+ pool in the ER. The increased cytoplasmic Ca2+ is
proposed to interact with ANOH-1 or TMEM16F to activate their PS scramblase activities. In addition, CED-7 is necessary to induce PS exposure in
excitotoxic necrotic cells. However, it remains unknown whether its mammalian homolog(s) plays the same role and whether these transporters are
regulated by cytoplasmic Ca2+. (A-B) Note that the biochemical activities of C. elegans TAT-1, CED-1, and ANOH-1 have not been examined.
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maintaining the integrity of the plasma membrane (Li et al., 2015;
Furuta et al., 2021). They are subsequently engulfed as intact cells
(Hall et al., 1997; Li et al., 2015). These facts suggest that necrotic
cells are able to expose PS actively. The PS exposure on necroptotic
mammalian fibroblast cell lines (NIH 3T3 and L929) occurs
preceding the loss of the plasma membrane integrity, again
indicating that PS is actively exposed on cell surfaces before
membrane disruption (Gong et al., 2017; Zargarian et al., 2017).

A mechanism that is dependent on the
release of Ca2+ from the endoplasmic
reticulum

Caspase activity is not necessary for inducing excitotoxic
necrosis in C. elegans (Ellis and Horvitz, 1986; Chalfie and
Wolinsky, 1990; Nagarajan et al., 2014); In excitotoxic
necrosis, studies indicate that the elevation of intracellular
Ca2+ levels plays a vital role in the induction of necrosis (Xu
et al., 2001; Berliocchi et al., 2005; Celsi et al., 2009; Bano and
Ankarcrona, 2018). Electrophysiological studies revealed that the
MEC-4(d) mutations in C. elegans alter the conformation of the
mechanosensory Na+ channel (of which MEC-4 is a subunit),
allowing Ca2+ to enter the cytoplasm through this channel
(Bianchi et al., 2004). By monitoring the signal intensity of an
in vivo Ca2+ reporter specifically expressed in touch neurons in
the developing mec-4(d) mutant embryos, it was observed that
the cytoplasmic Ca2+ level increases in the touch neurons before
cell swelling, a feature of necrosis, prior to PS exposure on
necrotic cell surfaces Furuta et al., (2021); Furuta and Zhou
(2021). Quantitative analysis found a strong correlation
between the levels of cytoplasmic Ca2+ and the levels of PS
exposure. The endoplasmic reticulum (ER) is a major
intracellular Ca2+ storage pool (Sammels et al., 2010). The
release of Ca2+ from the ER to the cytoplasm is essential for
the induction of necrosis in mec-4(d) mutants (Xu et al., 2001).
Inactivation of a major ER Ca2+-release channel, or an ER-located
Ca2+-chaperon essential for the establishment of the Ca2+ pool
inside the ER lumen, greatly reduces the level of PS exposed on
the surfaces of necrotic cells in dominant mutant strains ofmec-4,
unc-8, and deg-1, each of which encodes a different subunit of the
DEG/ENaC channel (Furuta et al., 2021). Furthermore,
artificially increasing the cytoplasmic Ca2+ level through
inactivating Sarco-Endoplasmic Reticulum Ca2+ ATPase
(SERCA), the Ca2+ reuptake pump on the ER membrane
(Treiman et al., 1998; Doan et al., 2015), induces both
necrosis and PS exposure on necrotic cells (Furuta et al.,
2021). In addition, inhibition of downstream necrotic events
blocks the morphological changes of touch neurons but not
the PS exposure (Furuta et al., 2021). Together, the above
results indicate that 1) the increase of cytoplasmic Ca2+

induces both necrosis and PS exposure, 2) The Ca2+ leaked
into touch neurons through the mutant DEG/ENaC channel
in the mec-4(d), unc-8(d), or deg-1(d) mutant strains is
necessary but not sufficient to induce PS exposure or necrosis;
instead, the Ca2+-induced Ca2+ release from the ER, which further
elevates the cytoplasmic Ca2+ level, is necessary for the induction
of PS exposure and necrosis, and 3) the induction of PS exposure

is independent of the induction of necrosis (Figure 2B). These
results further implicate the existence of different proteins that
act to induce various cellular events, such as PS exposure and cell
swelling, in response to the elevated level of cytoplasmic Ca2+.

An ER-independent and Ca2+-dependent PS
exposure mechanism

A dominant, constitutively active mutation of deg-3, which
encodes a ligand-gated calcium channel belonging to the
nicotinic acetylcholine receptor family (Treinin and Chalfie,
1995), like mec-4(d) mutations, results in the excitotoxic necrosis
of neurons (Chalfie and Wolinsky, 1990). However, unlikemec-4(d)
mutations, this mutation induces necrosis and PS exposure in a
manner independent of the contribution of the ER Ca2+ pool (Xu
et al., 2001; Furuta et al., 2021). The DEG-3 Ca2+ channel has high
Ca2+ permeability, and the deg-3(u662) dominant mutation causes
this channel to remain open constitutively (Treinin et al., 1998). In
addition to deg-3(d), a dominant mutation in trp-4, which encodes a
transient receptor potential (TRP) channel, another Ca2+ channel (Li
et al., 2006), also induces the necrosis of neurons and PS exposure
(Nagarajan et al., 2014). Interestingly, although trp-4(d)-induced
necrosis is dependent on the ER Ca2+ release (Nagarajan et al., 2014),
trp-4(d)-induced PS exposure is not (Furuta et al., 2021). TRP
channels are highly permeable to Ca2+ (Gees et al., 2010). The
TRP-4(d) mutation is likely to keep the Ca2+ channel in a
constitutively open state. Together, the differential requirements
for the ER contribution to PS exposure observed from the
constitutively open DEG/ENaC channel and Ca2+ channels
suggest that the critical factor that triggers PS exposure is the
cytoplasmic Ca2+ level. When a mutant Ca2+ channel allows
constitutive and high permeability influx of Ca2+ into neurons,
the contribution of the Ca2+ from the ER pool is not necessary;
on the other hand, when amutant ion channel only allows a trickling
amount of Ca2+ to enter a neuron, the “Ca2+-induced Ca2+ release”
from the ER becomes essential for inducing PS exposure.

It is worth noting that a few previous studies indicated the role of
Ca2+ in inducing PS exposure on apoptotic cells (Hampton et al.,
1996; Verhoven et al., 1999; Zhivotovsky and Orrenius, 2011). On
the other hand, lines of evidence demonstrate against the
involvement of Ca2+ in PS exposure on the surfaces of apoptotic
cells (Hampton et al., 1996; Schoenwaelder et al., 2009). In C.
elegans, Furuta et al. (2021) demonstrated that impairing the
release of ER Ca2+ into the cytoplasm did not affect the level of
the PS on the surfaces of apoptotic cells. In conclusion, two different
kinds of mechanisms regulate PS exposure: apoptotic cells utilize
Ca2+-independent PS exposure driven by caspase activity, while
necrotic cells utilize Ca2+-dependent mechanisms (Figure 2).

Scramblase and flippasses that play
roles in Ca2+-dependent PS exposure
on excitotoxic necrotic cells

Mammalian platelets activated during blood coagulation expose
PS in response to Ca2+ influx but do not undergo cell death (Bevers
et al., 1983; Dachary-Prigent et al., 1995). On the other hand, when
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platelets are induced to undergo apoptosis, they expose PS in a
caspase-dependent yet Ca2+-independent manner (Schoenwaelder
et al., 2009). These results again demonstrate the existence of both
the Ca2+-dependent and -independent PS exposure mechanisms in
platelets. Mammalian TMEM16F is a high-affinity Ca2+-binding
protein and a Ca2+-dependent scramblase that is responsible for
exposing PS when platelets are activated (Suzuki et al., 2010; Fujii
et al., 2015). A mutation in TMEM16F was reported to cause Scott
syndrome, a human bleeding disorder (Suzuki et al., 2010),
demonstrating the essential role of human TMEM16F in blood
clotting.

ANOH-1 is the C. elegans homolog of mammalian TMEM16F
(Wang et al., 2013; Li et al., 2015). It is specifically expressed in
neurons and presented on the plasma membrane of the excitotoxic
necrotic touch neuron (Li et al., 2015). The amino acid sequences
essential for the Ca2+-dependent PS scrambling activity identified in
mammalian and the fungus Nectria haematococca TMEM16F
(Suzuki et al., 2010; Brunner et al., 2014) are conserved in C.
elegans ANOH-1 (Li et al., 2015). Deletion in the anoh-1 gene
causes the reduction of PS exposure on neurons undergoing necrosis
induced by the mec-4(d) and trp-4(d), suggesting that the Ca2+-
induced PS exposure is dependent on ANOH-1 (Li et al., 2015;
Furuta et al., 2021) (Figure 2B). In anoh-1(−); mec-4(d) double
mutant larvae, necrotic touch neurons linger much longer before
being engulfed, presumably as a result of the reduction of PS
exposure activity (Li et al., 2015). On the other hand, anoh-1
deletion does not affect the exposure of PS on apoptotic cells (Li
et al., 2015). Although its biochemical activity has not been
determined, C. elegans ANOH-1 is proposed to act as a Ca2+-
dependent phospholipid scramblase specific for necrotic cells (Li
et al., 2015; Furuta et al., 2021).

Li et al. (2015) identified not only C. elegans ANOH-1 but also
another C. elegans protein that promotes PS exposure on necrotic
neurons. This protein is CED-7, the C. elegans homolog of
ABCA1 transporter (Li et al., 2015). In ced-7 loss-of-function
mutants, PS exposure on both apoptotic and necrotic cells are
greatly reduced in C. elegans (Venegas and Zhou, 2007; Li et al.,
2015). In ced-7; anoh-1 double mutants, the PS exposure defect is
more severe than in each single mutant, and the necrotic touch
neurons persist for much longer before being engulfed than in each
of the anoh-1 or ced-7 single mutants, indicating that ANOH-1 and
CED-7 act in parallel to promote PS exposure and the engulfment of
necrotic cells (Li et al., 2015). ced-7mutant phenotypes indicate that
a common molecular mechanism that involved CED-7 is needed in
both apoptotic and necrotic cells for efficient PS exposure. It is
unclear whether C. elegans CED-7 is regulated by Ca2+ in necrotic
cells (Figure 2B). Whether mammalian ABCA1 and ABCA7 play
any role in the PS exposure on necrotic cells also awaits to be tested.

In addition to the scramblase activity, Ca2+ might also inactivate
flippase(s) to “maintain” the exposed PS on the surface of necrotic
cells. Segawa et al. (2018) reported that the PS exposed on the
surfaces of lymphoma cells induced by Ca2+-ionophore is quickly
internalized when the ionophore is removed. Yet, in
ATP11A−/−ATP11C−/- double deletion cells, PS remains on the
outer leaflet persistently. These observations indicate that
cytoplasmic Ca2+ regulates flippase activities. Together, all the
above information indicates that in necrotic cells, the increase of
the cytoplasmic Ca2+ level might activate scramblase(s) and

inactivate flippase(s) simultaneously to achieve continuous PS
exposure. The mechanisms of how cytoplasmic Ca2+ induces PS
exposure on necrotic cells need much further investigation.

Ca2+-independent PS-exposure on the
surfaces of necrotic cells

Interestingly, a recent study conducted in TNF-induced
necroptotic mouse embryonic fibroblast cells has found that
although both Ca2+ influx and PS exposure occur when cells
undergo necroptosis, PS exposure does not require either Ca2+

influx or caspase activity (Gong et al., 2017). This study further
implicates that mixed lineage kinase-like (MLKL), which mediates
membrane disruption in necroptosis, directly causes the exposure of
PS. Another study showed that activated MLKL promotes PS
exposure on interferon (IFN)-ɣ induced necroptotic mouse
embryonic fibroblast cells and human colorectal adenocarcinoma
cells (Chen et al., 2019), supporting the PS exposure-promoting role
of MLKL in necroptotic cells.

In another example, a high dose of extracellular ATP induces PS
exposure onmammalian T cells and other cell types and the eventual
necrosis (Taylor et al., 2008; Ryoden et al., 2022). ATP causes these
effects through binding to P2X7, an ATP-gated non-selective cation
channel (Ryoden and Nagata, 2022). Activation of P2X7 was
reported to cause Ca2+ influx (North, 2002; Ousingsawat et al.,
2015). Furthermore, the Ca2+-dependent scramblase TMEM16F was
reported to promote PS exposure in response to ATP in the
HEK293 cells (Ousingsawat et al., 2015). However, a recent study
reported that TMEM16F is dispensable for the P2X7-mediated PS
exposure in a WR19L mouse lymphoblast-derived cell line; instead,
Xk, a paralogue of the Xkr8 scramblase, and VPS13A, a cytoplasmic
lipid transporter, are necessary for this event (Ryoden et al., 2022).
Therefore, whether Ca2+ is required for this type of PS exposure is a
matter of debate that needs further investigation. These studies
nevertheless suggest that the requirement of Ca2+ for PS exposure
might depend on how the necrosis is induced and the types of cells
that undergo necrosis.

Summary

Here we summarize a few features behind the molecular
mechanisms that regulate PS exposure on cell surfaces. First,
cells die of apoptosis and necrosis, two different death
mechanisms, expose the same “eat me” signal–PS and likely
attract the same phagocytic receptor(s). For example, in C.
elegans, the phagocytic receptor CED-1 recognizes both
apoptotic and necrotic cells and initiates the engulfment of
both kinds of dying cells. However, the upstream mechanisms
that promote PS exposure are strikingly different between
apoptotic and necrotic cells. Whereas apoptotic cells rely on
caspase-mediated PS-exposure mechanisms, excitotoxic
necrosis depends on a high level of cytoplasmic Ca2+ to
induce PS exposure. The activation of different scramblases
during apoptosis and necrosis discovered in C. elegans
demonstrated the differential molecular mechanisms of PS
exposure. On the other hand, C. elegans CED-7 facilitates PS
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exposure on both apoptotic and necrotic cells, suggesting that
either CED-7 provides a basal-level, constitutive PS-exposure
activity that is counteracted by the PS flippase(s) in living cells,
or that CED-7 can be activated by multiple upstream signals.
Nevertheless, both common and differential mechanisms are
utilized to regulate PS exposure on dying cell surfaces.
Interestingly, necroptotic cells and certain types of cells
induced to undergo necrosis by ATP seem to apply specific
Ca2+-independent mechanisms for PS exposure. Necrosis can be
induced by various kinds of stimuli. The detailed mechanisms of
PS exposure, which might be stimuli-specific and cell type-
specific, await further investigation. Further dissecting the PS
exposure mechanisms would help us understand the cell
clearance mechanisms, especially in the disease context,
and may serve as a critical step for future therapeutic
intervention.
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