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The rapid development of computer science over the past few decades has
led to unprecedented progress in the field of artificial intelligence (AI). Its
wide application in ophthalmology, especially image processing and data
analysis, is particularly extensive and its performance excellent. In recent
years, AI has been increasingly applied in optometry with remarkable
results. This review is a summary of the application progress of different AI
models and algorithms used in optometry (for problems such as myopia,
strabismus, amblyopia, keratoconus, and intraocular lens) and includes a
discussion of the limitations and challenges associated with its application
in this field.
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1 Introduction

Artificial intelligence (AI) is a relatively new technology that endows machines with
human behavior, thinking, and emotional abilities and can liberate human beings from
tedious physical and mental labor and assist in the production and development of fields
such as the economy, culture, and social life. AI, as a subfield of computer science,
simulates human intelligence using algorithms that are developed using computers to
engage in human work (Nuzzi et al., 2021). Machine learning (ML) is a research field of
AI, which is a technology that allows computer systems to learn automatically from data
and improve performance. Deep learning (DL) is a research field of ML, which is a
representation learning algorithm based on artificial neural network. The relationship
between AI, ML, and DL is shown in Figure 1. Current, commonly used AI algorithms
include ML, DL, artificial neural networks, deep neural networks (DNNs), convolutional
neural networks (CNNs), and migration learning. Over the past few years, the great
development of computer science and technology has led to accelerated evolution in the
field of AI, accelerating its application in medicine, especially ophthalmology. The first
ophthalmic AI device, IDx-DR, was approved for listing with landmark significance on
11 April 2018, opening a new chapter on the combination of AI with ophthalmology.
Since then, the application of AI in the ophthalmology has entered a new stage of
development, leading to a series of satisfactory research results in the diagnosis,
classification, recognition, and screening of ophthalmic diseases, such as diabetic
retinopathy (Deepa et al., 2022; Hardas et al., 2022; Zhang et al., 2022), age-related
macular degeneration (Glaret Subin and Muthukannan, 2022; Sotoudeh-Paima et al.,
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2022; Wang et al., 2022), retinopathy of prematurity (Coyner
et al., 2022; Li et al., 2022; Wu et al., 2022), glaucoma (Dong et al.,
2022; Li et al., 2022; Xiong et al., 2022), and retinal vein occlusion
(Miao et al., 2022; Ren et al., 2022; Zhang et al., 2022).

The term optometry originated in the ancient Greek words
optos (“see”) and metron (“measure”), indicating that it is closely
related to “eyes” and “vision.” At the beginning of the 20th century,
visual optics was defined as “studying the philosophy of light and
vision,” and included a deep understanding of the connotation of the
relationship between “light” and “vision”; By the middle of the 20th
century, people understood optical vision as “the art of determining
the visual state of normal people or correcting the abnormal state
through glasses,” and the understanding and correction of vision
became more specific. After hundreds of years of evolution and
development, optometry has since developed rapidly. In terms of
composition, the field of optometry mainly includes emmetropia,
myopia, hyperopia, presbyopia, astigmatism, anisometropia,
strabismus, amblyopia and so on, as shown in Figure 2. The
continuous increase in the application of AI in the
ophthalmology in recent years has achieved many remarkable
research results. Here, we aimed to review the recent research
results of using AI in the field of ophthalmic optometry over the
past few years, with the challenges and limitations of AI in
optometry applications discussed.

2 Application of AI models and
algorithms in the field of optometry

In this section, we mainly review the research progress of AI in
the field of optometry in the past 5 years. AI has carried out a lot of
research in the field of optometry, especially in the diagnosis,
screening and treatment of diseases. In recent years, with the
continuous development and improvement of AI technology, the
research of AI in the field of optics has become more in-depth and
extensive. In order to better describe the basic flow of AI research, we

FIGURE 1
Relationship between AI, ML, and DL.

FIGURE 2
The basic composition of the field of optometry.
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take the DL model in Zheng et al. (2021) as an example, the basic
flow of AI model research is illustrated in Figure 3. The process of
developing an AI model involves deleting low-quality images and
randomly dividing the remaining high-quality images into training
and verification sets, with which the training set is optimized to
obtain the best possible AI model and the performance is verified
using the verification set.

2.1 Application of AI models and algorithms
in myopia

Myopia is a type of ametropia in which parallel light is focused
on the front of the retina through the intraocular refractive medium
and thus a clear image is not formed on the retina. The problem
occurs mainly during childhood and early adulthood (Morgan et al.,
2018). Although there is still much to learn about the etiology of
myopia, the general consensus is that genetic, environmental, and
biochemical variables play a role in the development of myopia.
Myopia in children is mostly caused by a decline in outdoor playtime
and an increase in time spent staring at screens. The mechanism of
myopia progression mainly includes: 1) accommodative lag, 2)
retinal peripheral defocus theory, 3) scleral thinning and ocular
axial lengthening caused by extracellular matrix remodeling, 4)
changes in the level of retinal nerve growth factor and
inflammatory factors, etc. According to recent studies, alterations
in the choroid’s thickness and function are also variables in the
evolution of myopia. The choroid may operate as a barrier to the
diffusion of endogenous growth hormones that encourage axial
elongation. Adults over 50 can also develop nuclear myopia due

to cataracts (Amirsolaimani et al., 2017; Bullimore and Brennan,
2019; Wong et al., 2021). The issue is thus a public health problem of
widespread concern. High and pathological myopia can significantly
increase the incidence of retinal detachment, myopic macular
degeneration, macular choroidal neovascularization, and other
diseases. According to statistics, more than 150 million people
worldwide suffer from moderate to severe visual impairment due
to uncorrected ametropia (Baird et al., 2020; Blindness G.B.D, 2021).
At present, the main treatment methods are drug therapy (such as
atropine eye drops), instrumental correction (such as frame glasses
and keratoscopes), and surgical treatment (such as femtosecond
pulsed or excimer lasers) (Li and Yam, 2019; Weiss and Park, 2019;
Tsai et al., 2021). However, the complex causes and the large number
of people affected renders large-scale screening and stratified
analysis of myopia difficult, and the serious complications that
are associated with the problem are generally not detected early
enough for suitable intervention. It is therefore important that high-
risk groups for high myopia are accurately identified and treated in a
timely and effective manner to delay the progression of the disease.
The development of AI for medical use has led to remarkable results
in myopia prediction, diagnosis, screening, follow-up, and treatment
(Gunasekeran et al., 2021). It can achieve effective data management
and analysis, deeply excavating the inherent mechanisms by which
myopia develops, and the big data storage function associated with
AI is conducive to the accumulation of numerous individual
experiences, thus playing an important auxiliary role in diagnosis
and classification.

One development in the use of AI to diagnose myopia was made
by Varadarajan et al. (2018), who constructed a DLmodel based on a
residual network and a soft-attention layer and used it to analyze

FIGURE 3
Basic flow chart illustrating AI model research.
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226 870 fundus images. The model can predict spherical diopters,
cylindrical diopters, and equivalent spherical equivalents by
analyzing millions of parameters such as picture pixel values to
judge the ametropia situation. A total of 39 757 fundus images were
used to validate the model. The results showed average absolute
errors of 0.56 D and 0.91 D, respectively, for the two data sets,
realizing a technical leap in accurately predicting refractive errors
from retinal fundus images. Lin et al. (2018) established an AI model
that can predict myopia in children on the basis of a random forest
algorithm using refractive data for 132 457 children from the
electronic medical record database at eight eye centers, which
were applied to training and verification. The model predicts
myopia in children under 18 years of age by analyzing data such
as age, spherical equivalent, and the annual myopia progression rate.
The results showed an AUC between 0.940 and 0.985 for high
myopia within 3 years, 0.856 and 0.901 within 5 years, and 0.801 and
0.837 within 8 years, indicating that the model can accurately predict
the incidence of high myopia in school-age children at specific
points in the future. In a studying the prediction of axial myopia,
Tang et al. (2020) used six different ML algorithms to build an AI
model that can predict axial length in children and optimized the AI
model using cross-sectional datasets. The axial length for the
children was predicted by analyzing variables such as sex, age,
central corneal thickness, spherical equivalent error, K-means,
and the black-and-white corneal diameter for 1,011 myopic
children aged 6–18 years old. The results indicated that robust
linear regression model had the best prediction result for eye-axis
length, with an R 2 of 0.87, proving that the algorithm could be used
to estimate the physiological components of eye axis growth and
provide data support for separating non-physiological components
from eye axis elongation for other therapeutic methods. To better
predict adolescent myopia, Yang et al. (2020) used a support vector
machine to establish a prediction model for juvenile myopia, using
data from 3,112 pupils (including heredity, eye habit, environment,
and diet) and constructed a dataset for training and testing the
model using univariate and multivariate correlation analyses. The
results showed an accuracy, specificity, sensitivity, and AUC of 0.93,
0.94, 0.94, and 0.98, respectively, for predicting myopia, proving that
the model can comprehensively analyze several causes of myopia
and can be used to help formulate myopia prevention and control
policies. These studies indicate that AI has opened up a novel
prediction model for myopia prediction through image and
related data analysis that has high accuracy, is feasible for clinical
application, and provides new ideas for myopia prevention and
control. Foo et al. (2023) developed a deep learning system to
identify children at risk of developing high myopia. In this study
three distinct algorithms were derived (image, clinical and mix
models) to predict the development of high myopia in
adolescents after 5 years. 7,456 baseline fundus images were used
for training and verification, 821 images with clinical data for
external validation. Results showed that this DLS achieved a high
accuracy with AUC all above 0.90, and can prevent the progression
and complications of myopia in adulthood, help ophthalmologists to
make clinical decisions.

Through analyzing eye images, AI can thus assist in the
diagnosis and classification of myopia, improving the diagnostic
efficiency and aiding ophthalmologists in screening for large-scale
myopia while also facilitating the long-term follow-up of patients

with high myopia, reducing the heavy burden caused by visual
impairment and even blindness that can result from myopia.
Sogawa et al. (2020) constructed several models using different
DL algorithms (VGG16, VGG19, DenseNet121, InceptionV3 and
ResNet50) and used them to analyze 910 eye optical coherence
tomography (OCT) images. The experimental results showed that
the AUC, sensitivity, and specificity for the DL model were 0.970,
0.906, and 0.942; the average correct classification rate for high
myopia, myopic choroidal neovascularization, and retinoschisis
images of 0.889 shows the feasibility of using these algorithm
models in screening for single diseases and provides support for
preventing vision loss in patients with myopic macular
degeneration. To assist diagnosis of myopia in the clinical, Yang
et al. (2020) constructed an AI diagnosis model using deep
convolutional neural networks (DCNNs) and the VGG-Face
algorithm. In this study, the eye appearance images of
2,350 children aged 6–18 years were collected from three angles;
front, side, 45° anterior side, and spherical equivalent refraction
was used to determine the refraction state of each eye from the
images. The AUC, sensitivity, and specificity of the model for the
diagnosis of myopia were 0.9270, 0.8113, and 0.8642, respectively,
after training and verification, rendering vision screening possible
without the need for examination, thus providing a more
convenient method for routine vision screening. Hemelings
et al. (2021) used the CNN to construct a DL model that can
diagnose pathological myopia and used 1,200 color fundus images
for the model training and testing. The final results showed that the
AUC of the model for the diagnosis of pathological myopia was
0.9867. Li et al. (2023) collected 1,200 retinal fundus images to
train a novel deep learning model on the basis of MyopiaDETR
algorithm. This model using 2D fundus images as input, which can
diagnose and discriminate different kinds of myopia such as
normal myopia (NM), high myopia (HM) and pathological
myopia (PM) through the analysis of the images. Besides, it has
significant advantages over the traditional algorithms in terms of
the accuracy and speed of the diagnosis. The results showed
excellent localization and classification performance in the
diagnosis of PM, reaching AP50 of 0.8632. Li et al. (2022)
collected 412 OCT macular images of patients with high
myopia and constructed an AI model based on the
InceptionResnetV2 algorithm to identify four visual threats:
retinoschisis, macular hole, retinal detachment, and pathological
myopic choroidal neovascularization. The results showed an AUC
of between 0.961 and 0.999 for the model, with both sensitivity and
specificity reaching >0.90. These results show that AI is
particularly accurate in diagnosing myopia and its
complications and indicate that it can play an important role in
large-scale myopia screening.

Refractive surgery, which can be divided into corneal refractive
surgery and intraocular refractive surgery, is used to correct
refractive errors in adult patients with stable myopia. At present,
corneal refractive surgery comprises laser epithelial keratomileusis
(LASEK), laser in situ keratomileusis (LASIK), and small-incision
lens extraction (SMILE). Intraocular surgery includes lens
implantation and cataract surgery. Some progress has also been
made in the application of AI to preoperative screening and surgical
planning for refractive surgery. Xie et al. (2020) constructed a DL
model based on the InceptionResNetV2 algorithm used
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6,465 corneal tomography images (including axial curvature,
anterior corneal topography, posterior corneal topography, and
corneal thickness) to train and test the model to screen
potentially suitable patients for refractive surgery, with a
screening accuracy of 0.947. Yoo et al. (2020) developed an ML
model based on a multiclass XGBoost model that can select the best
refractive surgery for patients with myopia. The algorithm can
automatically extract 80 features from corneal topography and
convert the numbers from the image into textual data. Eye
examination data were collected from 18 480 myopic patients
who planned to undergo refractive surgery and divided into the
LASEK, LASIK, SMILE, and contraindication groups. The results
showed accuracies of 0.810 and 0.789 for the internal and external
verification datasets, respectively, indicating that it can synthesize
ophthalmic data and select themost suitable operation plan at expert
level. Wan et al. (2023) constructed a Deep learning model on basic
of Resnet50 and XG Boost algorithms, aiming to Predict the early
postoperative visual acuity after small-incision lenticule extraction
surgery. In this study, 10,176 laser scanning images from the surgical
videos were collected for training, and patients were classified by
good or poor recovery. The results turned out with the accuracy of
0.96, AUC value of the DL model was 0.962–0.998. This model
enables accurate prediction of early postoperative vision and
complications only through surgical videos and pictures, which
has an important influence on the application of AI in refractive
surgery.

Contact lens Contact lens is a common adjuvant therapeutic
tool in the field of optometry, includes rigid contact lens, soft
contact lens and Orthokeratology (OK). Orthokeratology is a
crucial component of clinical myopia management since it is a
successful myopia control strategy. Nowadays, Orthokeratology
(OK) is second only to muscarinic antagonists in terms of
effectiveness in reducing childhood myopia. AI-assisted
contact lens therapy is gradually becoming popular. In order
to predict the curvature of orthokeratology lens, Fan et al. (2022)
construct a machine learning model based on Linear Regression
(Robust), Support Vector Machines (linear), Bagged Trees,
Gaussian processes algorithms. Using sex, age, horizontal
visible iris diameter (HVID), spherical refraction (SER),
anterior chamber depth (ACD), axial length (AL) etc., of
1,271 patients with myopia as input variables, to estimate the
alignment curve (AC) curvature of orthokeratology lens. Results
indicated that the linear SVM and Gaussian process machine
learning models achieves best performance, the R-squared values
for the output AC1K1, AC1K2 and AC2K1 values were 0.91, 0.84,
and 0.73. Prediction of orthokeratology lens curvature based on
the ML model can reduce the number of lens trials, improve
efficiency and accuracy, and reduce the probability of cross-
infection caused by the test lens. By analyzing the clinical data
of 1,037 Chinese myopic adolescents, Fan et al. (2021), developed
a ML model on basic of Support vector machines (SVMs),
Gaussian processes, Linear Regression (Robust) algorithms.
This model is able to predict the return zone depth (RZD)
and landing zone angle (LZA) of four quadrants of corneal
refractive therapy (CRT) lenses under different combinations
of age, sex and ocular parameters. Results showed that this model
achieved higher accuracy, and is easier to use and faster to
implement compared to the traditional sliding card method.

To predict the treatment effect of orthokeratology, Fang et al.
(2023) developed a ML model based on Logistic least absolute
shrinkage and selection operator (LASSO) regression algorithm.
The study collected the ocular parameters and clinical
characteristics of 91 patients undergoing ortho-k treatment. It
turned out that factors such as, lens wearing time, age, axial
length, outdoor activity time, and white-to-white distance were
strongly associated with treatment effects, with AUC values
0.949 and C-statistic of the predictive model was 0.821. This
demonstrates how the MLmodel-based prediction of contact lens
efficacy can help clinicians make clinical judgments and select
more suitable treatment alternatives for patients. The above
studies are summarized in Table 1.

Myopia as a common refractive problem exists widely in
adolescents and adults. Myopia tends to progress rapidly in
adolescence. Variable degrees of fundus changes will also be
present in individuals with high myopic in addition to vision
loss, floaters, and flash sensations. The risk of retinal detachment,
hiatus, fundus hemorrhage, and neovascularization is
significantly higher than it is in healthy individuals. Therefore,
early prediction and diagnosis of different types of myopia are of
great significance for myopia treatment and prevention of
complications. The prediction, classification diagnosis and
auxiliary treatment of myopia based on artificial intelligence
can greatly improve the diagnosis and treatment efficiency and
accuracy of clinicians, and play an important role in the large-
scale screening of myopia.

2.2 Application of AI models and algorithms
in strabismus

Strabismus refers to any clinical phenomenon of visual axis
deviation that can be caused by binocular abnormalities,
neuromuscular abnormalities in eye movement control, or
various other mechanical limitations (Sousa de Almeida et al.,
2015). Strabismus can be divided into different types according
to fusion state, eye movement and fixation, eye position, and age of
occurrence (Castanes, 2003; Mojon-Azzi et al., 2011), and is
commonly associated with visual development in children.
Studies have shown that a prevalence of is 2%–4% for strabismus
in children worldwide, which is significantly higher than observed in
adults (Chia et al., 2010). One of the main issues with strabismus is
that it can lead to abnormal visual functions such as strabismic
amblyopia and seriously endanger the physical and mental health of
infants and children, rendering timely diagnosis and treatment
particularly important (Kelkar et al., 2015; Debert et al., 2016).
At present, the common examination methods for strabismus in
clinics include masking and cover-uncover tests, alternate cover
tests, prism and cover tests, corneal reflection methods,
synoptophore examinations, diagnostic strabismus tests, and eye
movement traction tests (Chia et al., 2007; Wang et al., 2018; Yoo
et al., 2019). Traditional strabismus diagnosis methods usually
require manual examination by ophthalmologists, which is time-
consuming and labor-intensive with subjective results. The
application of AI technology in strabismus amblyopia has
achieved muchand is thus expected to improve the current state
of diagnosis and treatment for strabismus amblyopia.

Frontiers in Cell and Developmental Biology frontiersin.org05

Wang et al. 10.3389/fcell.2023.1170068

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1170068


TABLE 1 Application summary of different AI models and algorithms used in myopia.

Authors Task Sample size AI algorithms Output

Varadarajan et al.
(2018)

Prediction 266627 images Residual network, Soft-attention layer Average absolute error of two datasets = 0.56 D, 0.91 D

Lin et al. (2018) Prediction 132
457 individuals

Random forest AUC for 3 years = 0.940–0.985

AUC for 5 years = 0.856–0.901

AUC for 8 years = 0.801–0.837

Tang et al. (2020) Prediction 1,011 individuals Linear Regression (linear) R2 of robust linear expression model = 0.87

Linear Regression (Robust)

SVM (linear)

SVM (Quadratic)

SVM (Cubic)

Bagged Trees

Yang et al. (2020) Prediction 3,112 individuals SVM Accuracy = 0.93

Specificity = 0.94

Sensitivity = 0.94

AUC = 0.98

Foo et al. (2023) Prediction 7,456 images image, clinical and mix (image + clinical)
models

Image models

AUC of Primary dataset = 0.93–0.95

AUC of Test dataset = 0.91–0.93

Clinical models

AUC of Primary dataset = 0.90–0.97

AUC of Test dataset = 0.93–0.94

Mixed (image + clinical) models: AUC of Primary dataset = 0.97

Test dataset = 0.97–0.98

Sogawa et al.
(2020)

Classification 910 images VGG16 AUC = 0.970

VGG19 Sensitivity = 0.906

DenseNet121 Specificity = 0.942

InceptionV3ResNet50 Accuracy = 0.889

Yang et al. (2020) Diagnosis 2,350 individuals DCNN AUC = 0.9270, sensitivity = 0.8113

VGG-Face specificity = 0.8642

Hemelings et al.
(2021)

Diagnosis 1,200 images CNN AUC = 0.9867

Li et al. (2023) Diagnosis 1,200 images MyopiaDETR A PAP50 = 0.8632

Li et al. (2022) Classification 412 images InceptionResnetV2 AUC = 0.961–0.999

Sensitivity >0.90, Specificity >0.90

Xie et al. (2020) Screening 6,465 images InceptionResNetV2 Accuracy = 0.947

Yoo et al. (2020) Surgery 18,480 individuals Multiclass XGBoost Accuracy of internal validation dataset = 0.81

Accuracy of external validation datasets = 0.789

Wan et al. (2023) Prediction 10176 images Resnet50 Accuracy = 0.96

XG Boost AUC = 0.962–0.998

(Continued on following page)
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Kang et al. (2022) constructed a DL model based on the U-Net
network that can segment the cornea and scleral limbus and then
classify the segmented eye region to realize automatic strabismus
detection using 828 gaze photographs of strabismus patients with
different eye positions used to train and verify the model. After
verification, an accuracy of 0.9984 was obtained for corneal
segmentation using the model, with a sensitivity of 0.9747,
specificity of 0.9990, diameter similarity coefficient (DSC) of
0.9688, while the accuracy of limbal segmentation was 0.9992,
with a sensitivity of 0.9563, specificity of 0.9996, and DSC of
0.9571. To develop a DL system that can assist in diagnosing
strabismus, Mao et al. constructed a system based on
InceptionResNetV2 using 5,797 corneal light reflection photos to
develop, train, and verify the system (Mao et al., 2021). The system
diagnoses strabismus by identifying different gaze states in reflective
corneal photos. After training and testing, the experimental results
showed sensitivity, specificity, and AUC of 0.991, 0.983 and
0.998 respectively, for the system. Another app that was
developed by de de Figueiredo et al. (2021) based on the
Resnet50 neural network can diagnose strabismus by identifying
the different gaze positions of patients. The app was developed using
gaze photos from 110 patients and the overall accuracy in the
diagnosis of strabismus was between 0.42 and 0.92, with
precision between 0.28 and 0.84. The above studies show that the
AI model performs well in the auxiliary diagnosis of strabismus and
has the potential for clinical application, where it may improve the
accuracy of strabismus diagnosis and reduce the work pressure of
clinicians.

Zheng et al. (2021) used a convolutional neural network and
three deep convolution neural networks (Faster R-CNN, VGG16,
Inception-V3, and Xception) to construct a DL model that can
detect strabismus through the gaze of children using 7,530 primary
gaze photos to develop, train, and verify the model. After external
verification, a sensitivity of 0.940 was with a specificity of 0.993,
AUC of 0.990, and accuracy of 0.950, for the model, which is better
than that acquired by clinicians. Chen et al. (2018) constructed a DL
model that can recognize strabismus using six different convolution
neural networks (AlexNet, VGG-S, VGG-M, VGG-16, VGG-F,
VGG-19). They collected gaze deviation images from 42 subjects
and used them to train and verify the model. The results indicated

that VGG-S had the best performance in recognizing strabismus,
with a specificity of 0.960 and sensitivity of 0.941. Huang et al. (2022)
constructed a strabismus screening and classification method based
on the ResNet-12 network and used positive facial images from
60 subjects to train and test. This method identifies eye position in
frontal facial images to diagnose strabismus and resulted in
accuracy, sensitivity, and specificity for screening and
classification values of 0.805, 0.768, and 0.842, respectively. To
better assist in strabismus screening, Huang et al. (2021)
constructed a DL model for strabismus screening based on the
convolution neural network with 60 frontal facial images for training
and verification. The experimental results showed that sample mean
and standard deviation values for normal images of 1.073 ±
0.014 and 0.039, respectively, while those for strabismus images
were 1.924 ± 0.169 and 0.472, respectively. The results of the above
AI model in strabismus screening and recognition indicate that AI
will likely be applied to strabismus screening in the future. The
development of remote diagnosis methods for strabismus also
overcomes limitations surrounding spatial distance, which is also
significant for early detection and treatment in ophthalmopathy.

Liu et al. (2019) developed a DLmodel based on a support vector
machine that can predict the time it will take for a patient to achieve
visual function following strabismus surgery from the deviation
angle of the eye position 1 day and 6 months after the operation. In
this study, using the surgical data of 132 patients to train and test the
model and a prediction accuracy of 0.821 was achieved. To aid
patients with strabismus in selecting the best surgical treatment
strategy, Almeida et al. (2015) proposed an AI method based on
support vector regression, with the clinical data of 88 strabismus
patients used to train and verify the method. This method can be
used to decide the best surgical treatment strategies for strabismus
patients according to the deviation degree, deviation type, visual
acuity data, diopter, and fundus examination data of strabismus
patients. Finally, the results showed that the average error in the
proposed surgical treatment strategy was 0.5 mm for recoil and
0.7 for resection for medial rectus surgery while the mean error was
0.6 for recoil and 0.8 for resection in lateral rectus surgery, indicating
that this method is feasible for use in planning strabismus surgery.
Lou et al. (2022) constructed a novel recurrent residual CNN with
global attention gate based on GAR2U-Net to automatically evaluate

TABLE 1 (Continued) Application summary of different AI models and algorithms used in myopia.

Authors Task Sample size AI algorithms Output

Fan et al. (2021) Prediction 1,271 individuals Linear Regression (Robust) R-squared values for the output AC1K1, AC1K2 and
AC2K1 values = 0.91, 0.84, 0.73

SVM (linear)

Bagged Trees

Gaussian processes

Fan et al. (2021) Prediction 1,037 individuals SVM (SVMs) R values for the nasal, temporal, superior and inferior LZA =
0.843, 0.693, 0.866, 0.762, RZD = 0.970, 0.964, 0.975, 0.964

Gaussian processes

Linear Regression (Robust)

Fang et al. (2023) Prediction 91 individuals Logistic least absolute shrinkage and selection
operator (LASSO) regression

AUC = 0.949

95%CI:0.815, 0.827
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the Inferior oblique overaction (IOOA). This study included
106 eyes of 72 consecutive patients, and the height difference
between the inferior corneal limbus of both eyes were measured.
The results showed significant correlations measurements and
clinical gradings. The new method allows for objective, accurate
and reproducible IOOA measurements and has obvious advantages
such as low cost, easy acquisition and wide measurement range
compared with conventional methods. The above studies are
summarized in Table 2.

Strabismus as a common eye disease, if not timely diagnosis and
treatment, may lead to significant vision loss or even blindness.
More importantly, strabismus will bring serious psychological
burden to patients, resulting in many adverse consequences.
Therefore, it is very important for timely diagnosis and treatment
of strabismus. The above AI studies show that AI can play an
important role in the diagnosis of strabismus. It can not only
diagnose strabismus without ophthalmologist, but also
significantly reduce the cost of diagnosis.

TABLE 2 Application summary of different AI models and algorithms used for strabismus.

Authors Task Sample size AI algorithms Output

Kang et al. (2022) Diagnosis 828 images U-Net Accuracy = 0.9984

Sensitivity = 0.9747

Specificity = 0.9990

DSC = 0.9688

Mao et al. (2021) Diagnosis 5,797 images InceptionResNetV2 Sensitivity = 0.991

Specificity = 0.983

AUC = 0.998

de Figueiredo et al. (2021) Diagnosis 110 individuals Resnet50 Accuracy = 0.42–0.92

Precision = 0.28–0.84

Zheng et al. (2021) Detection 7,530 images Faster R-CNN Sensitivity = 0.940

VGG16 Specificity = 0.993

Inception-V3,Xception AUC = 0.990

Accuracy = 0.950

Chen et al. (2018) Detection 42 individuals AlexNet Specificity = 0.960

VGG-F

VGG-M

VGG-S Sensitivity = 0.941

VGG-16

VGG-19

Huang et al. (2022) Detection 60 individuals ResNet-12 Accuracy = 0.805

Sensitivity = 0.768

Specificity = 0.842

Huang et al. (2021) Detection 60 images CNN The sample mean and standard deviation of normal images = 1.073 ± 0.014, 0.039

The sample mean and standard deviation of strabismus images = 1.924 ± 0.169,
0.472

Liu et al. (2019) Prediction 132 individuals SVM Accuracy = 0.821

Almeida et al. (2015) Prediction 88 individuals Support Vector Regression The average error for recoil = 0.5 mm

The average error for resection = 0.7 mm

The mean error for recoil = 0.6 mm

The mean error for resection = 0.8 mm

Lou et al. (2022) Prediction 106 eyes GAR2U-Net Kendall’s tau: 0.721; 95% confidence interval: 0.652 to 0.779; p < 0.001
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2.3 Application of AI models and algorithms
in keratoconus

Keratoconus (KC) is a non-inflammatory corneal disease
characterized by thinning of the corneal stroma, anterior
protrusion, and irregular astigmatism. Thinning occurs in or
near the center of the cornea, with subtemporal thinning the
most common (Romero-Jiménez et al., 2013; Sharif et al.,
2018). The prevalence rate of KC is approximately 1/2000–1/
500, and it usually occurs during puberty, generally in one eye,
with early symptoms including blurred vision and photophobia.
Visual acuity declines progressively as the disease progresses, with
irregular corneal astigmatism, monocular diplopia, and even
irreversible vision loss observed (Jones-Jordan et al., 2013;
Mostovoy et al., 2018; Flockerzi et al., 2021). The etiology and
causes of this disease have not yet been clarified; however, studies
have suggested that it may be related to structural changes in the
corneal collagen tissue (Kankariya et al., 2013). Early diagnosis of
KC is difficult, and is generally made by comprehensive analysis of
the corneal topography and biomechanical characteristics during
evaluation (Randleman et al., 2008; Santodomingo-Rubido et al.,
2022). Currently, contact lenses, corneal cross-linking treatment,
keratoplasty, and several other methods are used to treat the
disorder (Godefrooij et al., 2017; Röck et al., 2018; Ferdi et al.,
2019); however, corneal transplantation can lead to rejection,
complicated cataracts, iris atrophy, secondary glaucoma, and
other problems (Shah et al., 2010). Therefore, the early
detection of KC and timely intervention are of great
significance in controlling the progress of the disease and
maintaining good vision. AI models that are useful in
diagnosing KC have so far been established using SVM,
decision tree, CNN, multilayer perception neutral networks
(MLPNN), and feed forward neural networks (FNN), all of
which have been found helpful in the early diagnosis of KC
(artificial intelligence and corneal diseases, 2022).

Combining corneal topography with AI was found useful in
improving the accuracy of KC diagnosis. Using three types of
convolution neural networks (ResNet152, VGG16Net, Inception
v3), Kuo et al. (2020) constructed a DLmodel that can diagnose KC
and 359 corneal topographic maps were used to train and verify the
model. The results showed sensitivities and specificities
of >0.90 for all the CNN models, of which ResNet152 exhibited
the best diagnostic performance with an AUC value of 0.995. Al-
Timemy et al. (2021) constructed an AI model that can diagnose
KC based on the hybrid DL algorithm using 3,794 corneal images
(divided into normal cornea, suspected KC, and keratoconus).
According to data describing the anterior and posterior
eccentricity, anterior and posterior sagittal arc, and corneal
thickness, corneal features were extracted for training and
verification of the AI model, with results indicating AUC values
of 0.99 and 0.93 and accuracies of 0.988 and 0.815, respectively, for
KC. Compared with the previous single CNN model, which is
sometimes highly sensitive to slight disturbances in the pixels
comprising the input image, the hybrid algorithm provides more
reliable results. Zéboulon et al. (2020) established an ML model
based on a CNN to diagnose KC. They collected 3,000 corneal
topography maps (normal corneal topography, KC topography,
and corneal topography with a history of refractive surgery) and

used the data of anterior corneal height map, posterior corneal
height map, anterior keratometry map, and corneal thickness map
for training and testing. After testing, the results showed that the
accuracy of the model was as high as 0.993 in diagnosing KC, and
thus has potential for application in clinical practice. Kamiya et al.
(2021) constructed a DL model for diagnosing normal corneas and
KC based on the VGG-16 neural network, using 519 corneal
topographic images that were coded by color to train and test
the model. The results showed that the model performed well in
diagnosing KC, with an accuracy of 0.966, sensitivity of 0.988, and
specificity of 0.944. Using CNNs, Kato et al. (2021) constructed an
AI model that could predict the progress of KC. In this study,
274 corneal tomography images were collected and before and
after anterior keratogram and corneal thickness images combined
to form the training set and test set of DL model. measured to form
the training and test sets for the DL model. The results showed that
AUC, sensitivity, and specificity values of 0.81, 0.78, and 0.70,
respectively, for predicting KC progression. The above research
results illustrate the usefulness of using AI for the auxiliary
diagnosis of KC, for which it can significantly improve the
accuracy of a diagnosis, save time, and provide the best
treatment for patients.

AI can help ophthalmologists effectively distinguish KC from
normal corneas and classify diseases by analyzing the corneal
shape and thickness, among other parameters. In order to assist
KC classification, Feng et al. (2021) created a DL algorithm
(KerNet algorithm). They used 854 corneal images together
with original data such as the anterior and posterior surface
curvature, anterior and posterior surface topography, and
corneal thickness to form a numerical matrix for the training
and verification of the algorithm. The results showed that the
algorithm could achieve better results than the most advanced
methods in detecting and classifying KC, especially subclinical
KC, with an accuracy of 0.95. To distinguish KC from subclinical
KC and normal cornea, Abdelmotaal et al. (2020) constructed a
DL model based on a CNN and collected 3,218 corneal images for
training and testing. The model can be realized using a single
image for highly accurate KC classification, with an average of
0.983, and the fact that less computing resources are required
renders this model advantageous in terms of applicability to large-
scale disease screening without sufficient data. Aatila et al. (2021)
constructed some DL models using a variety of algorithms
(random forest classifier, Gaussian naive Bayes classifier, K
neighbors classifier, logistic regression, linear discriminant
analysis, decision tree classifier, and support vector machine)
for the classification of KC. They used 12 242 corneal
topography maps to compare the classification performance of
the different DL models. The results indicated that random forest
had the best classification performance, with an accuracy as high
as 0.95. Cao et al. (2020) constructed an AI model that can
distinguish subclinical KC from non-KC based on a variety of
DL algorithms (random forest, decision tree, logistic regression,
support vector machine, linear discriminant analysis, multilayer
perceptron neural network, lasso regression, and k-nearest
neighbor). Corneal parameters of 49 subclinical KC and
39 control eyes were analyzed, with diagnostic results showing
an AUC of 0.97 for the random forest random forest model. This
indicates that selecting a combination of important parameters
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from a larger set of parameters would lead to more objective and
effective KC screening when constructing a ML model, rendering
it a useful tool in clinical practice. The above studies are
summarized in Table 3.

Late keratoconus often leads to severe vision loss or even
blindness in patients. Early and timely treatment can effectively
alleviate the progression of keratoconus and protect patients’ vision.
Therefore, for patients with keratoconus, early diagnosis and timely
treatment are very important. The above AI studies show that AI has
carried out a lot of research in the diagnosis, classification and
prediction of keratoconus, and the AI model has shown good
performance. AI model can provide great help to doctors in the
clinical diagnosis of keratoconus, and automatically complete the
relevant diagnosis and treatment work, so as to reduce the workload
of doctors, which has important clinical significance to improve the
efficiency of doctors.

2.4 Application of AI models and algorithms
in the preoperative measurement and effect
prediction of intraocular lenses

An intraocular lens (IOL) is a special lens made of synthetic
materials that can replace the human lens (Lundström et al., 2018).
The development of cataract surgery and the demand for high visual
quality has meant that cataract surgery has evolved from visual
rehabilitation to accurate refractive surgery with high visual quality
(Piovella et al., 2019). The choice of intraocular lens has also
gradually diversified from unifocal to functional intraocular
lenses (Simon et al., 2014). The postoperative visual acuity of
patients depends to a large extent on accurate biometric and IOL
diopter calculations prior to operating. However, the changes that
occur in the intraocular structure of some patients before surgery
renders calculation of the IOL diopter difficult, and postoperative

TABLE 3 Application summary of different AI models and algorithms in keratoconus.

Authors Task Sample
size

AI algorithms Output

Kuo et al. (2020) Diagnosis 359 images ResNet152 AUC = 0.995

VGG16Net

Inception v3

Al-Timemy et al.
(2021)

Diagnosis 3,794 images unsupervised machine learning AUC = 0.99, 0.93

Accuracy = 0.988,0.815

Zéboulon et al. (2020) Diagnosis 3,000 images CNN Accuracy = 0.993

Kamiya et al. (2021) Diagnosis 519 images VGG-16 Accuracy = 0.966, Sensitivity = 0.988,
Specificity = 0.944

Kato et al. (2021) Prediction 274 images CNN AUC = 0.81

Sensitivity = 0.78

Specificity = 0.70

Feng et al. (2021) Classification 854 images KerNet Accuracy = 0.95

Abdelmotaal et al.
(2020)

Detection 3,218 images CNN Accuracy = 0.983

Aatila et al. (2021) Classification 12242 images Random forest classifier Accuracy = 0.95

Gaussian naive bayes classifier

K neighbors classifier

Logistic regression

Linear discriminant analysis

Decision tree classifier

SVM

Cao et al. (2020) Classification 88 images Random forest, Decision tree, Logistic regression, Support
vector machine

Accuracy = 0.97

Linear discriminant analysis

Multilayer perceptron neural network

Lasso regression

K-nearest neighbor
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complications can easily occur in surgery for issues such as high
myopia (Savini and Hoffer, 2018; Yao et al., 2021). In addition, the
abnormal position of the IOL that can result from various factors
will seriously affect visual quality after surgery (Wang et al., 2022). In
recent years, IOL calculation methods based on AI have shown good
performance and been proved able to effectively improve the
accuracy of IOL diopter calculations (Wang et al., 2016; Melles
et al., 2019; Nemeth et al., 2022). At the same time, a variety of
methods such as slit-lamp photography, slit-lamp video
photography, and OCT can be combined to determine the
location of the IOL (Mura et al., 2010; Omoto et al., 2022).

Using AI in designing the IOL calculation formula can improve
the accuracy of the calculation according to the characteristics of
different patients so that better visual quality can be obtained
following surgery. Mori et al. (2021) constructed an ML model
based on a support vector regression algorithm to adapt the diopter
calculation method for intraocular lens in a specific patient
population to improve the accuracy of the calculation. By
analyzing the clinical data for 11 611 eyes with a single
monofocal IOL implantation model, the constants of the SRK/T
and Haigis formulas were optimized and the support vector
regression algorithm was used to adapt the SRK/T, Haigis, Hill-
RBF, and Barrett Universal II formulas. The results showed a smaller
average error in the optimized formula for calculating the IOL
diopter than that obtained using the other formulas (p < 0.001). To
improve the accuracy in calculating the IOL degree for high myopia,
Wei et al. (2020) developed an AI calculation model based on the
XGBoost regression algorithm. They collected data from 1,564 high
myopia eyes for training and verification and combined a constant
IOL diopter with the Barrett Universal II formula and other data,
they developed a new IOL calculation method. The results showing
significant decreases in the median absolute and median square
errors as compared to those obtained under the BUII formula (p ≤
0.001), and the proportion of eyes with prediction errors
within ±0.25D increased significantly. Cabeza-Gil et al. (2020)
proposed two intraocular lens calculation models based on the
DNN algorithm to calculate the biomechanical stability of IOL
which were then verified using data from 37,161 cases. Six
parameters (length, width, thickness, opening angle of the haptic,
tactility, and haptic-optic junction in the reference data) were used
to enhance the consistency of patient characteristics so as to improve
the success rate of the operation. The results showed Pearson’s r
values of 0.995 and 0.992 for the two models; indicating good
performance. Clarke and Kapelner (2020) designed a more
accurate diopter calculation model for the intraocular lens,
Bayesian Additive Regression Trees (BART), which was based on
theML algorithm. They collectedmeasurement data from 5,331 eyes
divided into training and verification subsets based on the specific
characteristics of patients and their eyes. The results showed an
average absolute error of 0.204 D, proving that the diopter of the
intraocular lens calculated by this model was more accurate than
that obtained by other commonly used formulas.

The calculation formula for the IOL has undergone several
generations of evolution at different times. The first-generation
formula is based only on regression data, while the second-
generation formula includes the influencing factor of axis length
and the third-generation formula refers to optics and IOL position
factors. Methods for formula optimization are now more abundant,

and combined with artificial intelligence, the accuracy of IOL
calculation has been much improved. Guillaume et al. (2021)
constructed an ML model based on the multiple linear regression
algorithm to improve the IOL formula and constructed the new
PEARL-DGS formula to calculate the diopter of IOLs by analyzing
the data of 4,242 intraocular lens implants. The examination data of
another 677 eyes were collected and compared with the K6 and
Olsen, EVO 2.0, RBF 3.0, and BUII formulas, with results showing
the smallest calculation error when using the PEARL-DGS formula
with an error range of ±0.382 D, which indicates that completely
retraining the formula, rather than the conventional constant
adjustment, can allow adaption to the habits of doctors and the
characteristics of specific patient groups. Ladas et al. (2021)
constructed an AI model based on DL algorithms (extreme
gradient boosting, support vector regression, artificial neural
network) to optimize the existing diopter calculation formula for
intraocular lens and develop a new hybrid formula based on AI.
They analyzed the eye data of 1,391 patients who underwent IOL
implantation, with the factor axial length, anterior chamber depth,
lens thickness, sex, age, and postoperative significant diopter
considered, and determined both the average absolute error in
each IOL formula and the number of eyes that predicted diopter
within 0.5 D. After AI optimization, the average percentage of eyes
within ±0.5 D predicted by the SRK formula increased to 14%, the
Holladay 1 formula increased by 9.3% and the LSF formula
increased by 5.3% (p < 0.05), while in terms of average absolute
error, the predicted diopter of optimized SRK formula decreased to
0.14 D, the Holladay 1 formula decreased to 0.08D and the LSF
formula decreased to0.04D.

In the process of intraocular lens implantation, the influence
that location and the size of the anterior and posterior space have on
visual quality and postoperative complications can easily be ignored.
An IOL localization method based on AI can effectively solve this
problem. Schwarzenbacher et al. (2022) used a CNN to construct a
DL model that can automatically divide the IOL, Retrolental, and
Berger’s space and analyze the spatial resolution to accurately locate
the target structure. In the study, a total of 92 eye OCT images were
used to train and varify the model, with results indicating Precision,
Recall, and Dice scores of 0.97, 0.90, and 0.93, respectively,
indicating that the model has high accuracy in locating the IOL.
This is the first time that this type of algorithm has been proposed to
automatically segment the posterior structure of the anterior
segment. To evaluate the position of the IOL in three-
dimensional space, Xin et al. (2020) constructed an AI evaluation
model based on a region-based fully convolutional network
(R-FCN), with 86 AS-OCT images used to train and verify the
model. The results showed an evaluation efficiency of 0.910 for the
model, with intraclass correlation coefficients (ICC) of 0.867 and
0.901 for reliability and repeatability, respectively, evaluating the
location of the IOL in a three-dimensional space to provide data
support for the design of a better functional IOL. The above studies
are summarized in Table 4.

Intraocular lens implantation is a common method of ocular
surgery. Patients’ postoperative visual acuity is highly correlated
with their accurate preoperative biometric features and IOL diopter
calculation. AI-based IOL diopter calculation can effectively
improve the accuracy and help solve some cases with
complicated intraocular structure. In addition, artificial
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intelligence can assist in determining the location of IOL
implantation, which plays an important role in improving
patients’ visual quality and reducing postoperative complications.

2.5 Application of AI models and algorithms
in amblyopia

Amblyopia is a decrease in monocular or binocular best-
corrected visual acuity that leads to abnormal visual experiences
(monocular strabismus, anisometropia, high ametropia, and form
deprivation) during visual development (Kates and Beal, 2021).
Factors that cause amblyopia include ametropia, strabismus,
anisometropia, ptosis, lens opacity, and form deprivation (Paff
et al., 2010; Rajavi et al., 2012; Barrett et al., 2013). According to
its etiology, amblyopia is mainly divided into strabismic,
anisometropic, ametropic, and form deprivation amblyopia
(Maurer and K. S., 2018; Birch, 2013). Amblyopia can be mild,
moderate, or severe. The main manifestations of amblyopia are
lower than normal best-corrected visual acuity, crowding,
paracentric fixation, prolonged PVEP latency, and decreased
amplitude of visual evoked potentials (Lempert, 2006; Hess and
Thompson, 2015). At present, the main treatment strategy for
amblyopia is to remove the factors that cause deprivation as soon
as possible, with cataract treatment, complete ptosis correction, the
use of appropriate corrective glasses, covering healthy eyes, and
optical drug suppression therapy all used (Birch et al., 2021;
Boniquet-Sanchez and Sabater-Cruz, 2021; Meier and Tarczy-
Hornoch, 2022). According to the law of visual development,
early detection, diagnosis, and intervention are particularly
important for patients with amblyopia, and can significantly
improve the therapeutic effects (Holmes and Levi, 2018).

Murali et al. (2020) constructed a DL model based on a CNN
for screening the risk factors for amblyopia in children. This model
can identify biological characteristics such as corneal light
reflection, iris center position, pupil radius, and ratio of eye
radius to iris diameter from the facial image, allowing easy
screening of the risk factors in children. They collected facial
images of 54 participants to train and test the model, with
results indicating an accuracy of 0.796, sensitivity of 0.882,
specificity of 0.756, and an F-score of 0.732. Murali et al. (2021)
collected facial images of 654 participants (randomly divided into
training and verification sets) and constructed a DL model that
could screen and identify the risk factors of amblyopia in children
based on a convolution neural network. After verification, the
values of 0.908, 0.836, and 0.859, respectively, for accuracy,
sensitivity, and specificity indicate that the use of DL to analyze
photographic images is an effective alternative method for
screening risk factors in children with amblyopia. The above
studies show that using AI to recognize the biological features
of children’s facial images allows accurate detection of the risk
factors for amblyopia, which is of great significance for amblyopic
children. The above studies are summarized in Table 5.

Amblyopia is a common eye disease in children. for amblyopic
children, the therapeutic effect is closely related to age, and the
younger the age, the better the therapeutic effect. In addition, early
treatment not only has a short course of treatment, but also has a
significantly higher cure rate. Therefore, it is particularly important
to screen the risk factors of amblyopia in children. Through the
above research, we can see that AI shows a good performance in the
screening of risk factors of amblyopia in children. Its use in the
screening of risk factors of amblyopia in children can not only save
manpower, material and financial resources, but also is of great
significance for the early treatment of children with amblyopia.

TABLE 4 Application of different AI models and algorithms in intraocular lens calculation and postoperative prediction.

Authors Task Sample size AI algorithms Output

Mori et al. (2021) Optimization 11611 eyes Support vector regression The average calculation error of IOL diopter calculated by the optimized
formula is smaller than that of other formulas (p < 0.001)

Wei et al. (2020) Design 1,564 eyes XGBoost regression Median absolute errors and median square errors decreased significantly (p <
0.001)

Cabeza-Gil et al. (2020) Design 37161 individuals DNN Pearson’s r of two models = 0.995 and 0.992

Clarke and Kapelner
(2020)

Design 5,331 eyes Bayesian Additive Regression
Trees

The average absolute error = 0.204 D

Debellemanière et al.
(2021)

Optimization 4,919 eyes Multiple linear regression The error range = ± 0.382 D

Ladas et al. (2021) Optimization 1,391 eyes Support vector regression The accuracy rate of each calculation formula is improved after optimization

Extreme gradient boosting

ANN

Schwarzenbacher et al.
(2022)

Location 92 images CNN Precision = 0.97

Recall = 0.90

Dice score = 0.93

Xin et al. (2020) Assessment 86 images Region-based fully
convolutional network

Intragroup correlation coefficient of reliability = 0.867

Intragroup correlation coefficient of repeatability = 0.901
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3 Limitations and challenges

As can be seen from the above studies, AI has been widely used
in optometry. Many AI models and algorithms have shown
superior performance in the diagnosis, identification, screening,
prediction, and treatment of disease with satisfactory results
achieved. However, there remain many challenges and
limitations that are likely to seriously affect further research and
the application of AI in the field of optometry. For example, 1) The
quality of the image in the data set (Ting et al., 2019; Xie et al.,
2020). The datasets used in some studies are public, and include
many poor-quality images. Because the research results of the AI
model are closely related to image quality, this issue will
significantly impact the AI model, resulting in inaccurate results.
2) Sample size (Chen et al., 2018; Huang et al., 2021; Gutierrez et al.,
2022; Huang et al., 2022). The small sample size in some studies is
likely to affect the stability of the AI model, affecting the reliability
of the results. For example, in some AI studies of strabismus,
amblyopia and other diseases, the sample size in the data set is
small, which will have a certain impact on the performance of the
final AI model. 3) External verification of the algorithm (Wawer
Matos et al., 2022; Wong et al., 2022). Some AI models have
excellent performance in training and verification; however,
there is a huge gap between the “real environment” and the
“research environment”, which may lead to performance
degradation and produce unstable results when such AI models
are applied to clinical diagnosis and treatment. For example, in the
research of strabismus, keratoconus and other diseases, many AI
models are verified only on external data sets, but not in the “real
environment.” 4) Validity of the datasets (Ting et al., 2019; Ng et al.,
2021). The images used in many studies need to be annotated, with
strict requirements for labeling l. The validity of the data used is
particularly important for the research results of an AI model. For
example, in some studies, the task of image annotation is completed
by residents, which may be difficult to ensure the accuracy of image
annotation, thus affecting the performance of the AI model. 5)
Interpretability of AI algorithms (Al-Aswad et al., 2022; Betzler
et al., 2022). Because AI belongs to a subfield of computer science,
many clinical medical staff have little AI-related knowledge, which
leads to incorrect interpretation in the process of clinical
application, resulting in the so-called “black box phenomenon.”
6) AI model may lead to medical legal problems (Ji et al., 2022). No

one is perfect, and artificial intelligence cannot be 100% accurate.
When the diagnosis of the AI model is wrong or even has serious
consequences, how to determine its behavior? Who should bear the
consequences? These will become some thorny medical legal issues.
7) The privacy and security of patients (Murdoch, 2021). Medical
data focus on patients’ health, disease status, biological genes and
other information, once leaked, the consequences are
unimaginable. The privacy security problems of medical artificial
intelligence are as follows: do patients fully get their informed
consent in the process of data collection? In the event of a privacy
leak, who will be held responsible? Who has the right to get
information about a patient’s health or disease? These are all
important and urgent problems to be solved. 8) The lack of legal
protection related to AI technology. In recent years, the rapid
development of AI technology has greatly changed our lives.
However, the legislative process for artificial intelligence is
relatively slow. Artificial intelligence needs to have
corresponding laws and regulations in all aspects of research
and development, development and production process, and
stipulate the ownership of responsibility and the direction of
development; artificial intelligence (especially deep learning) if
there is no legal escort, will seriously affect its development and
application.

4 Conclusion

Through the above AI research, it can be found that many
research achievements have been made in the application of AI in
the field of optics, and the application prospect is very broad, which
can bring reform and progress to the field of optics in many aspects.
Intelligent systems based on different AI algorithms can help
ophthalmologists better diagnose and treat diseases in the field of
optometry according to patients’ eye clinical data and personal data,
which has important clinical significance. But for clinical medical
staff, only this is far from enough. Because this shallow clinical
application plays a more auxiliary role, such as reducing the
repetitive physical labor of clinical medical personnel, improving
the accuracy of diagnosis and so on. If we want to fully apply AI to
ophthalmic clinic, AI must have more functions. It can not only
complete the assigned tasks, but also develop more technologies and
methods according to the characteristics of each task. In addition, AI

TABLE 5 Application summary of different AI models and algorithms in amblyopia.

Authors Task Sample size AI algorithms Output

Murali et al. (2020) Detection 54 images CNN Accuracy = 0.796

Sensitivity = 0.882

Specificity = 0.756

F-Score = 0.732

Murali et al. (2021) Detection 654 images CNN Accuracy = 0.908

Sensitivity = 0.836

Specificity = 0.945

F-Score = 0.859
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also needs to pay more attention to those unsolved technologies and
challenges, so as to better promote the clinical application of AI in
ophthalmology.

As mentioned in this review, AI can complete specified tasks by
building algorithm models and DL networks, particularly image
recognition, classification, diagnosis, and data analysis. Although
there are still several challenges associated with AI modeling, it can
provide doctors with objective clinical decisions, laying the
foundation for accurate treatment. There is an urgent need for
future research into the unknown aspects of target diseases, which
combined with application, could instigate targeted and high-quality
research. Simultaneously, the introduction and application of a
number of standardized norms are that can further improve the
quality of AI medical research and promote AI products will provide
great advantages in the diagnosis and treatment of optometry-
related diseases as soon as possible.

5 Resource identification initiative

PubMed (RRID:SCR_004846).
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