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As the only blood vessels that can directly be seen in the whole body, pathological
changes in retinal vessels are related to the metabolic state of the whole body and
many systems, which seriously affect the vision and quality of life of patients.
Timely diagnosis and treatment are key to improving vision prognosis. In recent
years, with the rapid development of artificial intelligence, the application of
artificial intelligence in ophthalmology has become increasingly extensive and
in-depth, especially in the field of retinal vascular diseases. Research study results
based on artificial intelligence and fundus images are remarkable and provides a
great possibility for early diagnosis and treatment. This paper reviews the recent
research progress on artificial intelligence in retinal vascular diseases (including
diabetic retinopathy, hypertensive retinopathy, retinal vein occlusion, retinopathy
of prematurity, and age-related macular degeneration). The limitations and
challenges of the research process are also discussed.
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1 Introduction

In 1956, artificial intelligence (AI) was first proposed. As a branch of computer science,
the purpose of AI is to develop and study computer methods to simulate and expand human
intelligence and perform complex tasks (Hamet and Tremblay, 2017). Machine learning
(ML) is a subfield of AI, where machines learn and mark a large amount of measured data or
features through statistical algorithms to use the generated empirical model to complete the
task (Deo, 2015). ML can perform the classification task, and the classifier needs to learn to
identify the tag features of the research object and then classify the task according to the tag
features, whichmainly depends on the resolution of the selected features. Deep learning (DL)
is a subfield of machine learning, a multilayer neural network, and a machine learning
method (LeCun et al., 2015). DL is powerful and can not only perform classification tasks,
but also extract features. A single deep learning network can perform two tasks
simultaneously, extract the features of a given classification problem, and then classify
them. Compared with ML, DL has a special advantage; that is, with the increase in training
data, the performance of DL will improve, whereas the performance of ML will reach
saturation with the increase in data. The relationship diagrams for AI, ML, and DL are shown
in Figure 1.
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With the rapid development of computer science in recent years,
AI has made significant progress. AI has been applied in the field of
medicine, especially in ophthalmology, and the clinical application
of AI is particularly extensive. AI has been used to develop AI
models for automatic diagnosis, screening, classification and
treatment, especially in ophthalmic diseases such as ocular
surface diseases (Ji et al., 2022b), anterior segment diseases (Ting
et al., 2021), cataracts (Tognetto et al., 2022), glaucoma (Coan et al.,
2023), and retinal diseases (Ting et al., 2019).

Retinal vascular disease (RVD) is a major retinal disease. The
vascular system of the retina is one of the components of the systemic
circulatory system. There are many causes of retinal vascular diseases,
including the effects of local eye diseases and systemic diseases on
retinal vessels, which can be divided into the following categories: 1)
retinal vascular obstructive diseases, such as retinal vein occlusion; 2)
the effects of systemic diseases on retinal vessels, such as diabetes and
hypertension; 3) retinal vascular inflammatory immune diseases,
such as retinal periphlebitis; and 4) retinal vascular abnormalities
and developmental abnormalities, such as retinopathy of prematurity.
Retinal vascular disease can cause irreversible damage to retinal cells
and can seriously affect the vision of patients. If patients are not
treated in time, they will experience serious vision loss or blindness.
Therefore, for patients with retinal vascular disease, early detection,
diagnosis, and treatment are particularly important, but relatively
insufficient resources for ophthalmic diagnosis and treatment greatly
limit the early diagnosis and treatment of retinal vascular diseases. In
recent years, AI has become increasingly used in ophthalmology,
especially in image recognition and processing of retinal vascular
diseases, which provides a new possibility for early diagnosis and
treatment. This review summarizes the research achievements of AI
for the diagnosis of retinal vascular diseases in recent years and
discusses the limitations and challenges of the research.

2 Basic process of the medical artificial
intelligence diagnosis model for
research

Using the AI model by Tong et al. (2020), we drew a basic flow
chart of the AI research model, as shown in Figure 2. First, the

experts mark the collected images, remove the unqualified images in
the labeled images, and randomly divide the remaining qualified
images into a training dataset, validation dataset, and test dataset
according to a certain proportion. Second, the training dataset and
validation dataset are used to train and optimize the AI model to
obtain the best performing AI model. Finally, we used the test
dataset to test the AI model and compare the AI model’s
performance with the experts.

3 Application of artificial intelligence in
retinal vascular diseases

3.1 Application of artificial intelligence in
diabetic retinopathy

Diabetes is a common metabolic disease that causes extensive
damage to many tissues and organs in the body. Diabetic
retinopathy (DR) is one of the most serious microvascular
complications of diabetes and a common cause of blindness (Lim
et al., 2023). The incidence of DR is primarily related to the course of
diabetes and the degree of disease control. The longer the course of
diabetes, the higher the incidence of DR (Huang et al., 2023). At
present, the pathogenesis of DR is unclear, but glucose metabolism
disorder is the root cause of DR (Han et al., 2023). In the early stage
of DR, patients with general ocular symptoms can experience
various visual impairments with the development of the disease,
among which flash sensation and vision loss are the most common
(Grauslund, 2022). Clinically, DR is divided into non-proliferative
diabetic retinopathy (NPDR) and proliferative diabetic retinopathy
(PDR). The most important sign of PDR is retinal
neovascularization (Sheng et al., 2022). According to the severity
of DR, DR is divided into six stages: stage I, microhemangioma and
small hemorrhagic spot; stage II, yellow-white rigid exudation and
hemorrhagic spot; stage III, white cotton velvet spot and
hemorrhagic spot; stage IV, neovascularization or vitreous
hemorrhage; stage V, neovascularization and fiber proliferation;
and stage VI, neovascularization and fiber proliferation,
accompanied by traction retinal detachment (Mehra et al., 2022;
Yang et al., 2022). The treatment of DR mainly includes the
following aspects: 1) strict control of blood glucose levels, which
can slow the occurrence and progression of DR, 2) laser
photocoagulation, 3) vitrectomy and intraocular
photocoagulation, and 4) vitreous injection of anti-VEGF drugs
(Li F. et al., 2022; Wang et al., 2022).

By analyzing the fundus examination images of DR patients, AI
can complete the automatic diagnosis of DR, which is of great
significance in improving the diagnostic and work efficiency of
doctors. Li X. et al. (2022) constructed an intelligent diagnosis model
for DR based on Inception-v4 to assist in the diagnosis of AI. They
used 8,739 fundus images for the AI model training and evaluated
them using the Messidor-2 dataset. In addition, they compared the
performance of the model with that of ophthalmologists. The final
results showed that the AUC, sensitivity, and specificity of the model
were 0.992, 0.925, and 0.961, respectively, which were better than
those of ophthalmologists. To better assist the diagnosis of severe
DR, Zhang et al. (2022a) developed an AI model that can diagnose
DR automatically on the basis of Inception V3 and applied The

FIGURE 1
The relationship of AI, ML, and DL.
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Kaggle public dataset to the development and validation of the AI
model. After validation, the sensitivity, specificity, and AUC of the
model for diagnosing severe DR were 0.925, 0.907, and 0.968,
respectively. Zhao et al. (2022) constructed several DR prediction
models using five different machine learning algorithms (Random
Forest, Logistic Regression, Extreme Gradient Boosting, Support
Vector Machine, K-Nearest Neighbor) and used the eye data of
7,943 patients to train and test the AI model. In addition, they
compared different AI models to predict the performance of DR.
After testing, the performance of the Extreme Gradient Boosting
model was found to be the best, and its AUC, accuracy, sensitivity,
specificity were 0.803, 0.889, 0.740, 0.811, respectively.

To build an AI model that can automatically detect DR, Hassan
et al. (2022) constructed a DR detection model based on the VGG-
16, ResNet-50, and U-Net. They collected 1804 fundus images, used
them to train the AI model, and validated the model on external
datasets. After validation, the accuracy of the model for the DR
diagnosis was 0.9938. Islam et al. (2022) proposed an AI model that
can detect DR based on supervised contrastive learning and used the

APTOS 2019 Blindness Detection dataset and Messidor-2 dataset to
train and test the AI model. After testing, the accuracy of the DR
detection model was 0.9836 and the AUC was 0.9850. Using a deep
learning algorithm, Elgafi et al. (2022) proposed an AI model that
can detect DR using optical coherence tomography (OCT) images.
In this study, 188 OCT images were collected and applied to the
training and validation of the AI models. Finally, the accuracy of the
model was verified to be 0.9681. By learning the characteristic
lesions in the fundus images of DR patients, AI can detect DR,
which can facilitate the early detection of DR patients, thereby
reducing and improving clinical work pressure.

Zhang et al. (2022b) constructed a deep graph correlation
network (DGCN) model through a convolution neural network,
which can automatically classify DR without professional labeling.
In this study, EyePACS-1 andMessidor-2 datasets were used to train
and test the model. Finally, the results showed that the accuracy,
sensitivity, and specificity of the model on the EyePACS-1 dataset
were 0.899, 0.882, and 0.913, respectively, and the accuracy,
sensitivity and specificity of the model on the Messidor-2 dataset

FIGURE 2
Basic flow chart of the AI diagnosis model for research.
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were 0.918, 0.902, and 0.930, respectively. To assist DR classification,
Zhang W. F et al. (2022) developed an AI classification model based
on ResNet-34 and Inception-v3 and used 1,089 fundus images to
train and test the model. After testing, the AUC of the model was
0.958 and the kappa score was 0.860. Katz et al. (2022) constructed
an AI model based on W-net, which can automatically classify DR.
They collected 6,981 fundus images and used them to train and test
the AI model. The final results showed that the accuracy of the
model was 0.989. We summarize the above research, as shown in
Table 1.

3.2 Application of artificial intelligence in
hypertensive retinopathy

Hypertensive retinopathy (HR) is a common retinal vascular
disease caused by long-term hypertension (Ji et al., 2022a). Fundus
changes in HR patients are related to age and disease course. The
older the age of HR patients, the longer the course of the disease and
the higher the incidence of fundus lesions (Cheung et al., 2022). In
the early stage, there is often no obvious change in the fundus of HR
patients. With the progression of the disease, the retinal artery
gradually changes organically, and the wall of the retina begins to
harden, appearing as a copper wire or silver wire (Di Marco et al.,
2022). The diameter of the artery gradually narrows, and the
proportion of arteries and veins gradually decreases (Dziedziak
et al., 2022). Retinal hemorrhage, hard exudation, cotton velvet

spots, and other changes occur in the fundus; and optic disc edema
may occur in severe cases (Liu et al., 2021; Badawi et al., 2022).
According to the progression and severity of the disease, HR is
divided into four grades: grade I, vasoconstriction and narrowing;
grade II, arteriosclerosis; grade III, exudation, cotton velvet spots,
hemorrhage, and extensive microvascular changes; and grade IV
grade III changes and optic disc edema (Wong and Mitchell, 2004;
Tsukikawa and Stacey, 2020). In clinical treatment, lowering blood
pressure is the most fundamental means to prevent and treat fundus
changes. After the effective control of blood pressure, optic disc
edema, retinal edema, hemorrhage, and exudation can be absorbed
and eliminated (Klig, 2008; Del Pinto et al., 2022). If HR patients
have complications such as macular edema, treatment such as
intravitreal injection of anti-VEGF drugs can significantly
improve their vision (Padhy and Kumar, 2018).

In many studies, AI has been used to screen and diagnose HR,
and the AI model constructed in this study showed good screening
and diagnostic performance and has the potential for clinical
application. Han et al. (2021) constructed an AI model to screen
for HR and other common eye diseases based on an anomaly
detection algorithm. In this study, 90,499 fundus photos were
collected and randomly divided into training, validation, and
testing dataset according to a certain proportion, which were
used to develop and evaluate the AI model. After testing, the
AUC, accuracy, sensitivity, and specificity of the HR diagnosis
model were 0.895, 0.8237, 0.8129, and 0.8275, respectively. To
assist clinicians in screening HR, Arsalan et al. (2021)

TABLE 1 Research summary of artificial intelligence in diabetes retinopathy.

Year Country or
region

Authors Task Dataset (disease images) AI algorithm Output

2021 China Li et al. (2022) Diagnosis 8,739 images, Messidor-2 dataset
(8,379 images)

Inception-v4 AUC = 0.992, Sensitivity =
0.925, Specificity = 0.961

2022 China Zhang et al.
(2022a)

Diagnosis The Kaggle public dataset
(4,192 images)

Inception V3 Sensitivity = 0.925,
Specificity = 0.907, AUC =
0.968

2022 China Zhao et al.
(2022)

Diagnosis 7,943 patients’ data (1,692 images) Random Forest, Extreme Gradient
Boosting, Logistic Regression, Support
Vector Machine and K-Nearest Neighbor

AUC = 0.803, Accuracy =
0.889, Sensitivity = 0.740,
Specificity = 0.811

2022 America Hassan et al.
(2022)

Detection 1804 images (920 images) VGG-16, ResNet-50, U-Net Accuracy = 0.9938

2022 Bangladesh Islam et al.
(2022)

Detection APTOS 2019 Blindness Detection
dataset, Messidor-2 dataset
(5068 images)

Supervised competitive learning Accuracy = 0.9836, AUC =
0.9850

2022 Egypt Elgafi et al.
(2022)

Detection 188 images (88 images) Deep learning Accuracy = 0.9681

2022 China Zhang et al.
(2022b)

Grading EyePACS-1, Messidor-2
(5849 images)

Deep graph correlation network EyePACS-1: Accuracy =
0.899, Sensitivity = 0.882,
Specificity = 0.913

Messidor-2: Accuracy =
0.918, Sensitivity = 0.902,
Specificity = 0.930

2022 China Zhang F et al.
(2022)

Grading 1,089 images (1,089 images) ResNet-34, Inception v3 AUC = 0.958, Kappa = 0.860

2021 Israel Katz et al.
(2022)

Grading 6,981 images (6,981 images) W-net Accuracy = 0.989
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constructed an AI screening model using a dual-stream fusion
network (DSF-Net) and a dual-stream aggregation network
(DSA-Net). They evaluated the performance of the model using
the DRIVE, STARE, and CHASE-DB1 dataset. After testing, the
accuracy, sensitivity, specificity, and AUC value for DRIVE were
0.9693, 0.8268, 0.9830, and 0.9842, respectively; for CHASE-DB1
they were, 0.9725, 0.8222, 0.9838, and 0.9815, respectively; and for
STARE they were 0.9700, 0.8607, 0.9800, and 0.9865, respectively.
Arsalan et al. (2019) developed a dual-residual-stream-based vessel
segmentation network (Vess-Net) model on the basis of
convolutional neural networks, which is used to assist HR
diagnosis and to train and test on the open datasets of DRIVE,
CHASE-DB1, and STARE. Finally, the results showed that the
sensitivity, specificity, AUC, and accuracy of the model for
diagnosing HR were 0.8526, 0.9791, 0.9883, and 0.9697,
respectively. Dong et al. (2022) collected 120,002 fundus photos
and used a convolutional neural network to create a retinal AI
diagnosis system (RAIDS) for the diagnosis of 10 types of retinal
diseases, including HR. They randomly divided 120,002 fundus
photos into training, test, and validation datasets and used them
in the training and validation of the system. The accuracy of the
system in identifying HR was verified to be 0.837.

AI is also used in the classification and grading of HR, which is
expected to be used clinically to reduce the pressure on doctors.
Abbas et al. (2021) constructed a HYPER-RETINO system based on
the DenseNet algorithm to assist in the classification of HR. They
collected 1,400 fundus photos and used them for the development
and testing of the system. The sensitivity, specificity, accuracy,
Matthews correlation coefficient, and AUC of the system were
0.905, 0.915, 0.926, 0.61, and 0.915, respectively. Akbar et al.
(2018) constructed an AI model using a DL algorithm (support
vector machine and radial basis function) to assist in screening and

grading of HR. The INSPIRE-AVR, VICAVR, STARE, and AVRDB
datasets were used to develop, train and test the model. After testing,
it was found that the accuracies of the first part of the model on the
INSPIRE-AVR, VICAVR, and AVRDB dataset were 0.9510, 0.9564,
and 0.9809, respectively, and the accuracies of the second part on the
STARE and AVRDB dataset were 0.9593 and 0.9750, respectively.
We summarize the above research, as shown in Table 2.

3.3 Application of artificial intelligence in
retinal vein occlusion

Retinal vein occlusion (RVO) is one of most common retinal
vascular disease, second only to diabetic retinopathy, and more
common in older patients (Ren et al., 2022). The pathogenesis of
RVO is related to many factors such as vascular endothelial damage,
hemodynamic changes, intraocular pressure, and ocular local
compression (Terao et al., 2022; Trovato Battagliola et al., 2022).
In addition, the disease is closely related to arteriosclerosis,
cardiovascular and cerebrovascular diseases, hypertension,
diabetes, and other risk factors (Orskov et al., 2022; Tang et al.,
2022). According to the location of vein occlusion, RVO is mainly
divided into central retinal vein occlusion (CRVO) and branch
retinal vein occlusion (BRVO), of which branch occlusion is the
most common (Miao et al., 2022). In the early stage, the symptoms
are characterized by a sudden loss of vision to varying degrees; mild
patients may have no symptoms or only a little shadow (Pur et al.,
2023), and with the progression of the disease, RVO patients have
serious visual impairment (Zhang X. T et al., 2022; Sood et al., 2022).
Typical fundus changes in RVO patients include retinal
hemorrhage, tortuous retinal vein dilatation, extensive retinal
capillary non-perfusion area, and macular edema (Irgat and

TABLE 2 Research summary of artificial intelligence in hypertensive retinopathy.

Year Country or
region

Authors Task Dataset (disease
images)

AI algorithm Output

2021 China Han et al.
(2021)

Screening 90,499 images
(26,148 images)

Anonymous detection AUC = 0.895, Accuracy = 0.8237, Sensitivity =
0.8129, Specificity = 0.8275

2022 Korea Arsalan et al.
(2021)

Screening DRIVE, START, CHASE-
DB1 (2051 images)

Dual-stream fusion network,
Dual-stream aggregation
network

DRIVE: Accuracy = 0.9693, Sensitivity =
0.8268, Specificity = 0.9830, AUC = 0.9842

CHASE-DB1: Accuracy = 0.9725,
Sensitivity = 0.8222, Specificity = 0.9838,
AUC = 0.9815

START: Accuracy = 0.9700, Sensitivity =
0.8607, Specificity = 0.9800, AUC = 0.9865

2019 Korea Arsalan et al.
(2019)

Diagnosis DRIVE, CHASE-DB1,
STARE (1960 images)

Convolutional neural
networks

Sensitivity = 0.8526, Specificity = 0.9791,
Accuracy = 0.9883, AUC = 0.9697

2022 China Dong et al.
(2022)

Diagnosis 120,002 images
(8,198 images)

Convolutional neural
network

Accuracy = 0.837

2021 Saudi Arabia Abbas et al.
(2021)

Classification 1,400 images (1,000 images) DenseNet Sensitivity = 0.905, Specificity = 0.915,
Accuracy = 0.926, Matthews correlation
coefficient = 0.61, F1-score = 0.92, AUC =
0.915

2017 Pakistan Akbar et al.
(2018)

Classification INSPIRE-AVR, VICAVR,
STARE, and AVRDB
(198 images)

Support vector machine,
Radial basis function

Accuracy: INSPIRE-AVR = 0.9510,
VICAVR = 0.9564, AVRDB = 0.9809,
STARE = 0.9593, AVRDB = 0.9750
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Ozcura, 2023). Late patients may have complications such as
vitreous hemorrhage, traction retinal detachment, and
neovascular glaucoma, resulting in severe visual acuity loss and
even blindness (Altintas and Ilhan, 2023; Patil et al., 2023). Some
commonly used treatment methods in ophthalmology are mainly
used to prevent and treat complications such as laser
photocoagulation, vitrectomy, vitreous injection of hormones, or
anti-VEGF drugs (Ghanchi et al., 2022; Yin et al., 2022).

As an important clinical assistant tool, AI has been widely used
in the early screening of retinal vein occlusion, and especially in
areas where lacking medical resources, AI can play an important
role. To assist in screening for retinal vein occlusion, Chen J. S et al.
(2021) constructed an AI screening model using four DL algorithms
(ResNet-50, Inception-v3, DenseNet-121, SE-ReNeXt-50). They
collected 8,600 color fundus photos and randomly divided them
into training, validation, and test dataset according to a certain
proportion for the development and testing of AI models. After
testing, the Inception-v3 model’s performance was the best, and its
sensitivity, specificity, F1 score, and AUC were 0.93, 0.99, 0.95, and
0.99, respectively. Nagasato et al. (2019a) constructed two AI models
using the VGG-16 and support vector machine algorithms to detect
branch retinal vein occlusion. They collected 465 ultrawide-field
fundus images for training and validation of AI models and
compared the performance of the two models. The final results
showed that the detection performance of the VGG-16 model was
better than that of support vector machine model, with a sensitivity
of 0.940, a specificity of 0.970, and an AUC of 0.976. Nagasato et al.
(2018) constructed two screening models for CRVO based on the
VGG-16 and support vector machine algorithms. In this study,
363 ultrawide-field fundus images were used to develop and test AI
models, and the screening performance of the two AI models was
compared. The VGG-16 model had the best screening performance,
with a sensitivity of 0.984, specificity of 0.979, and AUC of 0.989.
Anitha et al. (2012) constructed an AI diagnosis model based on
artificial neural networks to assist in the diagnosis of four retinal
diseases, including central retinal vein occlusions. They collected
420 digital retinal images to send and verify their model. The results
showed that the model’s accuracy, sensitivity, and specificity were
0.977, 0.960, and 0.980, respectively. To assist in the diagnosis of
retinal vein occlusion, Kang et al. (2021) developed an AI diagnosis
model based on a convolution neural network, and used the
examination data of 2,992 eyes to develop and train the model.
After testing, the AUC of this model for BRVO was 0.959 and that of
CRVO was 0.988. Abitbol et al. (2022) collected 224 ultra-widefield
color fundus images and constructed an AI model based on the
DenseNet121 network to assist diagnose three types of retinal
vascular diseases such as retinal vein occlusion. Finally, the
accuracy of the model in the diagnosis of RVO was 0.884, and
the AUC was 0.912.

Xu et al. (2022) constructed an AI model based on ResNet18 to
assist in the classification of RVO. In their study, 501 fundus images
were collected for the development and testing of the model. After
testing, the classification accuracy of the model was greater than
0.97, the sensitivity was greater than 0.95, the sensitivity was greater
than 0.97, and the F1 score was greater than 0.97. Zhang X. et al.
(2022) constructed a VGG-CAM network model based on
convolutional neural networks to assist in the diagnosis and
classification of RVO. They used a local image database to train

and test the model and compared it with Resnet-34, Inception-V3,
and MobileNet network models. After testing, the sensitivity,
specificity, Kappa coefficient, and AUC of the model for
diagnosing central RVO were 0.99, 0.96, 0.88, and 0.99,
respectively, and the sensitivity, specificity, Kappa coefficient, and
AUC for diagnosing branch RVO were 0.94, 0.99, 0.97, and 0.99,
respectively. In addition, its diagnostic performance was superior to
that of other network models. It can be seen that in the clinical
classification of retinal vein occlusion, compared with manual
classification, automatic classification has lower cost and higher
efficiency and can play an important role in clinical practice.

In addition, AI can help clinicians diagnose RVO by identifying
and segmenting the characteristic lesions in the images of patients
with RVO, thus reducing the workload of clinicians. Tang et al.
(2021) constructed an AI model using CE-Net to help segment the
non-perfusion area of the retina caused by RVO, thus helping to
evaluate RVO severity. They collected 177 fluorescein angiography
images for training and testing the AI model and enhanced the
performance of the AI model through an adaptive histogram-based
data augmentation method. After testing, the accuracy of the model
was 0.883. To detect the non-perfusion area caused by RVO in
optical coherence tomography angiography (OCTA) images to help
diagnose RVO, Nagasato et al. (2019b) constructed an AI model
based on VGG-16 and support vector machine and collected
322 OCTA images for AI model training and testing. In addition,
they compared the performance of the AI model with the diagnostic
abilities of seven ophthalmologists. After testing, the performance of
the VGG-16 model was better than support vector machine model
and the seven ophthalmologists, and its AUC, sensitivity, and
specificity were 0.986, 0.937, and 0.973, respectively. We
summarize the above research, as shown in Table 3.

3.4 Application of artificial intelligence in
retinopathy of prematurity

Retinopathy of prematurity (ROP), also called retrolental
fibroplasia, is a proliferative retinopathy of immature or low
birth weight infants (Campbell et al., 2022). Most of the infants
were premature with less than 34 weeks of pregnancy, birth weight
less than 1,500 g, history of inhalation of high concentrations of
oxygen, or stunted low birth weight infants (Sabri et al., 2022).
Preterm birth, low birth weight, and inhalation of high
concentrations of oxygen are high-risk factors for ROP
(Ramanathan et al., 2022). The clinical manifestations of children
with ROP vary according to the course of the disease, which is
divided into three areas according to the location of the lesion: area Ⅰ,
a circular area with a radius of 2 times the distance from the optic
disc to the fovea of the macula (Bai et al., 2022); area Ⅱ, a circular
area centered on the optic disc to the sawtooth margin of the nasal
side (Eilts et al., 2023); and areaⅢ, the area excluding areas I and II
(Nisha et al., 2023). According to the severity of the lesion, it was
divided into five stages: stage 1, dividing line stage; stage 2, critical
stage; stage 3, increment stage; stage 4, subpanretinal detachment
stage; and stage 5, panretinal detachment stage (Gensure et al.,
2020). For treatment, stage 1 and stage 2 can disappear naturally, so
they should be observed closely (Scruggs et al., 2020); stage 3 should
be treated with condensation or photocoagulation to prevent
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neovascularization (Barrero-Castillero et al., 2020); and stage 4 and
stage 5 can be treated with a vitrectomy to remove proliferated
fibrovascular tissue. Photocoagulation was performed
simultaneously (Morya et al., 2022). Once ROP occurs, it
progresses rapidly, and the curative effect in advanced cases is
limited; therefore, it is important for children with ROP to be
detected and treated early to avoid serious consequences.

To automatically diagnose ROP, Brown et al. (2018) constructed
a diagnostic model based on U-Net and Inception version 1, and
5,511 retinal images were used to develop and train the AI model. In
addition, they compared the AI model’s diagnostic performance
with that of eight experts. The final results showed that the
sensitivity, specificity, and accuracy of the AI diagnosis model
were 0.93, 0.94, 0.91 respectively, whereas the average accuracy of
the eight experts was 0.82. This shows that the diagnostic
performance of the AI model is superior. Chen Q. et al. (2021)
proposed an AI model on the basis of convolution neural network,
which tcan assist the staging diagnosis of ROP. They collected
10,894 fundus images and divided them into training and testing
dataset. After testing, the AUROC of the model was 0.99, the
AUPRC was 0.98, and the sensitivity was 0.94. Mao et al. (2020)
established an AImodel that can assist in the diagnosis of ROP based
on U-Net and Dense Net and analyzed the progress of ROP. They
used 3,311 fundus images to train and varify the AI model. Finally,
the results showed that the diagnostic specificity of the model was
0.978, the sensitivity was 0.951, and the sensitivity and specificity for
the diagnosis of disease deterioration were 0.924 and 0.974,
respectively. Peng et al. (2022) constructed an ADS-Net model
based on DenseNet121 to assist doctors in the diagnosis of ROP.
In this study, 8,733 fundus images were collected from two datasets

for training and verifying the model. After validation, the accuracy
of the model for diagnosing ROP was 0.9776, recall was 0.9714,
precision was 0.9835, F1-score was 0.9774, and the kappa coefficient
was 0.9552. Based on the above AI research results, it can be found
that AImodel shows superior performance in automatic diagnosis of
ROP by recognizing ophthalmic examination data such as fundus
images, and has the potential to be used in clinical diagnosis and
treatment, which can greatly improve the work efficiency of
clinicians and reduce the work pressure of clinicians.

In recent years, AI model has made a lot of research
achievements in assisting the clinical staging and grading
diagnosis of ROP. In order to assist in the grading and staging of
ROP, Tong et al. (2020) constructed an AI model based on ResNet
and faster region-based convolutional neural network (Faster-
RCNN). In this study, 36,231 retinal images were collected and
randomly divided into training, validation, and testing datasets. In
addition, they compared the classification performance of the AI
model with two retinal experts. The final results showed that, in
terms of ROP classification, the accuracy, sensitivity, specificity, and
F1 scores of the model were 0.903, 0.778, 0.932, and 0.761,
respectively, which were better than the two retinal experts. In
terms of ROP staging, the diagnostic accuracies of stages 1, 2, 3,
4, and 5 were 0.876, 0.942, 0.968, 0.998, and 0.999, respectively. Peng
et al. (2021) used ResNet18, DenseNet121, and EfficientNetB2 to
create an AI model for ROP staging and used 635 retinal images to
train and verify the model. After validation, the recall of the model
was 0.905, precision was 0.9092, the F1 score was 0.9043, accuracy
was 0.9827, and Kappa was 0.9786. To detect early ROP and staging,
Huang et al. (2021) constructed an ROP staging model using a
through convolution neural network. They randomly divided

TABLE 3 Research summary of artificial intelligence in retinal vein occlusion.

Year Country or
region

Authors Task Dataset (disease
images)

AI algorithm Output

2021 China Chen S et al.
(2021)

Screening 8,600 images
(440 images)

ResNet-50, Inception-v3,
DenseNet-121, SE-ReNeXt-50

Sensitivity = 0.93, Specificity = 0.99, F1 = 0.95,
AUC = 0.99

2018 Japan Nagasato et al.
(2019a)

Detection 465 images
(125 images)

VGG-16, Support vector
machine

Sensitivity = 0.940, Specificity = 0.970, AUC =
0.976

2018 Japan Nagasato et al.
(2018)

Screening 363 images
(237 images)

VGG-16, Support vector
machine

Sensitivity = 0.984, Specificity = 0.979, AUC =
0.989

2011 India Anitha et al.
(2012)

Diagnosis 420 images (95 images) Artificial neural networks Accuracy = 0.977, Sensitivity = 0.960,
Specificity = 0.980

2021 Taiwan Kang et al.
(2021)

Diagnosis 2,992 eyes (325 eyes) Convolution neural network AUC of branch retinal vein occlusion = 0.959;
AUC of central retinal vein occlusion = 0.988

2022 France Abitbol et al.
(2022)

Diagnosis 224 images
(169 images)

DenseNet121 Accuracy = 0.884, AUC = 0.912

2022 China Xu et al. (2022) Classification 501 images
(242 images)

ResNet18 Accuracy>0.97

Sensitivity>0.95, F1 score>0.97

2022 China Zhang et al.
(2022a)

Classification Local image database
(Not specified)

Convolutional neural networks Sensitivity = 0.99, Specificity = 0.96, Kappa
coefficient = 0.88, AUC = 0.99

2020 China Tang et al.
(2021)

Division 177 images
(177 images)

CE-Net Accuracy = 0.883

2019 Japan Nagasato et al Detection 322 images
(128 images)

VGG-16, Support vector
machine

AUC = 0.986, Sensitivity = 0.937, Specificity =
0.973
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11,372 fundus images into training and test datasets and used them
to train and test the AI model. The results showed that the accuracy,
sensitivity, and specificity of the model were 0.9223, 0.9614, and
0.9595, respectively. The sensitivity and specificity of stage 1 ROP
were 0.9182 and 0.9450, respectively; the sensitivity and specificity of
stage 2 ROP were 0.8981 and 0.9899, respectively. Li F. et al. (2022)
developed an AI model based on U-Net and Dense Net to assist in
the diagnosis of children with early ROP in stage 1–3. They collected
18,827 retinal images for training and validation dataset. After
validation, the sensitivity and specificity of the model were
0.9593 and 0.9929 for normal images, 0.9021 and 0.9767 for
stage 1 ROP, 0.9275 and 0.9874 for stage 2 ROP, 0.9184 and
0.9929 for stage 3 ROP, respectively. AI model has made many
achievements in the clinical staging and grading diagnosis of ROP.
AI model can help clinicians to grade and stage diagnosis of ROP,
which is more conducive to the early diagnosis and treatment of
ROP patients.

To detect the blood vessels in areas I, II, and III of children with
ROP and to assist in assessing the severity of ROP, Agrawal et al.
(2021) built an AI model by combining U-Net and Circle Hough
Transform. They collected 4,250 fundus images to develop and test
the AImodel, all of which were labeled by ROP experts. After testing,

the model’s accuracy was 0.98. To predict the occurrence and
evaluate the severity of ROP, Wu et al. (2022) constructed an AI
prediction model and AI evaluation model based on OC-Net and
SE-Net. They collected 7,796 retinal images for training and
validation dataset. The results showed that the AUC, accuracy,
sensitivity, and specificity of the OC-Net prediction model were
0.94, 0.333, 1.00, and 0.075, respectively. The AUC, accuracy,
sensitivity, and specificity of the OC-Net prediction model were
0.88, 0.560, 1.00, and 0.353, respectively. We summarize the above
research, as shown in Table 4.

3.5 Application of artificial intelligence in
age-related macular degeneration

Age-related macular degeneration (AMD), also known as senile
macular degeneration, is common in Europe, the United States, and
other developed countries and is the main cause of blindness in the
elderly in developed countries. Its incidence increases with age (Thomas
et al., 2021). At present, the etiology and pathogenesis of AMD are not
clear, and the related risk factors include age, sex, race, heredity,
smoking, malnutrition, metabolic disorders, and retinal light damage

TABLE 4 Research summary of artificial intelligence in retinopathy of prematurity.

Year Country or
region

Authors Task Dataset
(disease
images)

AI algorithm Output

2018 America Brown et al.
(2018)

Diagnosis 5,511 images
(977 images)

U-Net, Inception version 1 Sensitivity = 0.93, Specificity = 0.94, Accuracy = 0.91

2020 America Chen Q. et al.
(2021)

Diagnosis 10,894 images
(1945 images)

Convolution neural network AUROC = 0.99, AUPRC = 0.98, Sensitivity = 0.94

2020 China Mao et al.
(2020)

Diagnosis 3,311 images
(1,393 images)

U-Net, Dense Net Specificity = 0.978, Sensitivity = 0.951

2022 China Peng et al.
(2022)

Diagnosis 8,733 images
(3,684 images)

DenseNet121 Accuracy = 0.9776, Recall = 0.9714, Precision =
0.9835, F1-score = 0.9774, Kappa = 0.9552

2020 China Tong et al.
(2020)

Classification 36,231 images
(36,231 images)

ResNet, Faster region-based
convolutional neural
network

Accuracy = 0.903, Sensitivity = 0.778, Specificity =
0.932, F1 score = 0.761

2021 China Peng et al.
(2021)

Classification 635 images
(332 images)

ResNet18, DenseNet121,
EfficientNetB2

Recall = 0.9055, Precision = 0.9092, F1 score =
0.9043, Accuracy = 0.9827, Kappa = 0.9786

2020 Taiwan Huang et al.
(2021)

Classification 11,372 images
(1,279 images)

Convolution neural network Accuracy = 0.9223, Sensitivity = 0.9614, Specificity =
0.9595, Sensitivity and Specificity of stage 1 ROP =
0.9182, 0.9450, Sensitivity and Specificity of stage
2 ROP = 0.8981,0.9899

2022 China Li and Liu
(2022)

Classification 18,827 images
(3,869 images)

U-Net, Dense Net Sensitivity of diagnosing = 0.9593, Specificity of
diagnosing = 0.9929, Sensitivity and Specificity of
stage 1 ROP = 0.9021, 0.9767, Sensitivity and
Specificity of stage 2 ROP = 0.9275,0.9874,
Sensitivity and Specificity of stage 3 ROP =
0.9184,0.9929

2021 India Agrawal et al.
(2021)

Evaluation 4,250 images
(2,350 images)

U-Net, Circle Hough
Transform

Accuracy = 0.98

2022 China Wu et al.
(2022)

Evaluation 7,796 images
(1984 images)

OC-Net, SE-Net AUC, Accuracy, Sensitivity and Specificity of OC-
Net = 0.94,0.333,1.00, and 0.075, respectively

AUC, Accuracy, Sensitivity and Specificity of SE-
Net = 0.88, 0.560, 1.00, and 0.353, respectively
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(Lombardo et al., 2022; Tao et al., 2023). Most patients with AMD are
more than 50 years old, have both eyes effected at the same time or
successively, and have progressive visual impairment. According to
clinical manifestations and pathological changes, AMD can be divided
into two types: atrophic or non-exudative or dry; exudative or
neovascularization or wet (Gale et al., 2023). The main feature of
atrophic AMD is progressive RPE atrophy, the main changes of the
fundus are vitreous warts and RPE degeneration and atrophy (Zhang
et al., 2023), and the characteristic changes of exudative AMD are
neovascularization under the RPE, subretinal neovascular membrane,
and subretinal hemorrhage (Liberski et al., 2022; Cao et al., 2023). For
treatment, because the etiology of AMD is not clear, there is still no
specific drug treatment or fundamental effective preventive measures;
vitreous injection of anti-VEGF drugs is mainly used for neovascular
AMD (Fabre et al., 2022; Galindo-Camacho et al., 2022).

To assist clinicians in diagnosing age-related macular degeneration
and distinguishing its different types, AI has carried out a lot of research
in this area, with remarkable results. Han et al. (2022) collected
4,749 spectral domain optical coherence tomography (SD-OCT)
images and constructed an AI model that can diagnose neovascular
age-related macular degeneration using three convolution neural
networks (VGG-16, VGG-19, and ResNet). They randomly divided
4,749 images into training and test datasets and used them to develop
and verify the model. In addition, they compared the diagnostic
performance of the model with that of ophthalmologists. The results
showed that the accuracy of the model was 0.874, which was similar to
that of ophthalmologists. To distinguish between different types of
AMD, Tak et al. (2021) constructed a model based on convolutional
neural networks and used 420 Optos wide-field retinal images for
training and validation. The classification accuracy of the model was
found to be 0.88. Chou et al. (2021) constructed a DL model based on
EfficientNet-B3 for the differential diagnosis of neovascular age-related
macular degeneration. They collected 699 fundus photographs for
training and testing the model. After testing, the model showed
good performance with accuracy, sensitivity, specificity, and AUC
values of 0.8367, 0.8076, 0.8472, and 0.8857, respectively. Heo et al.
(2020) constructed an AImodel using the VGG16model to identify the
different types of AMD. In this study, 399 fundus images were used to
train and verify the model, and the discrimination performance of the
model was compared with that of residents. The accuracy of the model
was better than that of the residents, with an accuracy of 0.9086.

In addition to extensive research on the diagnosis and classification
of AMD, AI has been used to predict the severity, disease progression,
and therapeutic effect in patients with age-related macular
degeneration. Ganjdanesh et al. (2022) created a new DL model
(LONGL-Net) based on ResNet-18 to predict the severity and
progression of patients with age-related macular degeneration. They
collected approximately 30,000 color fundus photographs for training
and verifying the model. The average accuracy of the model was 0.905,
and the AUCwas 0.762. Song et al. (2022) constructed anAImodel that
predicted neovascular ANM based on a classified convolution neural
network and a complete convolutional neural network algorithm. In
total, 671 SD-OCT images were used to train and test the model. The
average accuracy of the model was 0.930, the Dice coefficient was 0.873,
the sensitivity was 0.873, and the specificity was 0.922. To predict the
treatment effect and disease progression in patients with neovascular
AMD, Yeh et al. (2022) built anAI predictionmodel using a new type of
deep convolution neural network (Heterogeneous Data Fusion Net).

They collected eye SD-OCT images from 698 patients and used them to
train and test the model. In addition, they compared the predictive
performance of the model with those of the ResNet50 and AlexNet
models. The prediction performance of the model was better than that
of ResNet50 and AlexNet, with an AUC value of 0.989, accuracy of
0.936, sensitivity of 0.933, and specificity of 0.938. Yan et al. (2020)
developed an AI model based on convolutional neural networks to
predict the disease progression in patients with AMD. They collected
31,262 eye OCT images and 52 related mutations. After testing, the
AUC value of themodel for predicting the disease progression was 0.85.

Holomcik et al. (2022) constructed an AI model on U-Net to
automatically segment lesions in fluorescein angiography images of
patients with neovascular AMD. They collected 9,268 images to
develop and test the model. After testing, the F1 score, accuracy, and
recall of the segmented lesion size were 0.65, 0.75, and 0.72,
respectively, and the F1 scores, accuracy, and recall of the leakage
area were 0.73, 0.80, and 0.78, respectively. He et al. (2022) created a
DL model that can detect age-related macular degeneration through
the ResNet-50 model and local outlier factor (LOF) algorithm and
used the UCSD dataset and Duke dataset to train and test the model.
Finally, the accuracy of the model was 0.9987 for the UCSD dataset
and 0.9756 for the Duke dataset. We summarize the above research,
as shown in Table 5.

4 Limitations and challenges

Based on the referenced studies, AI is widely used in retinal vascular
diseases, especially in image recognition and data analysis. Although AI
model shows superior performance in assisting the diagnosis,
identification, screening, staging and grading of retinal vascular
diseases, AI model also faces many limitations and challenges in the
research process, which will seriously affect the further research of
artificial intelligence in retinal vascular diseases and hinder its clinical
application. Below, we list the main limitations and challenges of AI in
research on retinal vascular diseases. 1) Image quality in the dataset
(Aronson, 2022; Gutierrez et al., 2022): The image quality used in AI
research has a significant impact on AI research. The higher the image
quality, the better the performance of the AI model. However, the
quality of the image is related to a variety of factors, such as shooting
equipment, operators, the degree of cooperation of patients and so on.
Therefore, high-quality images should be used asmuch as possible inAI
research. 2) Manual annotations of images in the dataset (Hashimoto
et al., 2020; Betzler et al., 2022): The images in many studies must be
manually annotated, and the accuracy of manual labeling has a
significant impact on the performance of the AI model. This
requires experts in related diseases to label the images to ensure the
validity of the data. 3) Sample size of the dataset (Ji et al., 2022b): The
accuracy of the AI model is related to the sample size. The larger the
sample size, the higher the accuracy of the AI model. The sample size of
the dataset used in some studies was small, which had an impact on the
performance of the AImodel. Therefore, in the study, the sample size of
the dataset should be expanded as much as possible to ensure the
accuracy of the AImodel. 4) Patient heterogeneity (Galante et al., 2023):
Studies on the AI model are likely to be affected by different patient
groups. Differences between patients such as age, sex, race, and region
affect the performance of the AI model. If only one patient group is
included in the data set used in the study, it will seriously affect the
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accuracy and clinical application of theAImodel. 5) Clinical application
of the AI model (Al-Aswad et al., 2022; Wawer Matos et al., 2022):
Although in many studies, AI model shows superior performance in
external verification datasets, due to the great difference between “real
environment” and “research environment”, this will lead to a series of
problems in clinical application of AI model, which will affect the
performance of AI model. 6) Clinicians’ reserve of AI algorithms and
their related knowledge (Tabuchi, 2022; Yang et al., 2023): AI belongs to
a branch of computer science and does not belong to the professional
scope of clinicians, which leads to clinicians’ lack of knowledge about AI
algorithms, their related knowledge, and lack of explanation, which can
easily lead to the “black box phenomenon” and hinder the application of
AI in clinical work.

5 Conclusion

At present, the use of AI technology to assist clinicians in the study
of ophthalmic images and other ophthalmic examinations is a current
major focus. The combination of AI and ophthalmology will greatly
improve the diagnosis of ophthalmic diseases, especially retinal vascular
diseases based on the analysis of fundus images. The diagnosis model
based on AI will be beneficial for the early detection, diagnosis, and
treatment of retinal vascular diseases. Although the application of
artificial intelligence in the field of ophthalmology has made a lot of
research results, but from the overall situation, it is only the beginning.
With further developments in computer science and technology, the
application of AI in the field of ophthalmology will be more and more
widely used in the field of ophthalmology. In addition, with the

deepening of research, in addition to image processing and
recognition, other artificial intelligence technologies will also carry
out related research in the field of ophthalmology, so as to promote
the continuous development of ophthalmology.
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TABLE 5 Research summary of artificial intelligence in age-related macular degeneration.

Year Country or
region

Authors Task Dataset (disease
images)

AI algorithm Output

2022 Korea Han et al. (2022) Diagnosis 4,749 images (2,624 images) VGG-16, VGG-19, ResNet Accuracy = 0.874

2021 America Tak et al. (2021) Classification 420 images (420 images) Convolutional neural networks Accuracy = 0.88

2021 Taiwan Chou et al.
(2021)

Diagnosis 699 images (491 images) EfficientNet-B3 Accuracy = 0.8367, Sensitivity =
0.8076, Specificity = 0.8472, AUC =
0.8857

2020 Korea Heo et al. (2020) Diagnosis 399 images (399 images) VGG16 Accuracy = 0.9086

2022 America Ganjdanesh
et al. (2022)

Prediction 30,000 images
(30,000 images)

ResNet-18 Accuracy = 0.905, AUC = 0.762

2022 China Song et al.
(2022)

Prediction 671 images (671 images) Classified convolution neural
network, complete convolution
neural network

Accuracy = 0.930, Dice
coefficients = 0.873, Sensitivity =
0.873, Specificity = 0.922

2022 Taiwan Yeh et al. (2022) Prediction 698 images (698 images) Deep convolution neural network AUC = 0.989, Accuracy = 0.936,
Sensitivity = 0.933, Specificity =
0.938

2020 America Yan et al. (2020) Prediction 31,262 images, 52 related
mutated genes
(31,262 images)

Convolutional neural networks AUC = 0.85

2022 Austria Holomcik et al.
(2022)

Division 9,268 images (9,268 images) U-Net F1 score = 0.65, Accuracy = 0.75,
Recall = 0.72

2022 China He et al. (2022) Detection UCSD dataset, Duke dataset
(46,421 images)

ResNet-50, Local outlier factor UCSD: Accuracy = 0.9987

Duke: Accuracy = 0.9756
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