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Introduction: Juvenile dermatomyositis (JDM) is a rare yet serious childhood
systemic autoimmune condition that primarily causes skin rashes and
inflammatory myopathy of the proximal muscles. Although the associated
immune response involves the innate and adaptive arms, a detailed analysis of
the pertinent immune cells remains to be performed. This study aims to investigate
the dynamic changes of cell type, cell composition and transcriptional profiles in
peripheral blood and muscle tissues, and in order to clarify the involvement of
immune cells in the pathogenesis of JDM and provide a theoretical reference
for JDM.

Methods: Single-cell RNA sequencing combined with bioinformatic analyses
were used to investigate the dynamic changes in cell composition and
transcriptional profiles.

Results: Analysis of 45,859 cells revealed nine and seven distinct cell subsets in the
peripheral blood and muscle tissues respectively. IFITM2+ and CYP4F3+
monocytes were largely produced, and CD74+ smooth muscle cells (SMCs)
and CCL19+ fibroblasts were identified as inflammatory-related cell subtypes
in JDM patients, exhibiting patient-specific cell population heterogeneity.The
dynamic gene expression patterns presented an enhanced type I interferon
response in peripheral blood monocytes and T-cells, and SMCs and fibroblasts
in muscle of untreated JDM patients. EGR1 and IRF7 may play central roles in the
inflammation in both CD74+ SMCs and CCL19+ fibroblasts. Moreover,
inflammatory-related monocytes could regulate T-cells, and the interaction
between immune cells and SMCs or fibroblasts in muscle was enhanced under
the inflammatory state.

Conclusions: Immune dysregulation is one of the key pathogenic factors of JDM,
and type I interferon responses are significantly enhanced in peripheral blood
Monos and T cells as well as SMCs and fibroblasts. EGR1 and IRF7 may play central
roles in the inflammation and are considered as potential therapeutic targets
for JDM.

KEYWORDS

single-cell RNA sequencing, juvenile dermatomyositis, muscle, CYP4F3+ monocytes,
type I interferon, peripheral blood

OPEN ACCESS

EDITED BY

Donghua Zou,
The Second Affiliated Hospital of Guangxi
Medical University, China

REVIEWED BY

Steven Mo,
YuanDong International Academy of Life
Sciences, China
Sandip Ashok Sonar,
University of Arizona, United States
Tianfeng Chen,
Jinan University, China

*CORRESPONDENCE

Huasong Zeng,
huasongxuqing@163.com

SPECIALTY SECTION

This article was submitted
to Molecular and
Cellular Pathology,
a section of the journal
Frontiers in Cell and
Developmental Biology

RECEIVED 14 February 2023
ACCEPTED 31 March 2023
PUBLISHED 20 April 2023

CITATION

Chen X, Lian D and Zeng H (2023), Single-
cell profiling of peripheral blood and
muscle cells reveals inflammatory
features of juvenile dermatomyositis.
Front. Cell Dev. Biol. 11:1166017.
doi: 10.3389/fcell.2023.1166017

COPYRIGHT

© 2023 Chen, Lian and Zeng. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 20 April 2023
DOI 10.3389/fcell.2023.1166017

https://www.frontiersin.org/articles/10.3389/fcell.2023.1166017/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1166017/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1166017/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1166017/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1166017&domain=pdf&date_stamp=2023-04-20
mailto:huasongxuqing@163.com
mailto:huasongxuqing@163.com
https://doi.org/10.3389/fcell.2023.1166017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1166017


1 Introduction

Juvenile dermatomyositis (JDM) is a rare, complex, immune-
mediated disease characterized by inflammation of the proximal
musculature and skin (Wedderburn and Rider, 2009). The primary
clinical symptoms include muscle weakness and skin rashes;
however, some children also experience a more severe disease
course that affects other organs, resulting in physical impairment,
calcinosis, gastrointestinal perforations, interstitial lung disease, and
even death (Mathiesen et al., 2012). Although the etiology is not fully
understood, both environmental factors and genetic variations are
thought to play a role (Miller et al., 2018). Although the use of
corticosteroids has effectively reduced the mortality rate from >30%
to 2%–3%, a long-term follow-up study found that >60% of children
with JDM experience disease damage due to poor disease control or
corticosteroid toxicity (Mathiesen et al., 2012). Thus, to improve
patient outcomes, it is necessary to identify reliable and specific
biomarkers capable of monitoring disease activity, predicting illness
onset, and directing therapeutic regimens.

With the development of high-throughput technologies,
including microarrays, bulk RNA sequencing (RNA-seq), and
single-cell RNA-seq (scRNA-seq), progresses have been made
toward understanding the pathogenesis of JDM. More
specifically, several gene expression studies have reported
dysregulation of genes in the muscles, skin, and peripheral
blood of adult patients with dermatomyositis and JDM
(Greenberg et al., 2005; Wenzel et al., 2006; Baechler et al.,
2007; Neely et al., 2022; Stingl et al., 2022). Additionally,
many proteins in the plasma, serum, and urine, as well as
circulating immune cell subsets, have been investigated as
potential biomarkers for JDM (Wienke et al., 2018). However,
the immune mechanisms of JDM are complex, involving the
innate and adaptive arms. Recent studies have revealed immune
dysregulation in innate, humoral, and cellular responses in
patients with JDM (Elst et al., 2008; O’Connor et al., 2006;
Wedderburn et al., 2007). Moreover, the inflammatory process
in JDM is characterized by interferon (IFN) features and
infiltration of specific immune cell subsets, including T-cells
and plasmacytoid dendritic cells (DCs) (Wienke et al., 2018).
However, to date, it remains unclear which immune cells
contribute to the development and pathogenesis of this disease.

In this study, we sought to provide an in-depth characterization
of cell types in the peripheral blood and muscle tissues of patients
with JDM, as well as insights into the dynamic changes in cell
composition and transcriptional profiles associated with JDM
pathogenesis. scRNA-seq and transcriptomic analyses assessed
the composition of the major cell types, including T-cells, natural
killer T-cells (NKT), natural killer cells (NK), classical-monocytes,
non-classical-monocytes, dendritic cells (DCs), B-cells, plasma cells,
and platelets, within the peripheral blood, and T-cells, NK, B-cells,
non-classical-monocytes, endothelial cells, fibroblasts, and smooth
muscle cells (SMC) within the muscle tissues. Moreover, we defined
the inflammatory cell subtypes of monocytes and T-cells in the
peripheral blood and SMCs and fibroblasts in muscles. Collectively,
our data provide a comprehensive resource regarding JDM
pathogenesis, which will inform the development of effective
therapeutic strategies.

2 Materials and methods

2.1 Clinical sample collection and cell
dissociation

Four patients meeting the Bohan and Peter criteria for JDMwere
admitted to the Guangzhou Women and Children’s Medical Center
in China and enrolled in this study from February to December
2020, with an average age of 7.6 years old at the time of sampling
(Bohan and Peter, 1975). The detail informations of the four cases
can be gained at Supplementary Material S1. Informed written
consents were obtained from participants and their parents. JDM
patients in the pre-treatment group met the diagnostic criteria of
Bohen and Peter without having received any previous or current
drug treatment; JDM patients in the post-treatment group met the
diagnostic criteria of Bohen and Peter and were treated with
prednisone, hydroxychloroquine, and cyclophosphamide for
3–6 months according to the JDM treatment guidelines.

Peripheral blood and muscle tissue samples for scRNA-seq were
typically collected at the time of admission or discharge. Peripheral
blood samples were collected from two pre- and two post-treatment
JDM patients, mixed with ethylenediaminetetraacetic acid (EDTA)
(Sangon Biotech, Shanghai, China) solution in a 1:1 volume,
transferred to a 50 mL centrifuge tube, and centrifuged at 400 ×
g for 4 min twice. Blood cells were resuspended in Dulbecco’s
phosphate-buffered saline (DPBS) (Sangon Biotech, Shanghai,
China) containing 0.04% bovine serum albumin (BSA)
(Rockland, Philadelphia, United States).

Muscle tissues were collected from only the two pre-treatment
JDM patients as the post-treatment patients’ muscle strength
returned to normal, making it unnecessary to conduct an
invasive muscle biopsy (the parents/guardians also refused
consent). Fresh muscle tissues were washed with DPBS and cut
into small pieces. Muscle cells were dissociated using a combination
of enzymatic digestion with 0.2 mg/mL Dispase (Corning, New
York, United States), 2 mg/mL type II collagenase (Gibco, New
York, United States), 2 mg/mL type IV collagenase (Gibco, New
York, United States), and 12 UI/mL DNAase (Macklin, Shanghai,
China) at 37°C for 20 min. The cell-enzyme mixture was passed
through a 40-µM stainless nylon mesh (Greiner Bio-OneGmbH,
Germany), and the filtrate was centrifuged at 500 × g for 5 min. The
cell sediment was resuspended and lysed with red blood cell (RBC)
Lysis buffer (Boster, California, United States)on ice for 5 min to
remove red blood cells, and then washed twice with DPBS at 500 × g
for 5 min. The cells were resuspended in DPBS containing 0.04%
BSA for single-cell capture.

Cell concentration and viability were determined using a
Cellometer Auto 2000 (Nexcelom, Boston, United States)
following acridine orange propidium iodide (AO/PI) (Macklin,
Shanghai, China) staining. Cells with >80% viability were
subjected to 10× Genomics scRNA-seq.

This study was approved by the hospital ethics committee
(approval number: 2020-32401) of Guangzhou Women and
Children’s Medical Center. All experiments and samples were
performed in accordance with the ethical and biosafety protocols
approved by the institutional guidelines. The clinical trial
registration number is ChiCTR2000034590.
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2.2 cDNA library preparation and single-cell
RNA sequencing data processing

Peripheral blood cells from pre- and post-JDM patients and
muscle cells from JDM patients were loaded into a Chromium
Controller (10× Genomics, California, United States) according
to the standard protocol to capture cells. cDNA synthesis and
library preparation were performed following the
manufacturer’s instructions of the Single Cell 3′Reagent Kits
User Guide Version 3.1 (10× Genomics, California,
United States), and subsequently subjected to high-
throughput sequencing on an Illumina NovaSeq 6,000 using
paired-end 150 bp sequencing runs.

For comparison, publicly available data for normal tissues were
selected as the control groups. The blood cell dataset for the control
was obtained from a healthy donor, downloaded from the 10×
Genomics website (https://www.10xgenomics.com/resources/datasets/
10-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0);
muscle cell datasets for healthy controls were obtained from the
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/) with the accession codes GSM6611295 and
GSM6611297. The raw data for the peripheral blood cells of
pre- and post-treatment JDM patients and JDM muscles are
publicly deposited at the National Genomics Data Center
(https://ngdc.cncb.ac.cn/gsa-human, the accession number is
HRA004355).

CellRanger (version 3.1.0) was used to align raw reads on the
GRCh38 reference genome for humans and to generate unique
molecular identifier (UMI) gene expression profiles for each single
cell under the standard sequencing quality threshold (default
parameters). High-quality cells were retained for downstream
analysis when they met the following criteria: 1) peripheral blood
cells with >500 and <5,000 unique genes, and muscle cells
with >100 and <6,000 unique genes; 2) less than 10%
mitochondrial genome transcripts (peripheral blood cells) or no
mitochondrial genes (muscle cells). Doublets in the raw data were
identified and removed using DoubletFinder (https://github.com/
chris-mcginnis-ucsf/DoubletFinder) within a range of 7.5%.
Ultimately, 45,859 cells and 30,786 genes were deemed to be of
sufficiently high quality for further analysis.

2.3 Data normalization and cell clustering

The final filtered gene expression data matrix was normalized
using the NormalizeData function of the Seurat software (https://
satijalab.org/seurat/pbmc3k_tutorial.html) with default settings. We
selected 3,000 highly variable genes via the FindVariableGenes
function from the final filtered count matrix and then centered
and scaled them using ScaleData. To reduce the dimensionality of
the datasets, principal component analysis (PCA) on the 3,000 genes
was conducted using the RunPCA function with default parameters,
and the dimensional reduction was performed through a Canonical
correlation analysis (CCA) method. Cells were clustered using the
FindNeighbors and FindClusters functions by setting the clustering
parameter resolution to 0.4 (peripheral blood cell) or 0.2 (muscle
cell). The clustered cells were then projected onto a two-dimensional
space using Uniform Manifold Approximation and Projection

(UMAP) (https://satijalab.org/seurat/articles/get_started.html)
with dimension parameters of 1:30 (peripheral blood cell) or 1:50
(muscle cell) for visualization.

2.4 Cell-type subclustering

Several critical cell types were sub-clustered to further explore
their heterogeneity and functional changes in patients with JDM.
The same functions described above were used to obtain the sub-
clusters. Briefly, the main cell cluster was identified using the
Louvain-Jaccard graph-based method following dimensionality
reduction by PCA. The clustering parameter resolution was set to
0.3 for the FindClusters function, while the RunUMAP function
dimension parameter was set to 1:30 (peripheral blood cell) or 1:50
(muscle cell). Seurat was used to achieve dimensional reduction for
visualization.

2.5 Differential proportion analysis

Differential proportion analysis was performed according to
changes in the cell ratio under different conditions. First, we
determined the proportion of each cell type or subtype by
dividing the number of cells by the total number of cells in the
different groups. Next, the Log2-fold change (log2FC) was
calculated between the healthy control and pre-treatment samples
and between the pre-treatment and post-treatment samples;
|log2FC|> 0.5 was set as the threshold for significant change.

2.6 Differentially expressed gene analysis
and gene-enrichment analysis

Differentially expressed genes (DEGs) between pre-treatment
and healthy control groups of peripheral blood and muscle, and
between post-treatment and pre-treatment groups of peripheral
blood were identified by the FindMarkers function in Seurat
using the Wilcoxon rank sum test with Bonferroni correction.
Significant DEGs were selected from genes with an adjusted
p-value ≤0.05, |log2FC| ≥ 0.5, and those expressed in >10% of
the cells within either or both groups. Gene Ontology (GO)
enrichment analysis of these significant DEGs was performed
using the clusterProfiler (v3.14.3) R package (Yu et al., 2012).
Enrichment scores (p-values) for selected numbers of GO
annotations were calculated using a hyper-geometrical statistical
test with a threshold of 0.05, and the Benjamini–Hochberg method
was used to estimate the false discovery rate (FDR). The background
for human data comprised all genes listed in the org. Hs. e.g., db
database. Finally, the bar plot function was used for visualization.

2.7 Pseudotime trajectory construction

The gene expression profiling data of all single cells was applied
to deconstruct population heterogeneity and reprogram trajectory.
The cells were ordered in a pseudo-temporal manner using the
Monocle 2 R package (http://cole-trapnell-lab.github.io/monocle-
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FIGURE 1
Global transcriptomic profiles of peripheral blood cells from control and JDM patients reveals their cellular subpopulations as determined by ScRNA-seq. (A)
Overall workflow for cell sorting and single-cell data analyses. (B)UniformManifold Approximation and Projection (UMAP) plots of single-cell transcriptomic profiles
showing cell types of peripheral blood cells from all the samples. Each dot represents a cell, which is colored according to cell type. (C) UMAP plots of single-cell
transcriptomic profiles showing cell types of peripheral blood cells from healthy, pre-treatment, and post-treatment groups, respectively. Each dot represents a
cell,which is coloredaccording tocell type. (D)Bubble chart ofmarkers for each identifiedcell type. (E) Featureplotsof expressiondistribution for representativegenes
for each cell type in peripheral blood. Expression levels for each cell are color-coded andoverlaid intoUMAPplot. (F)Heterogeneity of cell type composition in healthy
control, pre-treatment, and post-treatment groups. The table shows the number of each cell type in each group (up); and the bubble chart represents the changes in
thecell ratioof cell typesbetween thepre-treatment andhealthycontrol groups, andbetween thepost- andpre-treatmentgroups inperipheral blood (down). (G)The
number of cells, and box plots of the number of UMIs and genes (with the box plot center, box, whiskers, and points corresponding to themedian, interquartile range,
1.5× interquartile range, and outliers, respectively) of Monos (a conbined cell type of monocytes and macrophages) and T cells in each sample of peripheral blood.
Healthy was the sample from control group, P1B and P2B, and P1A and P2A were samples from pre-treatment group and post-treatment group respectively.
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release/monocle2/). The count data and metadata were exported
from the Seurat object and imported into the CellDataSet object in
Monocle 2. The raw counts for cells in each cell type were extracted
and normalized with the estimateSizeFactors and
estimateDispersions functions with the default parameters. Only
genes matching the following thresholds were used for cell ordering
and training the pseudo-trajectory: 1) mean expression >0.1; 2)
dispersion_empirical >1.2*dispersion_fit. The orders were
determined by the orderCells function, while the trajectory was
inferred by the reduceDimension function with default parameters.
Finally, the reconstructed trajectories were visualized using the plot_
cell_trajectory function.

2.8 Cellular interaction analysis

CellPhoneDB (2.1.2) (https://www.cellphonedb.org/), a publicly
available repository of curated receptors, ligands, and their
interactions (Vento-Tormo et al., 2018), was used to investigate
the potential interactions between different cell types. The
normalized counts and cell subset annotations for each cell were
inputted into CellPhoneDB to determine potential ligand-receptor
pairs. The communication probability of ligand-receptor pairs was
determined according to the mass action law of the average
expression of a ligand by 1 cell population and the average
expression of a receptor by another cell population. The
significant ligand-receptor pairs were filtered based on
p-values <0.05, and average expression of interaction pairs >0.
The interaction networks of selected specific pairs were plotted
using the dot_plot function of CellPhoneDB with default
parameters.

3 Results

3.1 scRNA-seq maps distinct cell
populations in peripheral blood cells and
muscle cells from control and JDM patients

To understand the effects of JDM on the cell subset
composition and transcriptional profiles of peripheral blood
and muscle tissues in children, the peripheral blood cells from
two pre-treatment and two post-treatment patients with JDM
and muscle tissues from two pre-treatment patients were
collected to prepare cell suspensions for scRNA-seq; data from
healthy controls were included for further bioinformatics
analysis to explore the molecular mechanisms (Figure 1A).
From the peripheral blood sample, a total of 14,794 cells were
isolated from all patient samples, with an average of
1,480 detected genes per cell. The dataset for the control
sample comprised 7,081 cells with an average of
2,287 detected genes per cell. Following gene expression
normalization, we applied PCA using the top variable genes
ranked by their normalized dispersion, as previously described
(Zheng et al., 2017). Unsupervised clustering using the Seurat
package identified nine distinct cell types in peripheral blood cells
across all three groups (healthy control, pre-treatment, and post-
treatment groups), including three T-cell subsets

(CD3+CD4−CD8− T-cells, 1.05%; CD4+ T-cells, 25.36%; and
CD8+ T-cells, 6.04%), NKT-cells (3.49%), NK cells (4.00%),
non-classical-monocytes (21.96%), classical-monocytes
(18.33%), two subtypes of DCs (cDC1, 1.72%; cDC2, 0.58%),
B-cells (9.87%), plasma cells (6.75%), and platelets (0.85%)
(Figures 1B, C), each identified by their unique signature
genes (Figures 1D, E, Supplementary Table S1).

When comparing the proportions of cell populations among
the three groups, we found that the percentages of plasma cells,
CD3+ T-cells, CD8+ T-cells, and non-classical-monocytes were
first significantly increased (|log2-FC|> 0.5) in pre-treatment
group relative to control, and then plasma cells and CD3+

T-cells recovered to control levels in post-treatment group,
while non-classical-monocytes continue to increase (|log2-FC|
> 0.5) and CD8+ T-cells maintained stable levels in the post-
treatment group compared with the pre-treatment group
(Figure 1F). Whereas, platelets, NKT-cells, NK cells, classical-
monocytes, cDC1, cDC2, and CD4+ T-cells were first significantly
decreased (|log2-FC|> 0.5) in the pre-treatment group relative to the
control group, and then platelets, NKT-cells, NK cells recovered to
control levels in post-treatment group, while cDC1, cDC2, and CD4+

T-cells continue to decrease (|log2-FC|> 0.5) and classical-monocytes
maintained stable levels in the post-treatment group compared with
the pre-treatment group (Figure 1F). Notably, a significant decrease
was observed in the classical-monocyte proportion between the pre-
treatment and control groups (from 32.79% in control to 11.38% in
the pre-treatment group) and a significant increase in that of non-
classical-monocytes (from 0.41% in control to 27.82% in the pre-
treatment group). Moreover, proportions of CD3+ T-cells and CD8+

T-cells were significantly increased in the pre-treatment group relative
to the control (from 0.01% to 1.74%, and from 3.46% to 7.63%,
respectively) (Figure 1F). The number of cells, UMIs and genes of
monocytes (Monos, conbined classical-monocytes and non-classical-
monocytes) and T-cells in each sample of peripheral blood were
shown in Figure 1G.

From the muscle tissue samples, 16,804 qualified cells were
obtained from two pre-treatment JDM patients, with an average of
2,018 genes detected per cell. The datasets of muscle cells for
healthy controls comprised 7,180 cells with an average of 609 genes
detected per cell. We detected seven distinct cell types in the
muscle cells of healthy control and pre-treatment groups: T-cells
(3.62%), NK cells (2.79%), B-cells (1.66%), two subtypes of
macrophages (macrophage1, 5.61%; macrophage2, 4.83%),
endothelial cells (33.45%), three subtypes of fibroblasts
(fibroblast1, 15.38%; fibroblast2, 10.38%; fibroblast3, 7.78%),
two subtypes of SMCs (SMC1, 9.25%; SMC2, 4.02%), and a
proliferating cell population designated ‘cycling’ (1.23%)
(Figures 2A, B), which were annotated based on their signature
genes (Figure 2C, Supplementary Table S2). Representative genes
for each cell subtype are shown in the feature plots (Figure 2D).
Among these muscle cells, we found that the proportions of
T-cells, SMC2, macrophage1, fibroblast2, fibroblast3, cycling,
and B-cells were significantly increased (|log2-FC|> 0.5),
whereas fibroblast1 and endothelial cells were significantly
decreased (|log2-FC|> 0.5) in JDM patients (pre-treatment
group) compared to that in healthy controls (Figure 2E).
Moreover, the number of cells, UMIs, and genes related to
fibroblasts and SMCs in each muscle tissue are shown in Figure 2F.
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FIGURE 2
Global transcriptomic profiles of muscle cells from control and JDM patients reveals their cellular subpopulations as determined by ScRNA-seq. (A)
Uniform Manifold Approximation and Projection (UMAP) plots of single-cell transcriptomic profiles showing cell types of muscle cells from all the
samples. Each dot represents a cell, which is colored according to cell type. (B) UMAP plots of single-cell transcriptomic profiles showing cell types of
muscle cells from healthy and pre-treatment groups, respectively. Each dot represents a cell, which is colored according to cell type. (C) Bubble
chart of markers for each identified cell type. (D) Feature plots of expression distribution for representative genes for each cell type in muscle. Expression
levels for each cell are color-coded and overlaid into UMAP plot. (E) Heterogeneity of cell type composition in healthy control and groups. The table
shows the number of each cell type in each group (up); and the bubble chart represents the changes in the cell ratio of cell types between the pre-
treatment and healthy control groups inmuscle (down). (F) The number of cells, and box plots of the number of UMIs and genes (with the box plot center,
box, whiskers, and points corresponding to the median, interquartile range, 1.5× interquartile range, and outliers, respectively) of SMCs and fibroblasts in
each sample of muscle.
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FIGURE 3
Classical monocytes were differentiated into non-classical monocytes in circulation of JDM patients. (A, B) Visualization of monocyte sub-clusters
in human peripheral blood sample via Uniform Manifold Approximation and Projection (UMAP) plots by cell identity (A) and different stages (B). (C) A
heatmap shows the top marker genes of monocyte sub-clusters. (D) Volcano plot illustrating the representative differential genes between post-treat
group and pre-treat group of CD14+ monocyte (up) and IFITM2+ monocyte (down). (E) GO enrichment of upregulated (red) and downregulated
(blue) DEGs of CD14+monocyte (up) and IFITM2+monocyte (down) in the post-treatment group compared to pre-treat group. (F)CD14+monocyte (up)
and IFITM2+ monocyte (down) subpopulation-specific regulons identified via SCENIC analysis. (G) Pseudotime trajectory (Monocle analysis) of the
monocyte. Cells are colored based according to the predicted pseudotime (top) and groups (bottom). (H) The expression dynamics of top DEGs were
cataloged into five major clusters in a pseudotime manner shown as red lines (cell fate 1) and blue lines (cell fate 2). (I) A heatmap shows the different
expression patterns of top DEGs (cataloged in five clusters) along the development of Cell fate1 and cell fate 2. (J) GO enrichment analyses of each gene
cluster.
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3.2 Functional changes within the peripheral
blood monocyte subsets and their pseudo-
time trajectory reconstruction

We further turned our attention to the monocyte populations
because of the significant compositional changes observed between
pre-treated JDM patients and healthy control, and explored the
heterogeneity and functional changes within combined classical-
monocytes and non-classical-monocytes (hereafter designated
Monos) of the peripheral blood during the pathogenic process of
JDM. Based on the expression levels of the highly enriched cluster
markers identified in this study, we assigned the subsets of these
Monos into three subclusters: CD14+ Monos (VCANhigh and
CD14high), IFITM2+ Monos (IFITM2high and CD16high), and
CYP4F3+ Monos (CYP4F3high and CD16high) (Figures 3A–C,
Supplementary Table S3). Only CD14+ Monos were found in
healthy controls, while all three subtypes were detected in the
pre-treatment group, and CYP4F3+ Monos were absent in post-
treatement patients (Figure 3B).

To further investigate the transcriptomic changes of Monos in
peripheral blood during the pathogenic process of JDM, the
expression patterns of the Monos subpopulations were compared
between pre-treatment and post-treatment conditions. A total of
621 DEGs were identified in CD14+ Monos between the two groups,
including 332 upregulated (e.g., HBB, CD163, ALOX5AP, FKBP5,
FOS) and 289 downregulated genes (e.g., IFI44L, ISG15, IFI6,
IFITM3, LY6E) in the post-treatment group relative to the pre-
treatment group (Figure 3D up). GO enrichment analyses of these
DEGs revealed enrichment of the upregulated genes in protein
localization to the membrane and mRNA catabolic and
translation processes, whereas the response to viruses and
response to type I IFN were the most significantly downregulated
pathways in CD14+ Monos (Figure 3E up). Subsequently, a heatmap
revealed differentially expressed transcription factors (TFs),
including KFL6, STAT1, ELK3, among the three CD14+ Monos
populations (healthy control, pre-treatment, and post-treatment
groups; Figure 3F).

Meanwhile, 881 DEGs were found in IFITM2+ Monos between
the pre-treatment and post-treatment groups, comprising
519 upregulated (e.g., FKBP5, IL1R2, FOS, ZBTB16, IRS2) and
362 downregulated (e.g., IRF7, TRIM22, DDX60, IFIT5, HES4)
DEGs in the post-treatment group (Figure 3D down). GO
enrichment results indicated that processes associated with the
immune defense response and RNA metabolic processes, e.g.,
phagocytosis, T-cell activation, and mRNA catabolic processes,
were significantly upregulated in IFITM2+ Monos (Figure 3E
down). In contrast, functional processes associated with the
response to IFN/viruses (defense response to virus, response to
virus, response to type I IFN, response to IFN-γ, etc.) in IFITM2+
Monos were generally downregulated, and the representative GO
terms are presented in Figure 3E down. The differentially expressed
TFs in IFITM2+ Monos (such as STAT1, IRF7, FOS and CEBPD)
among the healthy control, pre-treatment, and post-treatment
groups are displayed in Figure 3F.

Monocle trajectory analysis was performed to reconstruct and
characterize the relationships between the peripheral blood Monos
in the different study groups and to derive reprogramming
trajectories using an unbiased method (Trapnell et al., 2014; Qiu

et al., 2017; Packer et al., 2019). According to the change in
trajectory, the Monos progressed toward the post-treatment state
from the healthy state during stage 1 induction before bifurcation
(pre-branch); the Monos then transformed toward two distinct cell
fates: cell fate 1 (pre-treatment state) and cell fate 2 (post-treatment
state) (Figure 3G).

We then examined the pseudo-time dynamics of the gene
expression patterns in Monos and arranged them into five clusters
(Figures 3H, I). The genes in cluster Module 1 (e.g., PGK1, DNAJC15,
COA6, ATP5MG, COX6B1, COX4I1) were primarily associated with
cellular respiration (oxidative phosphorylation, ATP metabolic
process, electron transport chain, ATP synthesis coupled electron
transport, aerobic respiration); the expression patterns remained
constant under the cell fate 1 condition, however, initially
increased and then decreased along the pseudo-time under the cell
fate 2 condition (Figures 3H–J). Cluster Module 4 comprised genes
related to type I IFN/virus responses, such as ISG15, IFI6, IFI44L,
RSAD2, IFITM3, IFIT2, etc. The expression of these genes increased
from the beginning of reprogramming in the cell fate 1 stage, however,
decreased slightly beginning mid-cell fate 2 stage (Figures 3H–J).
Cluster Module 5 genes largely comprised genes that were enriched in
immune response and phagocytosis, such as FCGR3B, MNDA,
KPNB1, ARPC2, ABCA1, KIAA1109, etc. These genes were highly
expressed under cell fate 1 condition, however, decreased from the
beginning of reprogramming under cell fate 2 condition
(Figures 3H–J).

The dysregulation of IFNs production and function couldmediate
immune pathogenesis such as inflammatory autoimmune diseases
and infectious diseases (Chen et al., 2017). Furthermore, we leveraged
the transcription factor network to unravel that IFITM2+Monos and
CYP4F3+ Monos could acquire inflammatory states via the
coordinated activity of inflammatory pathways driven by response
to type I IFN, cellular response to type I IFN, response to type IFN-γ
and type I IFN-mediated signaling pathway (Supplementary Figure
S1). IRF7, STAT1, STAT2 and SP100 were key transcription factors
associated with the inflammatory or regulatory roles expressed in
Monos. Breifly, the type I IFN and IFN-γ signatures were significantly
enhanced, accompanied by the transformation of healthy Monos into
inflammatory Monos under the pre-teatment state, while the IFN
responses recovered to control level in the post-treatment state,
suggesting the effective reduction of inflammation in patients with
JDM after treatment. Furthermore, cellular respiration is enhanced
from the beginning of reprogramming under the cell fate 2 condition.

3.3 Re-clustering the peripheral blood T-cell
subsets and their pseudo-time trajectory
reconstruction

T cells are important for immune response and have been
reported as a therapeutic target in MDA5+ DM (Nombel et al.,
2021; Wu et al., 2021), and we analyzed the T-cells (including CD4+

and CD8+ T-cells, excluding CD3+ T-cells due to low cell numbers
(1 cell) in the healthy control) compartments in the peripheral blood
and assessed their heterogeneity with eight subsets. The CD4+ T-cells
comprised CD4-ITGB1, CD4-JUNB, CD4-FOS, CD4-FOXP3, CD4-
GZMK, and CD4-GIMAP7 subsets, whereas CD8+ T-cells comprised
CD8-S100B and CD8-CCR7 subsets (Figures 4A, B, Supplementary
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FIGURE 4
Dynamic change process of T cell in response to JDM disease occurrence and treatment. (A,B) Visualization of T cell sub-clusters in human
peripheral blood sample viaUniformManifold Approximation and Projection (UMAP) plots by cell identity (A) and different stages (B). (C) The feature plots
of marker genes of T cell sub-clusters. (D) Heterogeneity of cell type composition of T cell sub-clustersin healthy control, pre-treatment, and post-
treatment groups. The table shows the number of each cell type in each group (up); and the bubble chart represents the changes in the cell ratio of
cell types between the pre-treatment and healthy control groups, and between the post- and pre-treatment groups in peripheral blood (down). (E)
Pseudotime trajectory (Monocle analysis) of the CD4+ T cell sub-clusters. Cells are colored based according to the predicted pseudotime (left) and
groups (right). (F) The expression dynamics of top DEGs were cataloged into five major clusters in a pseudotime manner. (G) A heatmap shows the
different expression patterns of representative DEGs (cataloged in five clusters) along the reprogramming trajectory. Color key from blue to red indicates
relative expression levels from low to high. (H) GO enrichment analyses of each gene cluster.
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Table S4). Representative signature genes are presented in feature
plots (Figure 4C). Among the three study groups, the proportions of
CD8-S100B, CD4-JUNB, CD4-ITGB1, CD4-GZMK and CD4-FOS
were significantly decreased in the pre-treatment group compared to
the healthy controls, while CD8-S100B and CD4-JUNB were not
detected within the post-treatment group (Figure 4D). Moreover, the
proportions of CD4-GIMAP7, CD4-FOXP3 and CD8-CCR7 were
significantly increased in the pre-treatment group relative to that in
the healthy control group (Figure 4D).

Pseudo-time trajectory analysis was performed to capture
T-cells asynchronously transitioning from one transcriptomic

state to the next. We first captured a linear trajectory for CD4+

T-cells, which progressed from an initially healthy state to post-
treatment state and culminated in a pre-treatment state (Figure 4E).
To understand the biological processes driving pseudo-time
components, we investigated which genes covary in expression
with pseudo-time. Consequently, we identified five gene clusters
expressed in CD4+ T-cells based on the pseudo-time dynamics of
their expression patterns (Figures 4F, G). The expression levels of
genes in Module 1 (e.g., SLC2A3 and CCL5) were initially
downregulated and subsequently upregulated until pseudo-time
termination, meanwhile, Module 2 genes (e.g., JUN, DUSP1, FOS)

FIGURE 5
CD8+ T cells showed transition from a naive state to an inflammatory state and regulated by non-classical monocytes. (A) Pseudotime trajectory
(Monocle analysis) of the CD8+ T cell sub-clusters. Cells are colored based according to the predicted pseudotime (up) and groups (bottom). (B) The
expression dynamics of top DEGs were cataloged into six major clusters in a pseudotimemanner shown as red lines (cell fate 1) and blue lines (cell fate 2).
(C) A heatmap shows the different expression patterns of top DEGs (cataloged in six clusters) along the development of Cell fate1 and cell fate 2. (D)
GOenrichment analyses of each gene cluster. (E,F) Selected ligand-receptor interactions (y-axis) against cell types (x-axis) frommonocytes, CD4+ T cells
(E) andCD8+ T cells (F) of human JMD samples. p values are indicated by circle size. Themeans of the average expression level of interactingmolecule 1 in
cluster 1 and interacting molecule 2 in cluster 2 are indicated by color.
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were expressed early. In Module 3, during the pseudo-time mid-
phase, we observed highly expressed genes associated with T-cell/
leukocyte activation, such as CCR7 and Il6ST. Finally, the genes
within Module 4 (e.g., IFIT1 and IRF9) and Module 5 (e.g., ISG15
and RSAD2) were associated with type I IFN/virus responses and
were upregulated beginning in the pseudo-time mid-phase, and
highly expressed by the pseudo-time end point (Figure 4H).

CD8+ T-cells were initially healthy before bifurcation (pre-branch),
whereas following bifurcation two distinct branches arose (cell fate 1 and
cell fate 2), representing two major cell states (post-treatment and pre-
treatment) in the late reprogramming stage (Figure 5A). Six major
categories of transcriptional gene clusters were observed in the
characterized expression patterns (Figures 5B, C). We then focused
on the trajectory of cell fate 2 and found that genes in Modules 1 and
2 were gradually downregulated from the beginning of reprogramming,
whereas genes in Module 3 (e.g., TMSB4X, CCL5, S100A9) remained
relatively stable during cell fate 2; these genes were largely associated with
regulation of biological processes, such as “cell chemotaxis.” In contrast,
Module 4 genes (e.g., IFITM1, XIST, SEPTIN6) were gradually
upregulated from the beginning of reprogramming and maintained
at high expression levels until the final stage. Finally, Module 5 and
Module 6 genes were upregulated along the pseudo-time, among which
Module 5 genes (e.g., IFI44L, ISG15, IFIT3) were predominantly
associated with type I IFN/virus responses and Module 6 genes (e.g.,
HBB, IL7R, HBA2) were largely involved in the regulation of biological
processes, such as “oxygen transport” (Figure 5D). When focusing on
cell fate 1, we found that the expression of genes in Module 5 and
Module 1 exhibited the greatest differences compared with cell fate 2.
That is Module 5 genes exhibited slight upregulation from the beginning
and then subsequently became downregulated. Meanwhile, genes in
Module 1 (e.g.,ZBTB16,NDFIP1,PCBP2) were upregulated at the end of
reprogramming with predominant involvement in the GO term
“negative regulation of immune system process.” According to these
results, the type I IFN signature was also significantly enhanced,
accompanied by the transformation of healthy T-cells into
inflammatory T-cells (CD4+ and CD8+ T-cells), whereas their normal
functions like “cell-cell adhesion” were downregulated under the
inflammatory state.

3.4 Cellular interactions between Monos
and T-cells in the peripheral blood

To explore the roles of Monos in the progression of JDM, we
employed an unbiased ligand-receptor interaction analysis of the
Monos and T-cell subsets via communication calculations with
CellphoneDB, with the aim of characterizing the interactions in
unambiguously functional clusters (Figures 5E, F). We captured two
pairs of ligand-receptor interactions between IFITM2+ Monos and
CD4+ T-cell subsets that differed significantly between the pre- and
post-treatment groups. ICAMs are intercellular adhesion molecules
that mediate inflammation (Lyck and Enzmann, 2015; Shen et al.,
2018). We also identified five pairs of ligand-receptor interactions
that associated with inflammation between CD14+ Monos (normal
Monos) and CD4+ T-cell subsets (ICAM3-aLb2 complex, ICAM2-
aLb2 complex, ICAM1-aLb2 complex, ICAM1-ITGAL, ICAM1-
SPN) that occurred primarily in the healthy state and were lost
in the pre- and post-treatment states (Figure 5E).

Moreover, the CD55-ADGRE5 and ICAM3-aLb2 complex
interactions between IFITM2+ Monos (inflammatory Monos)
and CD4+ T-cell subsets enhanced their interactions in the
post-treatment state compared to the pre-treatment state. In
line with the interactions between Monos and CD4+ T-cell
subsets, similar interaction patterns were observed between
Monos and CD8+ T-cell subsets (Figure 5F). Collectively, these
findings illustrate the molecular basis for the potential cellular
interactions between Monos and T-cells, and found that
inflammatory-related monocytes could regulate T-cells in the
peripheral blood of patients with JDM.

3.5 Distinct functional profiles of the SMC
subsets in muscle cells and their pseudo-
time trajectory reconstruction

To describe the functional profile of SMCs, one type of the
muscle stromal cells, four subsets were identified by re-clustering
according to their differentially expressed markers (Figures 6A–C,
Supplementary Table S5). The GO annotation of marker genes in
CD74+ SMCs (e.g., HLA-E, HLA-DRB1, CD74) showed their
capacity to respond to IFN and viruses (e.g., cellular response to
type I IFN, cellular response to IFN-γ, response to viruses, etc.)
(Figure 6D). The marker genes expressed in COL14A1+ SMCs (e.g.,
CD44, IGFBP5, ADRA2A) were largely involved in the regulation of
biological processes, such as “extracellular structure
organization,”“cell-substrate adhesion,” “muscle system process,”
“ossification,” “positive chemotaxis,” and “blood coagulation”
(Figure 6D). MYH11+ SMCs preferentially expressed marker
genes (e.g., NDUFA4, COX6C, COX7C) involved in ATP
synthesis and cellular respiration (Figure 6D). Meanwhile, genes
expressed in RGS5+ SMCs (e.g., CD36, COL3A1, SPARC) were
predominantly responsible for cell-substrate adhesion (Figure 6D).

Next, monocle trajectory analysis was performed to reconstruct
and characterize the relationships among the SMC lineages and to
derive pseudo-time trajectories. The monocle pseudo-time analysis
results inferred that the direction of the transition from healthy to
pre-treatment transcriptomic state began with the MYH11+ SMCs
and ended with the CD74+ SMCs as the terminal cluster (Figure 6E).
To gain insights into gene expression dynamics along this trajectory,
we assessed six major categories of transcriptional gene clusters
based on characterized expression patterns (Figures 6F, G). The
expression of genes in Module 1 (e.g., PLN, MYH11, SORBS2) and
Module 2 (e.g., COX7C, COX5B, ATP5ME) were downregulated
from the beginning of the reprogramming trajectory, among which
Module 1 genes were largely related to the muscle system process,
and Module 2 genes were mainly associated with ATP metabolism
and cellular respiration (Figure 6H). We observed that genes in
Module 3 (e.g., COL3A1, CD36, TIMP1) were highly expressed
during the mid-late pseudo-time period, and were largely
involved in the regulation of biological processes, such as
“extracellular structure organization,” “cell-substrate adhesion,”
“leukocyte chemotaxis,” “cell chemotaxis,” and “blood
coagulation” (Figure 6H). Module 4 genes (e.g., IFI27, HLA-A,
IFIT1) were upregulated from the beginning along the
reprogramming trajectory, and genes in Module 5 (e.g., CD74,
HLA-DRB1, TRIM22) and 6 (e.g., CCL2, HLA-E, IFIT3) were
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upregulated by the pseudo-time end point; genes in these three
clusters were predominantly responsible for the regulation of
immune defense and responses to IFNs/virus (Figure 6H).

In addition, transcription factor network shows that the CD74+

SMCs, which highly expressed inflammatory transcription factors
SP100, EGR1 and IRF7, could achieve inflammatory states by
coordinating activity on inflammatory pathways driven by
response to IFN-γ and type I IFN-mediated signaling pathway
(Supplementary Figure S2). These results revealed that CD74+

SMCs were associated with inflammatory state in muscle, and
both type I IFN and IFN-γ signatures were significantly

enhanced when healthy SMCs were transformed into
inflammatory SMCs, accompanied by dysfunction of processes in
the muscle system and cellular respiration.

3.6 Distinct functional profiles of the
fibroblast subsets in muscle cells and their
pseudo-time trajectory reconstruction

Next, we performed unsupervised re-clustering of fibroblasts
(another type of muscle stromal cells) and observed further

FIGURE 6
Gene expression profile analysis of smooth muscle cells in JDM patients. (A,B) Visualization of smooth muscle cell sub-clusters in human muscle
sample viaUniformManifold Approximation and Projection (UMAP) plots by cell identity (A) and different stages (B). (C) The feature plots of marker genes
of smooth muscle cell sub-clusters. (D) GO enrichment analyses of marker genes of smooth muscle cell sub-clusters. (E) Pseudotime trajectory
(Monocle analysis) of the smooth muscle cells. Cells are colored based according to the predicted pseudotime (top) and groups (bottom). (F) The
expression dynamics of top DEGswere cataloged into sixmajor clusters in a pseudotimemanner. (G)Gene expression heatmap of top DEGs (cataloged in
six clusters) in a pseudo-temporal order. (H) GO enrichment analyses of each gene cluster.
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heterogeneity with five subsets, each containing unique marker gene
profiles (Figures 7A–C, Supplementary Table S6). Among these
subsets, CCL19+ fibroblasts preferentially expressed genes (e.g.,
CCL19, HLA-DRB1, ISG20, IFITM2) involved in IFN and virus
responses (e.g., cellular response to IFN-γ, type I IFN signaling
pathway, response to virus, etc.) (Figure 7D); a significant increase
was observed in the proportion of this cell subtype in the pre-
treatment group compared with the control group (Figure 7A). The
marker genes expressed in DPT + fibroblasts (e,g., DPT, APOD,

COL1A2) were primarily associated with regulation of biological
processes, such as “extracellular matrix organization,”“cell-substrate
adhesion,” “collagen fibril organization,” and “collagen metabolic
process” (Figure 7D). MYF5+ fibroblasts highly expressed genes
associated with regulation of RNA splicing and mRNA metabolic
processes, such as MYOD1, HNRNPA1, VIM, NPM1, etc.
(Figure 7D), while MYL2+ fibroblasts highly expressed genes
associated with the regulation of ATP synthesis and cellular
respiration, such as COX6A2, COX7A1, ATP5F1D, MYL2, etc.

FIGURE 7
Fibroblasts with inflammatory gene expression profiles emerge in muscle samples of JDM patients. (A,B) Visualization of fibroblast sub-clusters in
human muscle sample via Uniform Manifold Approximation and Projection (UMAP) plots by cell identity (A) and different stages (B). (C) The feature plots
of marker genes of fibroblast sub-clusters. (D) GO enrichment analyses of marker genes of fibroblast sub-clusters. (E) Pseudotime trajectory (Monocle
analysis) of the fibroblast. Cells are colored based according to the predicted pseudotime (left) and groups (right). (F) The expression dynamics of top
DEGs were cataloged into six major clusters in a pseudotime manner. (G) Gene expression heatmap of top DEGs (cataloged in six clusters) in a pseudo-
temporal order. (H) GO enrichment analyses of each gene cluster.
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(Figure 7D). Additionally, genes highly expressed in PTPRB +
fibroblasts (e.g., VWF, AQP1, CDH5) were enriched in
“extracellular matrix organization,”“cell-substrate adhesion,”
“endothelium development,” and “regulation of angiogenesis”
(Figure 7D).

Monocle trajectory analysis was then performed to
reconstruct and characterize the relationships among
fibroblast subsets and to derive pseudo-time trajectories. The
transcriptomic states of fibroblasts began with DPT + fibroblasts
and PTPRB + fibroblasts and were partitioned into two distinct
states: MYF5+ fibroblasts and MYL2+ fibroblasts were terminal
clusters of one end state, while the CCL19+ fibroblasts
represented the terminal cluster of the other end-state
(Figure 7E). To gain insights into the gene expression
dynamics occuring from healthy to inflammatory states, we
observed six major transcriptional gene clusters based on their
characteristic expression patterns (Figures 7F, G). Genes in
Module 4 (e,g., DPT, COL3A1, FN1), Module 5 (e,g., JUN,
GAS1, FGFR1) and Module 6 (e,g., HSPG2, ALDH1A2,
SPARCL1) were expressed early and subsequently
downregulated along the reprogramming trajectory, among
which Module 4 genes were largely associated with regulation
of collagen metabolism and cell-substrate adhesion, whereas
Module 5 and Module 6 genes were predominantly
responsible for regulation of “response to endoplasmic
reticulum stress” and “extracellular matrix organization”
respectively (Figure 7H). Subsequently, genes enriched in
Module 2 (e.g., ISG15, IFITM1, HLA-A) were upregulated
during mid-stage and retained high expression until the end
of the pseudo-time; these genes were involved in antigen
presentation and responses to IFNs/virus (Figure 7H). Module
1 genes (e.g., UQCRB, TNNI1, ACTA1, etc.) were highly
expressed during the mid-to-late stage of the reprogramming
pseudo-time and were primarily associated with the regulation of
muscle development and cellular respiration (Figure 7H). Finally,
we observed that genes in Module 3 (e.g., CD74,HLA-DRA,HLA-
DRB1) were upregulated at the end of the reprogramming
pseudo-time and were responsible for activation of the
immune system, including “regulation of biological processes
of the immune response-activating cell surface receptor signaling
pathway,” “regulation of leukocyte proliferation,” “response to
tumor necrosis factor,” “T-cell activation,” “regulation of
lymphocyte proliferation,” and “B cell activation” (Figure 7H).

As before, transcription factor network analysis was performed
and result has shown that inflammatory transcription factors
EGR1 and IRF7 were highly expressed in CCL19+ fibroblasts and
drove them to inflammatory states by pathways of response to IFN-γ
and type I IFN-mediated signaling pathway (Supplementary Figure
S3). In summary, CCL19+ fibroblast was one of the inflammatory
cell subtype in muscle, and the IFN signatures (type I IFN and IFN-
γ) exhibited a significant enhancing trend inmuscle fibroblasts when
transforming from a healthy state to an inflammatory state,
accompanied by the activation of immune defense and
dysfunction of collagen metabolism. Moreover, the genes
associated with muscle development and cellular respiration
(Module 1) were upregulated during the mid-to-late stage of the
fibroblasts’ transition to an inflammatory state, which differed from
the downregulated expression of related genes in SMCs.

3.7 Cellular interactions of immune cells and
functional cells in muscles between the
healthy control and pre-treatment group

As so far, the infiltration of specific immune cell subsets was one
of the characterizations of inflammatory process in JDM (Wienke
et al., 2018). Therefore, we performed an unbiased ligand-receptor
interaction analysis to explore the relationship between immune
cells and SMCs or fibroblasts in the muscle (Figures 8A, B). We
captured 39 pairs of ligand-receptor interactions between immune
cells and CD74+ SMCs that significantly differed between the healthy
control and pre-treatment groups. Among these, 24 pairs were
found between macrophages 1 and CD74+ SMCs (such as CCL5-
ACKR1), 18 pairs were found between macrophages 2 and CD74+

SMCs, 8 pairs between NK cells and CD74+ SMCs, and 10 pairs
between T-cells and CD74+ SMCs, that were enhanced in the pre-
treatment state compared to the healthy state (Figure 8A).
Moreover, 44 pairs of ligand-receptor interactions were detected
between immune cells and COL14A1+ SMCs, 33 pairs between
immune cells and MYH11+ SMCs, and 45 pairs between immune
cells and RGS5+ SMCs that exhibited significant enhancement
within the inflammatory state.

Similar results were observed for immune cells and fibroblasts.
Eighteen pairs of ligand-receptor interactions between immune cells
and CCL19+ fibroblasts (Figure 8B), 14 pairs between immune cells
and DPT + fibroblasts, 10 pairs between immune cells and MYF5+
fibroblasts, 12 pairs between immune cells and MYF2+ fibroblasts,
and 13 pairs between immune cells and PTPRB + fibroblasts were
captured and primarily occurred during the inflammatory state.
These results suggest that immune cells, including macrophages, NK
cells and T-cells infiltrate muscle tissue during the inflammatory
state.

4 Discussion

Current data regarding the changes within the immune system
associated with JDM pathogenesis and the response to treatment is
lacking. In this study, changes in cell composition, dynamics in gene
expression patterns at the cellular level, and immunological features
of patients with JDM pre- and post-treatment were described using
scRNA-seq. We identified a total of nine and seven distinct cell types
in the peripheral blood and muscle, respectively, and demonstrated
the heterogeneity of patient-specific cell populations in JDM.
Furthermore, overactivation of the type I IFN response pathway
was associated with untreated JDM patients in all cell types. Finally,
the non-classical-Monos were found to regulate T-cells in peripheral
blood while immune cell infiltration was detected within muscle
tissue under inflammatory conditions. These results provide novel
insights into the cellular mechanisms underlying JDM pathogenesis
as well as potential targets for therapeutic intervention.

The activation of type I IFN signaling in JDM blood and target
tissues has been reported in many previous studies (Wenzel et al.,
2006; Baechler et al., 2007; Bilgic et al., 2009; Baechler et al., 2011;
Wong et al., 2012; Neely et al., 2019; Soponkanaporn et al., 2019;
Neely et al., 2022), and has been identified as a predominant feature
in MDA5+ DM patients that is related to endothelial injury
(Funauchi et al., 2006; He et al., 2021), vasculopathy (Ono et al.,
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2019; Cassius et al., 2020), and lung injury (Nakano et al., 2012;
Takada et al., 2015; Ye et al., 2022). Type I IFN plays essential role in
establishing and modulating host immune response to the complex
pathogenic or environmental stimuli via induction of IFN-
stimulated genes (ISGs) through Janus kinase (JAK)–signal

transducer and activator of transcription (STAT) signaling
pathway, and the dysregulation of type I IFN production and
function could induce an inflammatory state in patients by
aberrantly activating inflammatory responses or improperly
suppressing microbial controls (Chen et al., 2017). Our study

FIGURE 8
Cellular interaction analysis between immune cells and smooth muscle cells or fibroblasts in JDM muscle samples. (A, B) Bubble chart showing
ligand-receptor relationship between immune cells and smooth muscle cells (A) or fibroblasts (B).
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confirmed a significantly enhanced type I IFN response in peripheral
blood Monos and T-cells, as well as muscle SMCs and fibroblasts
from untreated patients with JDM. For example, the type I IFN-
related TFs IRF1/2/7 and STAT1 were highly enriched in the CD14+

Monos, while IRF1/2/7 and STAT1/2 were enriched in the IFITM2+
Monos of these patients (Figure 3F). Furthermore, the DEGs
associated with type I IFN response, such as ISG15, IFI6, IFITM3
and IFIT2 in peripheral blood Monos; IFIT1, IRF9, ISG15 and
RSAD2 in peripheral CD4+ T-cells; IFI44L, ISG15 and IFIT3 in
peripheral CD8+ T-cells; IFI27, HLA-A, IFIT1 in muscle SMCs; and
ISG15, IFI6, HLA-A/B/C in muscle fibroblasts, were overexpressed
in the inflammatory state. Among these genes, ISG15 is one of the
most strongly induced ISGs upon exposure to type I IFN, virus,
lipopolysaccharide (LPS), and other stresses (Liu et al., 2004; Jeon
et al., 2010). Considering that type I IFNs play critical roles in innate
immune responses regulating the antiviral responses, there is no
doubt that ISG15 and its conjugation to target proteins play critical
roles in the type I IFN-induced immune responses. Notably, type I
IFN has been reported to promote CD8+ T-cell expansion
(Kolumam et al., 2005), while ISG15+ CD8+ T-cells may
represent a promising prognostic biomarker in MDA5+ DM (Ye
et al., 2022). In this study, we also observed the expansion of CD8+

T-cells in untreated patients with JDM, further confirming that
ISG15+ CD8+ T-cells might represent prognostic biomarker
for JDM.

The data of the peripheral blood monocyte compartment in
this study exhibited high dysregulation in JDM patients. Three
subsets of peripheral blood monocytes, among which only CD14+

monocytes were found in healthy control, while the other two
monocytes (IFITM2+ Monos and CYP4F3+ Monos) were largely
produced in patients with JDM. Previous work suggests that
CD16+ monocytes are non-classical-monocytes, and this cell
type has traditionally been thought to be immune-regulatory
and plays an important role in autoimmune diseases
(Narasimhan et al., 2019). In fact, Neely et al. identified a
CD16+ monocyte subcluster that was skewed toward an
inflammatory and antigen-presenting phenotype in JDM (Neely
et al., 2022). Meanwhile, Mukherjee et al. found a similar
inflammatory CD16+ non-classical-monocyte population in
adult systemic lupus erythematosus (SLE) peripheral blood
(Mukherjee et al., 2015). In our study, IFITM2+ Monos and
CYP4F3+ Monos, both of which were highly expressed CD16,
represented inflammatory populations as significantly enhanced
inflammatory associated type I IFN response pathways were
observed within the pre-treatment state. In contrast, the type I
IFN response was downregulated accompanied by the
disappearance of CYP4F3+ Monos in the post-treatment state
compared to pre-treatment, suggesting that CYP4F3+ Monos was
more relevant to inflammation than IFITM2+ Monos. Meanwhile,
the skin rash was basically subsided, and the muscle strength
recovered normally of the patients after treatment, revealing the
effective reduction of inflammation by treatment (treated with
prednisone, hydroxychloroquine, and cyclophosphamide for
3–6 months). Therefore, CYP4F3+CD16+ monocytes may also
represent a potential prognostic biomarker for JDM.

Cell type composition heterogeneity and transcriptional profile
changes were also observed in muscle cells of untreated patients
with JDM and healthy controls. CD74+ SMCs and CCL19+

fibroblasts were identified as inflammatory-related cell subtypes
in patients with JDM as these cells expressed various gene markers
involved in the type I IFN signaling pathways, such as HLA-E,
EGR1, ISG20 and IFITM2. Moreover, these 2 cell subtypes were
terminal clusters of SMCs and fibroblasts, respectively, on the
trajectory of their transition from a healthy to an inflammatory
state. The transcription factor networks confirmed that both
CD74+ SMCs and CCL19+ fibroblasts could achieve
inflammatory states by coordinating activity on inflammatory
pathways driven by response to IFN-γ (related DEGs such as
HLA-A/B/C, IRF7) and type I IFN-mediated signaling pathway
(Supplementary Figures S2, S3). Prior reports show that the
increasing IFN-γ signature was also observed in polymyositis
and dermatomyositis complicated by rapidly progressive or
chronic interstitial lung disease (Gono et al., 2014; Ishikawa
et al., 2018). Indeed, high levels of IFN-γ have been implicated
in the development and severity of MDA5+ DM (Ye et al., 2022),
and been shown to induce proinflammatory CX3CL1 in lung
fibroblasts (Isozaki et al., 2011).

Meanwhile, transcription factor networks also showed that
EGR1 (early growth response factor 1) and IRF7 (interferon
regulatory factor 7) play central roles in the inflammation in
both CD74+ SMCs and CCL19+ fibroblasts, therefore, inhibition
of the activities of EGR1 and/or IRF7 may contribute to reducing
inflammation in muscle. EGR1 has been identified as potential
therapeutic target to inhibit the inflammation induced by
cholestasis for cholestatic liver injury (Zhang et al., 2019). Ho
et al. (2016) highlighted the integrative role of EGR1 in renal
inflammation and fibrosis, and suggested that EGR1 may be a
therapeutic target for human kidney diseases (Ho et al., 2016).
While IRF7 has emerged as the crucial regulator of type I IFNs
against pathogenic infections, therefore, the tight regulation of
IRF7 expression and activity is imperative in dictating
appropriate type I IFN production for normal IFN-mediated
physiological functions (Ning et al., 2011). Hence, EGR1 and
IRF7 may serve as potential therapeutic targets for JDM. In
addition, the proportion of CCL19+ fibroblasts increased
significantly in JDM patients relative to healthy controls
(Figure 7A). Although no significant changes in the
proportion of CD74+ SMCs were found in this study, we
suggest that the proportion changes of CD74+ SMCs and
CCL19+ fibroblasts in patients may reflect the progression
of JDM.

The immune activation signature was also found in muscle
cells of untreated patients with JDM, and immune defense-related
DEGs (e.g., CCL2/CXCL10/HLA-E/CCL8/HLA-DRB1 in muscle
SMCs and CD74/HLA-DRB1/HLA-DRA/CCL19 in muscle
fibroblasts) were activated at the end of the reprogramming
trajectory. Among these genes, serum CXCL10 serves as a
biomarker for disease activity in patients with JDM (Wienke
et al., 2019). CXCL10 binds to its receptor CXC chemokine
receptor 3 (CXCR3) and promotes an inflammatory
microenvironment by activating and recruiting various immune
cells (Kim et al., 2014). CXCL10 is also reportedly involved in
pathological muscle conditions, such as inflammatory myopathies,
suggesting that it serves as a potential therapeutic target for these
conditions (Crescioli et al., 2012). Furthermore, all pairs of ligand-
receptor interactions between immune cell (including
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macrophages1, macrophages2, NK, and T-cells) and SMC or
fibroblastshowed a significant enhancement in interactions in
the inflammatory state (Figures 8A, B), suggesting that immune
cells infiltrate muscle tissue in patients with JDM.

Mitochondrial dysfunction has been observed in muscle biopsies of
adult patients with dermatomyositis, and a link has been described
between type I IFN andmitochondrial dysfunction (Meyer et al., 2017).
We also observed mitochondrial dysfunction in muscle SMCs, as
enrichment of terms associated with oxidative phosphorylation, ATP
metabolic process, and mitochondrial ATP synthesis-coupled electron
transport were downregulated in the inflammatory state, accompanied
by downregulation of normal functions associated with the muscular
system (Figures 6F–H). Consistent with these transcriptomic changes,
clinical representations of uneven sizes of muscle fibers (5–30 μm in
diameter), themyocytemyofibrillar fibers were partially disordered, and
the local myofibrillar fibers were torn, dissolved, and myomere
disappeared were observed in JDM patients without treatment.
Furthermore, the observed upregulation in cellular respiration helps
reduce inflammation in the post-treatment group, indicating a similar
mitochondrial dysfunction in the inflammatory state within peripheral
blood Monos (Figures 3H–J). However, genes associated with muscle
development and cellular respiration were activated at the mid-to-late
stage of fibroblasts’ transition to an inflammatory state (Figures 7G, H),
which warrants further investigation.

5 Conclusion

The scRNA-seq datasets covering the peripheral blood cells and
muscle cells have described immune characteristics in patients with
JDM. The representative type I IFN signature was found in all the detail
analyzed cell types, and IFN-γ signaturewas also arose in all the cell types
except T cells in inflammatory state. IFITM2+ andCYP4F3+monocytes
in peripheral blood, andCD74+ SMCs andCCL19+ fibroblasts inmuscle
were identified as inflammatory-related cell subtypes in JDM patients,
and they could acquire inflammatory states via the coordinated activity
of inflammatory pathways, especcially driven by response to IFN-γ and
type I IFN-mediated signaling pathway. EGR1 and IRF7 were identified
as key transcription factors associated with the inflammatory or
regulatory roles, and may serve as potential therapeutic targets for
JDM. The identified cellular and molecular abnormalities provide
novel insights into the immunopathogenesis of JDM. Hence,
collectively, our data provide a critical resource and important
insights into the pathogenesis of JDM that will aid in the
development of effective therapeutics. However, this study also has
limitations that are important to recognize, such as the limited
numbers of peripheral blood and muscle samples available from
JDM patients and healthy control, which decreases our power to
assess how heterogeneous the transcriptomes are in untreated patients.
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