
Venetoclax durable response in
adult relapsed/refractory
Philadelphia-negative acute
lymphoblastic leukemia with JAK/
STAT pathway alterations

Anna Ferrari1*, Delia Cangini2, Andrea Ghelli Luserna di Rorà1,3,
Annalisa Condorelli4, Marta Pugliese4, Giovanni Schininà4,
Sebastiano Cosentino5, Eugenio Fonzi6, Chiara Domizio7,
Giorgia Simonetti1, Salvatore Leotta4, Giuseppe Milone4 and
Giovanni Martinelli8

1Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”,
Meldola, Italy, 2Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino
Amadori”, Meldola, Italy, 3Fondazione Pisana per Scienza ONLUS, Pisa, Italy, 4Divisione di Ematologia con
Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania,
Italy, 5Divisione di Medicina Nucleare, Ospedale Cannizzaro, Catania, Italy, 6Unit of Biostatistics and
Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy,
7Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy, 8Scientific Directorate,
IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy

High-risk relapsed/refractory adult Philadelphia-negative (Ph−) B-cell acute
lymphoblastic leukemia (B-ALL) is a great challenge due to limited possibilities
to achieve and maintain a complete response. This also applies to cases with
extramedullary (EM) involvement that have poor outcomes and no accepted
standard therapeutic approaches. The incidence of EM localization in relapsed/
refractory B-ALL is poorly investigated: data on patients treated with
blinatumomab reported a 40% rate. Some responses were reported in EM
patients with relapsed/refractory B-ALL treated with inotuzumab ozogamicin
or CAR-T. However, molecular mechanisms of response or refractoriness are
usually investigated neither at the medullary nor at EM sites. In the complex
scenario of pluri-relapsed/refractory B-ALL patients, new target therapies are
needed. Our analysis started with the case of an adult pluri-relapsed Ph− B-ALL
patient, poorly sensitive to inotuzumab ozogamicin, donor lymphocyte infusions,
and blinatumomab in EM disease, who achieved a durable/complete response
after treatment with the BCL2-inhibitor venetoclax. The molecular
characterization of medullary and EM samples revealed a tyrosine kinase
domain JAK1 mutation in the bone marrow and EM samples at relapse. By
comparing the expression level of BCL2- and JAK/STAT pathway-related genes
between the patient samples, 136 adult JAK1wt B-ALL, and 15 healthy controls, we
identified differentially expressed genes, including LIFR, MTOR, SOCS1/2, and
BCL2/BCL2L1, that are variably modulated at diverse time points and might
explain the prolonged response to venetoclax (particularly in the EM site,
which was only partially affected by previous therapies). Our results suggest
that the deep molecular characterization of both medullary and EM samples is
fundamental to identifying effective and personalized targeted therapies.
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Introduction

Acute lymphoblastic leukemia (ALL) is a hematological
neoplasm characterized by the uncontrolled proliferation of
undifferentiated lymphoid cells that can invade the bone marrow,
blood, and extramedullary (EM) sites. As opposed to pediatrics, ALL
incidence in the overall cancer types in adults is less (https://www.
cancerresearchuk.org). Despite impressive advancements in the
treatment of adult Philadelphia-negative (Ph−) B-ALL, patients’
survival rates remain dismal (Brown et al., 2021). Indeed, less
than 10% of relapsed/refractory (R/R) B-ALL patients are long-
term survivors (Hoelzer et al., 2016), thus urging the need for novel
and personalized therapies. Of note, extramedullary relapse
incidence is unknown, but it was recently reported as a common
event (up to 40%) in R/R ALL patients, following exposure to
blinatumomab (Aldoss et al., 2017; Lau et al., 2021). In 84% of
R/R B-ALL patients with extramedullary disease, inotuzumab
ozogamicin seems to be effective as a debulking strategy (Kayser
et al., 2022). Moreover, CAR-T cell therapies achieved encouraging
results in the eradication of EM B-ALL (Holland et al., 2022).

The BCL2 inhibitor venetoclax has shown impressive activity in
hematological malignancies, including pediatric and adult acute
leukemia, both at the preclinical (Pan et al., 2014; Frismantas
et al., 2017; Diaz-Flores et al., 2019) and clinical levels. It is
currently used for the treatment of adult patients with chronic
lymphocytic leukemia (CLL) (Roberts A. W. et al., 2016), and it
has been approved by the FDA for acute myeloid leukemia ineligible
for intensive chemotherapy in association with hypomethylating
agents or low-dose cytarabine (DiNardo et al., 2018, 2019; Lasica
and Anderson, 2021). Different studies showed the efficacy of
venetoclax in the treatment of T-ALL (Peirs et al., 2014; Rahmat
et al., 2018; Farhadfar et al., 2021), including early T-cell progenitor
(ETP) ALL (Ni Chonghaile et al., 2014) and B-ALL (Hohtari et al.,
2022; Zhang et al., 2022), especially those with MLL rearrangements
(Benito et al., 2015; Richter-Carpentier et al., 2022). Recently, a phase I
clinical trial evaluated its safety and efficacy in combination with low-
intensity chemotherapy and navitoclax (a dual BCL2/Bcl-xl inhibitor)
in R/R B/T-ALL and lymphoblastic lymphoma. In the study, complete
remission (CR) was reached in 59.6% of patients andminimal residual
disease (MRD) negativity in 34% of patients (#NCT03181126)
(Pullarkat et al., 2021). A study in R/R T-ALL showed clinical
efficacy in terms of the bone marrow (BM) response rate in
B/T-ALL patients treated with venetoclax-based combination
regimens (Richard-Carpentier et al., 2020). Treatment with
venetoclax, ponatinib, and dexamethasone (VPD) in Ph-positive
(Ph+) ALL patients (T315I-mutated) also showed promising
clinical results (Wang et al., 2022). Recent comprehensive reviews
reported up-to-date clinical experiences with venetoclax in lymphoid
malignancies (Seymour, 2022) and, in particular, in ALL (Aumann
et al., 2022) with both chemo and chemo-free regimens. However,
different from the CLL experience, in which some resistance
mechanisms (e.g., TP53 aberrations and some BCL2, NOTCH1,
and BRAF mutations) have been described, in ALL, the genetic
determinants of treatment response and failure have been poorly

characterized (Gibson et al., 2022). Although data support the clinical
use of venetoclax for R/R ALL patients, the identification of novel
predictive markers of response in this high-risk population, affected
by both medullary and extramedullary disease, is imperative.

Methods

Sample collection

Total mononuclear cells (MNCs) were isolated from peripheral
blood (PB) or bone marrow (BM) samples of 105 Triple Negative
and 31 Ph + B-ALL patients using LymphoSep (Biowest, Nuaillé,
France). A total of 15 samples from healthy subjects were processed,
including hematopoietic stem progenitor cells (CD34+) from bone
marrow specimens (n = 3), bone marrow mononuclear cell samples
(n = 3) from STEMCELL Technologies (Vancouver, Canada), PB
MNC samples (n = 5), and cord blood samples (n = 4). CD34+ cells
were enriched from cord blood samples by immunomagnetic
separation (CD34 MicroBead Kit, Miltenyi Biotec, Bergisch
Gladbach, Germany).

DNA and RNA extraction

DNA and RNA were extracted from mononuclear cell lysates
(buffer RLT, QIAGEN, Hilden, Germany, plus 1% 2β-
mercaptoethanol, Life Technologies, Carlsbad, United States)
using the AllPrep Mini or Micro Kit (QIAGEN), according to
the manufacturer’s instructions. DNA was extracted from
formalin-fixed paraffin-embedded (FFPE) inguinal lymph node
cells using the Maxwell RSC DNA FFPE kit (Promega, Madison,
United States).

Sanger sequencing

PCR amplifications for the identification of the V651 JAK1
mutation were performed using the FastStar High Fidelity PCR
System (Roche, Mannheim, Germany), as suggested in the datasheet
and using 2.5 µL of the 10 µM diluted primer (JAK1 exon14 5′-3′
primers: Forward- GAGCTTTCCTGGGTCCACT and Reverse-
CCACCCCTTTGAAAGAGAACA; 61°C annealing temperature)
in a 25 µL of the final volume PCR reaction. For each reaction,
we used 50 ng of patient sample DNA. PCR products were purified
(QIAquick PCR Purification Kit; QIAGEN), and Sanger sequencing
was performed using the BigDye Terminator V.3.1 Sequencing Kit
(Applied Biosystems, Foster City, California, United States).

Targeted RNA sequencing

Starting from 40 ng of RNA or 100 ng of FFPE RNA, libraries
were prepared using the TruSight RNA Pan-Cancer panel kit
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(Illumina, San Diego, California, United States), a 1,385 gene panel,
following the manufacturer’s protocol. Sequencing was performed
using the Illumina MiSeq instrument. In libraries that passed quality
checks, paired-end RNA sequencing was performed (Reagent Kit v3
-150 cycles, MiSeq, Illumina).

Transcriptomic data analyses

Raw sequencing data were converted to FASTQ file format and
analyzed for fusion detection combining FusionCatcher, STAR-
Fusion, and two BaseSpace applications [RNA-Seq Alignment
v.1.1.0 and TopHat Alignment v.1.0.0; Illumina]. The reference
“Homo sapiens UCSC hg19” (RefSeq and Gencode gene
annotations) was used for all the aligners. We retained fusions
detected by at least three tools, and we introduced further criteria
to retain or reject fusions detected by one or two tools [see PCT
application No. PCT/EP 2021/065692 (10/06/2021): Method to
identify linked genetic fusions].

For single-nucleotide variations, we analyzed the RNA-Seq
Alignment v.1.1.0 “FilteredSmallVariants” output. We kept variants
that had a frequency population less than 0.01 into at least one public
database of human polymorphisms used in the software [esp5400
(https://evs.gs.washington.edu/EVS/); ExAC (http://exac.
broadinstitute.org/); and GnomAD (https://gnomad.broadinstitute.
org/)]; we discarded synonymous, 3′/5′ UTR, intronic, and
intergenic variants; we retained variants annotated by ClinVar as
pathogenic or likely pathogenic; and we also rejected benign/likely
benign variants (https://www.ncbi.nlm.nih.gov/clinvar/).

Paired-end reads were trimmed with Trimmomatic (v0.39)
(Bolger et al., 2014) using the following arguments:
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:
3 SLIDINGWINDOW:4:15 MINLEN:36. Trimmed reads were
pseudo-aligned to a reference transcriptome based on GRCh38
(https://github.com/pachterlab/kallisto-transcriptome-indices/releases/
download/ensembl-96/homo_sapiens.tar.gz) with Kallisto (v0.46.2)
(Bray et al., 2016), setting 100 bootstraps. The resulting transcripts
per million (TPM) were normalized and aggregated to gene level with
sleuth (v0.30.0) (which_df = ‘obs_norm’ and which_units = ‘tpm’)
(Pimentel et al., 2017).

TPM normalization was performed separately for each group
of samples, adding one of the three time points. Downstream
analyses were conducted on JAK/STAT pathway genes from the
KEGG database and BCL2-related genes present in the
1,385 TruSight RNA Pan-Cancer Panel gene list
(Supplementary Table S1). BCL2-related genes were selected
from the STRING database (STRING database v. 11.5; https://
string-db.org) by applying the standard settings with the
exception of the confidence set to a value greater than 0.
700 and a maximum number of 20 interactors.

Statistical analyses

The normalized TPM values were log2-transformed (log2 (x+1))
and used to compute z-scores. The Z-score was considered
significant at |z|>1.96. All computations and plots were
performed with Python (v3.9.1) or R (v4.0.3).

For protein–protein interaction (PPI) analysis, genes were
selected based on the z-score significance (|z|>1.96). PPI was
performed by STRING. The minimum required interaction score
has been set to ≥0.700 (high confidence value ≥0.700 and very high
confidence value ≥ 0.900).

Results

Venetoclax-induced CR in a relapsed/
refractory Ph− B-ALL patient

A 28-year-old male patient with no past medical history
presented with fatigue in August 2015. The blood count revealed
anemia, thrombocytopenia, and leukocytosis (Hb 9.2 g/dL, PLT
120.000/mmc, and WBC 6.500/mmc with an inversion of the
formula). Bone marrow evaluation showed a hypercellular
marrow with 92% of blast cells. The blast population expressed
immature B-cell markers. It was characterized by the presence of
nuclear terminal deoxynucleotidyltransferase (TdT), along with
CD19+, HLA-DR+, CD33+, CD38+, CD71+, CD79a+, CD22+,
CD450+−, CD10+, and CD34+ surface phenotypes. This was
consistent with the diagnosis of B-ALL. Cytogenetic analysis
revealed 46,XY (13),46,XY,del (12) (p11p13) (4); 49,XY,+X,del
(12) (p11p13),+13,+21 (3) karyotype. BCR-ABL1 (Ph+), TCF3-
PBX1, and KMT2A-AFF1 transcripts were negative, thus defining
the case as a triple-negative (TN) B-ALL. Diagnostic and therapeutic
lumbar punctures always resulted in negative localization of disease.
Figure 1A shows the timeline of the medical history. The patient
received multi-agent pediatric-like chemotherapy for six cycles and
achieved complete remission (CR) with a positive MRD. In April
2016, the patient underwent allogeneic hematopoietic stem cell
transplantation (allo-HSCT) from a 10/10 matched unrelated
donor (MUD). The conditioning was myeloablative with
cyclophosphamide 120 mg/kg, total body irradiation (TBI) 12 Gy,
and rabbit-thymoglobuline (ATG - Genzyme) 5 mg/kg. Moreover,
six months after allo-HSCT, a bone marrow evaluation revealed 10%
blast cells by flow cytometry. After a re-induction with vincristine,
idarubicine, and cyclophosphamide, the patient reached CR with
persistent MRD and, in April 2017, underwent a second allo-HSCT
from a 9/10MUD. The second transplantation was conditioned with
a reduced intensity regimen (RIC) based on fludarabine 200 mg/m2,
busulfan 6.8 mg/kg, and rabbit-ATG (Genzyme) 5 mg/kg. After
initial CR with MRD-negativity, 5 months after allo-HSCT, a
bone marrow evaluation revealed 20% of blast cells. The patient
then received two cycles of blinatumomab, followed by two donor
lymphocyte infusions (DLIs) from the donor of the second
transplantation. The dosage of CD3+ cells administered was
3.6 and 7 × 106/Kg, respectively. The patient achieved a CR with
MRD negativity in the bone marrow. During treatment with
blinatumomab, the patient developed an isolated EM disease
relapse as a tumefaction on the chest. Fine-needle aspiration of
the mass demonstrated the presence of blast cells expressing the
CD19 marker. The patient underwent two more cycles of
blinatumomab, but the tumefaction kept increasing during
treatment. Local radiotherapy (2,600 Gy) was administered to the
mass, achieving total regression. The mass appeared after the second
DLI and regressed only after irradiation, making it difficult to
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establish a well-defined role for the adoptive immunotherapy given
by DLI in this clinical outcome. The bone marrow evaluation
performed after four cycles of blinatumomab confirmed MRD
negativity and 100% donor chimerism. However, after the fourth
cycle of blinatumomab, in December 2018, the patient presented an
enlarged inguinal lymph node (CD19‒, CD22+) and BM relapse with
50% of blasts. The 18-FDG PET showed intense uptake of the pelvic
and inguinal nodes (SUV 9.5; Figures 1B(i)–C(i)).

Between December 2018 and April 2019, the patient was treated
with inotuzumab ozogamicin for six cycles, followed by local
inguinal radiotherapy (2,500 Gy), achieving CR with MRD
negativity in the BM and partial remission of the inguinal-pelvic
mass. Partial remission was confirmed by PET in July and November
2019 (SUV 2.9 and 2.7, respectively, in July 2019; 1.5 and 2.1,
respectively, in November 2019; Figures 1B(ii)–C(ii)). The treatment
with chimeric antigen receptor T cells (CAR-T) for an adult patient

FIGURE 1
(A) Timeline of patient’s leukemia medical history (Dg, diagnosis; ALLO, allogeneic transplantation; MRD, minimal residual disease; CR, complete
response; Rel, relapse; DLI, donor lymphocyte infusion; RT, radiotherapy; BLINA, blinatunomab; INO, inotuzomab ozogamicin; PET PR, partial response;
VEN, venetoclax; “Stars” indicate the four analyzed time points (1: extramedullary relapse #1—Dec/2018; 2: third relapse #2—Jan/2019; 3: post-
inotuzomab ozogamicin hematological remission #4—Jun/2019; 4: post-venetoclax remission—Jul/2021). (B)Whole-body (upper panel) and axial
scan (lower panel) 18F-FDG PET at four time points: at relapse, in December 2018 (i); after six cycles of inotuzumab ozogamicin followed by radiotherapy,
in November 2019 (ii); after 6 months of treatment with venetoclax, in July 2020 (iii), and after 27 months of treatment with venetoclax and four DLIs, in
April 2022 (iv). (C) 18F-FDG PET images (axial scan) at four time points showing i) inguinal pelvic mass at relapse - SUV 9.5 (December 2018); ii) partial
resolution—SUV 2.9/Deuville 3 (November 2019) reached after treatment with inotuzumab ozogamicin and radiotherapy; iii) complete resolution—SUV
1.8 (July 2020—Deuville 1) after 6 months of venetoclax, and iv) after 27 months of continuative treatment with venetoclax and four DLIs—SUV 1.4 (April
2022—Deuville 1).
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aged over 25 was off-label, and there were no compassionate-use
programs at the time in Italy. In December 2019, in consideration of
the emerging data supporting the use of venetoclax in ALL and the
lack of valid therapeutic alternatives, salvage therapy with venetoclax
400 mg once daily was started. A PET scan performed in July
2020 showed no evidence of disease (Figures 1B(iii)–C(iii)). From
July to October 2020, during the continuative treatment with
venetoclax, the patient also received four escalated-dose DLI
from the donor of the second transplantation (infused CD3+ cells
were, respectively: 5 × 106/Kg, 2,5 × 107/Kg, 5 × 107/Kg, and 5 × 107/
Kg). Two subsequent PETs in November 2021 and April
2022 showed complete resolution of pelvic masses, and MRD

negativity was maintained in the BM (Figures 1B(iv)–C(iv)).
Continuative therapy with venetoclax is well-tolerated, and no
adverse events have occurred to date. The most recent
evaluations performed in July 2022 by PET and in December
2022 by bone marrow aspiration confirmed the CR.

JAK1 mutations at disease relapse

To understand the molecular bases of the durable response to
venetoclax in a pluri-relapsed TN patient, we analyzed samples of
four patients collected at different time points: EM localization

FIGURE 2
(A) Characteristics and analyses of patient’s sample at each time point. BM, bone marrow; EM, extra-medullary; FFPE, formalin-fixed paraffin-
embedded; Ino, inotuzumab ozogamicin; MNCs, mononuclear cells; MRD, minimal residual disease; mut, mutation; na, not available; Neg, negative; PB,
peripheral blood; Pos, positive;VEN, venetoclax; wt, wild type; and y, yes. (B) CRLF2 expression analysis in the patients’ samples and comparison groups.
For the CRLF2 gene, swarm plots of log-transformed TPM are displayed. Each plot is a combination of one group of samples with one time point
sample. The time point sample is highlighted with a bigger dot, and its color changes, depending on its z-score value (green if |z|>1.96; otherwise, red).
The horizontal black lines mark the median. Ctrls, healthy donor group (n = 15); Ph+, BCR-ABL1-positive group (n = 31); TN, triple-negative group (n =
105). (C) JAK1mutation in the patient’s sample. JAK1 protein diagramwith the site of the V651M somatic variant (NM_002227:exon14:c.G1951A:p.V651M;
Human hg19) within the tyrosine kinase domain and DNA Sanger sequencing chromatograms of the JAK1 V651 position at different time points (1:
extramedullary relapse- Dec/2018; 2: third relapse—Jan/2019; 3: post-inotuzomab ozogamicin hematological remission—Jun/2019; 4: post-venetoclax
remission—Jul/2021). * site of heterozygous mutation (V651M); #V651 wild-type site.
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FIGURE 3
STAT3, LIFR, STAT5B, MPL, MTOR, MYC, TP53, IL13, PIK3CB, and differential expression analysis between the patient’s samples and comparison
groups. For each gene, multiple swarm plots of log-transformed TPM are displayed. Each plot is a combination of one group of samples with one time
point sample. The time point sample is highlighted with a bigger dot, and its color changes, depending on its z-score value (green if |z|>1.96; otherwise,
red). The horizontal black lines mark the median. Ctrls, healthy donor group (n = 15); Ph+, BCR-ABL1-positive group (n = 31); TN, triple-negative
group (n = 105).
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(#1), mononuclear cells from BM (#2) at relapse, peripheral
blood cells at remission post-inotuzumab ozogamicin (#3),
and post-venetoclax (#4; Figure 2A). We investigated gene
fusions, RNA single-nucleotide variations, and gene expression
by targeted RNA sequencing on samples #1, #2, and #4. Neither
novel nor leukemia-associated fusion genes were found in the
analyzed samples. TP53 and the three most frequently mutated
genes in Ph-like B-ALL, CRLF2, IL7R, and JAK2 were wild-types
(wts) in the analyzed samples (Roberts et al., 2014; Jain et al.,
2017; Roberts, 2017; Iacobucci et al., 2021). Moreover, CRLF2,
which is frequently overexpressed in Ph-like B-ALL (Jain et al.,
2017; Iacobucci et al., 2021), was expressed at lower levels in
samples #1 and #2 than sample #4, Ph+, and TN B-ALL
(Figure 2B, Supplementary Table S2). We identified and
confirmed a missense mutation in the tyrosine kinase domain
of the JAK1 gene at the DNA level in samples #1 and #2 (NM_
002227:exon14:c.G1951A:p.V651M; hg19), while no JAK1
mutations were detected in the two remission time points (#3,
#4; Figures 2A–C). The functional impact of this alteration has
been predicted as highly damaging (score 1.0, PolyPhen2; score
0.97, FATHMM).

Transcriptional alterations in the BCL2 and
JAK/STAT pathways during disease
evolution

To investigate the changes occurring in the transcriptional
program through the diverse disease stages and tissues in
relationship with treatment responses, we analyzed the level of
expression of BCL2-related genes and JAK/STAT pathway
components in the patient’s samples (#1, #2, or #4) and
compared it with 136 adult JAK1wt B-ALL cases, including
105 TN and 31 Ph + cases, and 15 healthy controls (Ctrls)
(Supplementary Tables S1, S2). We identified several
differentially expressed genes (Supplementary Table S3).

The inhibitory factor receptor LIFR, which is commonly
upregulated in many solid cancers and is involved in the
activation of the JAK/signal transducer and activator of
transcription 3 (STAT3) pathway, was overexpressed in
sample #1 in comparison with all groups (Figure 3). STAT3
was downregulated in the two relapse samples while being
significantly overexpressed in the remission sample, with a
higher value than Ctrls. Similarly, our analysis highlighted
STAT5B downregulation in relapse sample #2 and its elevated
expression after venetoclax treatment (sample #4) compared with
TN, Ph+, and Ctrl groups, and upregulation of the signaling
molecules PIK3CB and RAF1 at remission compared with the
other cohorts. Since the data on the transcript level of STAT3 and
STAT5B do not allow us to conclude on the activation status of
these molecules, we checked for downstream genes. We observed
a downregulation of the downstream effector MTOR and of the
JAK/STAT target MYC in remission samples compared to the
JAK1wt B-ALL cohorts and Ctrls, suggesting that the pathway is
switched off in response to venetoclax. Moreover, IL13 was
significantly upregulated in sample #4 as a potential indication
of hematopoietic system restoration (Figure 3). Accordingly,
MPL, which regulates megakaryopoiesis and platelet

production, was expressed in sample #4 at similar levels
compared with Ctrls and all B-ALL cohorts while not being
detectable in samples #1 and #2 (Figure 3).

To better understand the functional and physical
interactions among the mutated JAK1, the direct targets of
venetoclax, and all genes showing altered expression in the
two JAK1 mutant relapse samples and the post-treatment
remission sample, we performed protein–protein interaction
(PPI) analysis (STRING database; https://string-db.org). In
particular, we compared the transcriptomic profiles of
samples #1, #2, and #4 with the Ctrl group, and we
performed PPI analysis on the differentially expressed genes
with the highest significance (defined as z-score value |z|>1.96;
Supplementary Table S3). PPI analysis revealed a tight
interconnection between these genes (PPI enrichment p-value:
1.0e-16; Figure 4). JAK1 and STAT3 were strongly connected
with BCL2 (scores 0.936 and 0.908, respectively; Supplementary
Table S4). The connection network underlined the central role of
JAK1/STAT3/STAT5B and of the BCL2/BCL2L1 antiapoptotic
proteins (that showed variably higher expression levels in
relapse samples than the remission and the Ctrls) at the
crossroad between the JAK1/STAT altered pathway and
downstream cellular and biological processes. Indeed, strong
interactions were observed between JAK/STAT and the
suppressors of cytokine signaling 1 (SOCS1) and SOCS2,
which were variably upregulated, in particular in the relapse
samples; the protein tyrosine phosphatase non-receptor type 6
(PTPN6), which was downregulated in the same time points and
the growth hormone receptor (GHR), which, similar to LIFR, are
specifically overexpressed in the EM sample.

Discussion

Few studies have evaluated the efficacy and predictive
markers of response to venetoclax in T and, especially, B-ALL
so far. Here, we reported the efficacy of a combined treatment
comprising inotuzumab ozogamicin, DLI, and venetoclax in a
young adult pluri-relapsed B-ALL patient that led to regression of
medullary and EM disease. We correlated the molecular
background with the treatment response. Inotuzumab
ozogamicin induced CR in the BM and partial remission at
the EM site, while venetoclax induced a CR of the EM disease
and, combined initially with DLI, was able to maintain the CR
until the last evaluation, which was performed 3 years after
treatment initiation. To date, this is the most durable disease-
free survival experienced by the patient.

By analyzing transcriptomic profiles, we detected neither
fusion genes nor mutations in driver or key disease-related
genes such as TP53, CRLF2, IL7R, and JAK2. Moreover,
CRLF2, which is frequently upregulated in a subgroup of Ph-
like cases, was not overexpressed. However, we found a damaging
JAK1 point mutation in both samples #1 and #2, suggesting a
potential driver role in relapse. Indeed, the mutation was not
detected in remission samples after inotuzomab ozogamicin and
venetoclax treatments (#3 and #4). JAK1 mutations have been
described in adult Ph-like cases with non-overexpressed CRLF2
(Roberts K. G. et al., 2016). Jain N. and others identified a
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subgroup of adult Ph-like B-ALL patients, lacking CRLF2
upregulation/alterations (CRLF2− Ph-like) while displaying
JAK1 mutations, similar to our case. This B-ALL subgroup has
a dismal prognosis, which is not in any way better than that of
CRLF2 + Ph-like ALL (Jain et al., 2017). Among JAK genes, JAK2
is the most frequently mutated in B-ALL, especially in high-risk
cases. However, some JAK1 and JAK3 mutations have also been
reported (Flex et al., 2008; Zhang et al., 2011; Li et al., 2017). The
JAK1V651M mutation, which we describe here, has been previously
detected in children with Down syndrome ALL (Blink et al.,
2009), in T-ALL (Lupardus et al., 2014), and in prostate
carcinomas (https://cancer.sanger.ac.uk/cosmic/mutation/).
Few pieces of evidence are available in the literature regarding
the functional consequences of mutations in the protein tyrosine
kinase domain of JAK1 in B-ALL, including JAK1S646P that
resulted in a high sensitivity to the JAK1/2 inhibitor
ruxolitinib in B-ALL patients and JAK1V658F that led to
constitutive JAK1 activation in cell lines (Flex et al., 2008;
Jeong et al., 2008; Li et al., 2017). Other JAK1 single-
nucleotide variants were described, also with a gain of
function effects in B-ALL (https://www.oncokb.org/gene/

JAK1#tab=Biological) (Hammarén et al., 2019), but no data
are currently available regarding the V651M variant effects in
adult B-ALL.

Although few studies have investigated the efficacy of JAK
inhibitors in Ph- ALL, recently Dr. Kołodrubiec and others
collected preclinical and clinical pieces of evidence on the efficacy
of ruxolitinib as a single agent or in combinations against Ph- ALL
(Kołodrubiec et al., 2022). Moreover, additional preclinical studies
showed a synergistic effect of ruxolitinib in combination with BCL2
(venetoclax), BCL6 (BI3802, BI3812, and FX1) (Tsuzuki et al., 2023),
and LSD1 (GSK2879552) inhibitors in different ALL subtypes
(Senkevitch et al., 2018).

Starting from the identified JAK1 mutation, we compared the
expression of different BCL2-related and JAK/STAT pathway
genes between our patient and a cohort of adult JAK1wt B-ALL
(both TN and Ph + cases) and healthy donors in order to identify
markers of response. We identified alterations in several
transcripts. LIFR and GHR were selectively upregulated in the
EM sample. The proteins encoded by these genes are involved in
the JAK/STAT pathway regulation, particularly in the
phosphorylation and activation of JAK1/2 (Smit et al., 1996;

FIGURE 4
Protein–protein interaction network of the top differentially expressed genes between the patient’s samples and the Ctrl cohort. Edges represent
protein–protein associations. Confidence ≥0.700; maximum number of interactors ≤20. Edge confidence: high (0.700) and highest (0.900) (see https://
string-db.org/cgi/network).
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Hellgren et al., 2001; Christianson et al., 2021). A prognostic role
of LIFR and its ligand (LIF) has been recognized across several
human cancers (Christianson et al., 2021), but the importance of
this pathway and its co-occurrence with a JAK1 mutation have
never been explored in lymphoid malignancies.

At the crossroads between upstream and downstream players,
we observed the alteration of STAT proteins. According to the
literature, more than 40 different polypeptide ligands, including
cytokines, JAK kinases, and growth factors, are associated with
STAT phosphorylation, which, in turn, orchestrates the activation
of their effectors (Wang et al., 2020). STAT3 activation is tightly
controlled and only occurs within a short window of time during
normal immune responses (O’Shea et al., 2013). However, it is well
known that dysregulation and constitutive activation of STAT3 are
associated with human diseases, including cancer (Bowman et al.,
2000; O’Shea et al., 2013).

Indeed, STAT3 regulates the expression of genes involved in cell
proliferation, survival, differentiation, migration, angiogenesis, and
inflammation, which concur in different ways with malignant
transformation and progression (Zhu et al., 2020).

During remission, we observed the expressions ofMPL and IL13
that regulate the immune system and were undetectable in both
medullary and EM relapses. The MPL protein regulates
megakaryopoiesis and platelet formation through the activation
of the JAK2 signal and the JAK/STAT pathway (Chou and
Mulloy, 2011). In our case, MPL and IL13 restoration in the
sample post-venetoclax highlight potential biological roles in
response to treatment.

Our clinical observations indicate that the EM disease was
partially sensitive to inotuzumab ozogamicin alone; conversely,
the patient achieved complete remission after venetoclax
treatment combined with DLI.

Historical data show that the results of DLI in treating ALL relapse
are disappointing in terms of long-term survival, particularly in cases of
overt relapse and high disease burden (Collins et al., 2000; Spyridonidis
et al., 2012). This suggests that our patient may have benefited from the
combination of DLI and venetoclax rather than DLI alone. In this
regard, it is worth noting that venetoclax, in addition to exerting a pro-
apoptotic function against malignant cells, is also able to induce anti-
leukemic T-cell activation (Lee et al., 2021).

In order to understand the molecular mechanisms that could
help explain the therapeutic role of venetoclax, we focused on
BCL2-related genes and the JAK/STAT pathway that could
collectively contribute to venetoclax long-lasting response in
BM and EM. We hypothesize that, in EM disease, JAK1
lesions and activation of the downstream pathway may, as
driver aberrations, lead to the dysregulation of genes involved
in cell survival and proliferation (Verhoeven et al., 2020).
Therefore, the increased activity of this pathway may be
responsible for the responsiveness of the EM disease to
BCL2 inhibition. In line with our results, a recent work
reported the persistence of a predominant CD22low/Bcl-2high

leukemic population in pediatric B-ALL patients that poorly
responded to inotuzumab ozogamicin, suggesting that they
may have benefited from combined treatment with venetoclax
(Diaz-Flores et al., 2021).

In conclusion, high-risk-R/R adult TN B-ALL with both
medullary and EM involvement is a clinical challenge with few

available therapeutic options. Our case suggests that a
comprehensive molecular characterization of multiple disease
localizations, including both medullary and EM samples, is
fundamental in identifying effective and personalized targeted
therapies.
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