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The non-invasive and rapid assessment of the developmental potential of
embryos is of great clinical importance in assisted reproductive technology
(ART). In this retrospective study, we analyzed the metabolomics of
107 samples provided by volunteers and utilized Raman spectroscopy to
detect the substance composition in the discarded culture medium of
53 embryos resulting in successful pregnancies and 54 embryos that did not
result in pregnancy after implantation. The culture medium from D3 cleavage-
stage embryos was collected after transplantation and a total of 535 (107 × 5)
original Raman spectra were obtained. By combining several machine learning
methods, we predicted the developmental potential of embryos, and the principal
component analysis–convolutional neural network (PCA-CNN) model achieved
an accuracy rate of 71.5%. Furthermore, the chemometric algorithm was used to
analyze seven amino acidmetabolites in the culturemedium, and the data showed
significant differences in tyrosine, tryptophan, and serine between the pregnancy
and non-pregnancy groups. The results suggest that Raman spectroscopy, as a
non-invasive and rapid molecular fingerprint detection technology, shows
potential for clinical application in assisted reproduction.
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1 Introduction

It is well known that transferring potential embryos is a key part of
in vitro fertilization (IVF). In the past 30 years, the evaluation of in vitro
embryos has greatly improved. At present, the main methods used to
evaluate embryo potential are morphological evaluation and
preimplantation genetic testing (PGT). Morphological evaluation can
be divided into traditional static assessment and dynamic time-lapse
evaluation. Traditional static assessment is based on static observation
related to specific time points in the day. The advantage of this method is
that it is simple to perform, but it has obvious drawbacks, such as inter-
and intra-observer differences (Paternot, G. et al., 2011). In addition, the
embryo implantation rate of this optimized method reaches up to only
40% (Coughlan, C. et al., 2014), which is not satisfactory. The time-lapse
monitoring (TLM) technique is a new technique for the evaluation of
embryo morphology and developmental dynamics in assisted
reproduction. TLM allows continuous image acquisition of early
embryonic development so that we can observe the entire
developmental process of the embryo. In addition, embryo scoring
does not require removing the embryo from the incubator, so it
prevents embryo exposure to room temperature conditions. At
present, no high-quality data supports that the technology significantly
improves clinical outcomes, although TLM may better identify embryos
with developmental potential (Kirkegaarad et al., 2015). However, it must
be noted that theTLM technique currently involves expensive equipment.

Preimplantation genetic testing for aneuploidy (PGT-A)
involves taking a small number of cells from an embryo and
using genetic technology to detect those cells with 99.9%
accuracy (Capalbo, A., et al., 2015). However, PGT-A is invasive,
time-consuming, and complex and can cause potential damage to
the embryo if not performed properly. The results of PGT-A do not
necessarily equate to genetic information on the entire embryo due
to the presence of mosaics. Additionally, trophectoderm biopsy with
a relatively high DNA content will reduce the chance of birth (Neal
et al., 2017). In addition, biopsy techniques may affect maternal and
neonatal outcomes (Popovic, M., et al., 2020) (Zhang et al., 2019)
(Alteri et al., 2023). PGT-A increased the live birth rate of blastocyst-
stage embryos in female patients who were over 35 years old.
However, it did not improve the clinical outcomes of the general
population (Simopoulou et al., 2021). Thus, PGT-A is not suitable
for all patients, and some patients, namely, those with diminished
ovarian reserve, advanced maternal age, or recurrent implantation
failure, may have limited access.

Due to delayed childbearing, environmental pollution, and increased
psychological stress, an increasing number of patients, including those
with diminished ovarian reserve, advanced maternal age, or recurrent
implantation failure, are seeking the help of fertility specialists. These
patients are clinically characterized as having fewer oocytes and/or lower
implantation and clinical pregnancy rates. However, good-quality
embryos can also be obtained in patients with poorer prognoses than
those with normal ovarian reserve (Wu,W., et al., 2020). The same is true
of embryos from patients with repeated implantation failures. The
probability of egg chromosome abnormalities increases with increasing
female age (Pellestor, F., et al., 2003). Therefore, for these patients with a
poor prognosis, the implantation and pregnancy capacity cannot be
accurately predicted through conventional embryo assessment methods.

A great deal of research progress has beenmade in the application of
non-invasive detection technology for the evaluation of embryonic cell

development. Non-invasive detection techniques commonly used in the
developmental metabolomics of embryos include thin-layer
chromatography (TLC) (Wiener-Megazi et al., 2011), near-infrared
(NIR) spectroscopy (Seli et al., 2011), microfluorescence (Gardner
et al., 2011), enzyme-linked immunosorbent assay (ELISA)
(Combelles et al., 2012), nuclear magnetic resonance (NMR)
spectroscopy (Kirkegaard et al., 2014), and Fourier transform infrared
(FTIR) spectroscopy (Muñoz et al., 2014). These techniques can be used
to obtain information on metabolic components indirectly and non-
invasively, complete a qualitative analysis, and evaluate the developmental
quality of embryos. In contrast to the traditional method of subjective
evaluation of embryo developmental potential, these technologies can
achieve qualitative analysis by quantifying biomarkers. However, these
techniques, such as the NIR (Vergouw et al., 2014) and FTIR techniques,
also have disadvantages in terms of detecting the solution of the culture
medium, the factors influencing the water absorption spectrum, and the
need to prepare complicated biochemical reactions in advance. These
methods are not only expensive but also inefficient. In clinical
applications, there is an urgent need for a non-invasive, fast, and anti-
interference technology to complete a qualitative analysis.

The Raman spectrum is a scattering spectrum based on molecular
vibration. When the laser irradiates the sample to be measured, the
excited light particles exchange energy with the substance molecules,
thus causing the frequency change of the light particles. This kind of
light is called Raman scattering. The frequency change of the scattered
light depends on the energy of the molecular bond, and molecular
diagnosis can be made by using this characteristic (Cialla-May et al.,
2019). In the field of assisted reproduction, Raman spectroscopy can be
used as a metabolic profiling method to assess the development of germ
cells. In past studies, Raman spectroscopy was used to identify the
chromosome ploidy of embryos (Liang et al., 2019), predict the
possibility of developing into blastocysts according to the
D3 metabolic medium (Zheng et al., 2021), and research the
potential markers of oocyte development in patients with polycystic
ovary syndrome according to follicular fluid (Huang et al., 2021; Zhang
et al., 2021). In the present study, Raman spectroscopy was used as a
non-invasive detection technique to assess the metabolic levels in the
culture medium and to determine the physiological state of cells and
their potential for further development.

2 Materials and methods

2.1 Embryo cultivation and development

Female volunteers undergoing IVF treatment at the First Affiliated
Hospital of Nanjing Medical University were recruited for this research
study. The inclusion criteria were based on the following clinical
characteristics: advanced maternal age, diminished ovarian reserve,
or repeated implantation failure. All patients underwent mild
stimulation or natural cycle treatment. Microdroplet Petri dishes
(25 μL/drop) were prepared on the day of oocyte retrieval. The dish
was placed in a 37°C, 6% CO2 incubator overnight for equilibration.
Fertilization was observed 17–18 h after insemination. After 3 days of
embryo culture, available embryos were transferred or frozen. Serum β-
HCG concentrations >25 IU/L at least 14 days following embryo
transfer were supposed to be biochemically positive. The presence of
an intrauterine gestational sac with positive fetal heart activity at least
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6 weeks post-embryo transfer was defined as clinical pregnancy. The
continuation of pregnancy over 12 weeks was considered an ongoing
pregnancy. Preterm birth was defined as delivery between 28 and
37 weeks of gestation, and term birth was defined as delivery after
37 weeks of gestation; both preterm and term births are referred to as
live births.

2.2 Clinical information statistics

A total of 107 samples of the discarded culture medium from
embryo cell transplantation were collected from participants for this
study. The grouping criteria for the statistical data involved classifying
samples into two groups: the pregnancy group, which comprised
samples with a clinical outcome of live birth after embryo cell
transplantation, and the non-pregnancy group, which comprised
samples with a negative HCG test result 14 days after embryo
transplantation. The 10 clinical characteristics of participants
corresponding to the 54 non-pregnancy and 53 pregnancy control
samples are summarized in Table 1. One of the features was the
statistical analysis of embryo quality, which was classified into two
categories—“good” and “poor”—based on morphology. Specifically,
cleavage-stage embryos were defined as good quality if they had
6–12 blastomeres on day 3, contained <20% anucleate fragments,
had even-sized blastomeres, and exhibited no apparent
morphological abnormalities. Cleavage-stage embryos were defined
as poor-quality embryos if they were of moderate quality, with less
than five cells on day 3 and/or 20–50% fragmentation, or were of poor
quality, with less than three cells on day 3 and over 50% fragmentation.

2.3 Sample collection and preparation

After the removal of the embryos, approximately 20 μL of the
culture solution was collected and quickly frozen at −80°C. The

samples were transferred to a dry ice storage box (−60~−57°C) and
transported to the Raman laboratory. After removing the sample, it
was thawed at room temperature (20–25°C) for 20–30 min. For the
crystalline sample, 1.5–2 μL of sample droplets were drawn on the
special substrate (Al@ SiO2) and placed into a constant-temperature
blast drying oven for moisture drying and crystallization (35°C,
25–30 min). For the liquid samples, 7 μL of sample droplets was
moved onto the enhanced substrate (Au@Cu), as shown in
Figure 1A.

2.4 Raman spectroscopy

A confocal Raman microscope (BaseRaman Pro, China)
equipped with a 532-nm laser (Nd: YAG, ~30 mW) was used
to detect the crystalline samples, and the laser power focused on
the sample was ~5 mW. An ultrahigh throughput spectrometer
(UHTS), CCD camera (DV401-BV), 50× microscope objective
(Zeiss EC Epiplan, NA = 0.75), grating of 1200 l/mm, exposure
time for single point detection of 4 s, and an accumulation
frequency of 15, and 5 single points were randomly selected
for spectrum acquisition for each sample. A desktop Raman
spectrometer (BaseRaman200, China) was used to detect the
original liquid samples. The excitation light source was a 785-
nm laser (the maximum laser power was 320 mW), and the
sample was incident at 100% laser intensity. As shown in
Figure 1B, the data set was acquired using the above two
Raman spectrometers. Each sample was detected five times,
with three scans performed during each detection using a 40 s
exposure time. The average of the three exposure signals was used as the
original data. The calibration was based on the characteristic peak of the
silicon wafer at 520.5 cm−1, and the calibration was within the error
range of ±0.15 cm−1. The environmental parameters of the instrument
were recorded after calibration of the instrument (19.1°C ≤ Ambient
temperature ≤23.9°C, 30% ≤Air humidity ≤51%).

TABLE 1 Clinical characteristics of all participants.

Pregnancy (n = 53) Non-pregnancy (n = 54) p-value

BMI (kg/m2) 22.92 ± 2.87 22.09 ± 2.23 0.114

AMH (ng/mL) 1.36 ± 1.28 1.05 ± 1.00 0.185

AFC 5.04 ± 3.95 3.37 ± 2.31 0.012 *

FSH (IU/L) 11.87 ± 12.43 12.78 ± 8.64 0.691

E2 (pmol/L) 241.23 ± 374.42 365.00 ± 446.40 0.159

PRL (ng/mL) 288.17 ± 182.02 329.03 ± 220.21 0.387

LH (IU/L) 6.64 ± 11.35 5.66 ± 4.07 0.588

Patient age (years) 34.45 ± 4.35 35.69 ± 5.61 0.223

Duration of infertility (years) 3.92 ± 2.83 4.40 ± 3.59 0.466

Embryo quality Good 86.79% (46/53) 87.04% (47/54) 0.598

Poor 13.21% (7/53) 12.96% (7/54) 0.598

Note: BMI, body mass index; AMH, anti-Müllerian hormone; AFC, antral follicle count; FSH, follicle-stimulating hormone; E2, estradiol; PRL, prolactin; LH, luteotrophic hormone. Data are

presented as the mean ± SD. The (*) values indicate the significant differences between the two groups (p < 0.05).
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2.5 Data analysis and model evaluation

Raman spectroscopy is a powerful tool for analyzing the
molecular composition of samples. However, raw Raman spectra
often contain noise and baseline drift, which can affect the accuracy
of subsequent analysis. Therefore, it is necessary to perform data
preprocessing on the Raman spectra to improve the signal-to-noise
ratio and remove the baseline drift. Several preprocessing methods,
such as baseline correction, smoothing, and normalization, have
been proposed to enhance the quality of Raman spectra. The data
pre-treatment process in this study included eliminating the high-
energy cosmic ray interference peak (a sharp characteristic peak
with a narrow spectral band and large peak), intercepting the Raman
spectral band (region from 600 to 1800 cm-1) of the “biological
fingerprint,” and using the Savitzky‒Golay filter to smooth the
spectrum (to improve the spectral signal-to-noise ratio). Then,
combined with statistics-sensitive non-linear iterative peak
(SNIP) clipping, the baseline correction of the spectrum was
completed by deducting the background of the substrate,
fluorescence, and redundant signal contributions. Finally, all the
data were normalized to [0, 1].

As shown in Figures 1C, D. For the establishment of a
classification model, multiple types of machine learning
algorithms were applied to predict the outcome of embryos.
The data set was divided according to a ratio of the training
set to the test set of 4:1. Before training the model, the principal
component analysis (PCA) algorithm was used to extract Raman
spectral features, and the data were reduced in dimension. In the
present research, 4 supervised learning algorithms, convolutional
neural network (CNN), support vector machine (SVM), random
forest (RF), and extreme gradient boost (XGBoost), were used to
train and establish classification models. For the performance
evaluation of the prediction model, methods include calculating
the confusion matrix, accuracy, precision, recall, F1-score,
receiver operator characteristic (ROC), and area under the
curve (AUC) (Pieszko and Slomka, 2021).

2.6 Software and programs

The program languages used for data preprocessing, model
building, result visualization, and other data analysis were Python
3.6 and R 4.1.0. The tools for program development were PyCharm
2020.1 and RStudio 2022.02.1.

3 Results

3.1 Data preprocessing

In this research, the spectral range of the collected raw Raman
spectral data was 50–2000 cm-1. The visualization results of the data
after spectral clipping (Figure 2A), smoothing filtering (Figure 2B),
baseline correction (Figure 2C), and normalization (Figure 2D) are
shown in Figure 2. After data preprocessing, the initial Raman
signals of all samples removed invalid interference information
(noise and background fluorescence signals) and were reduced to
a unified data scale. As shown in Figures 2A and E, a total of
107 samples were collected and five spectra were repeated for each
sample. A total of 535 (107 × 5) Raman spectra were obtained. The
abnormal data were eliminated, and the whole dataset was left with
approximately 500 spectra from 100 samples. Then, according to the
ratio of 4:1, they were divided into a training set and a test set. The
training set contained approximately 400 spectrum data points from
80 samples, while the test set contained approximately 100 spectrum
data points from 20 samples. The proportion of different pregnancy
outcome samples in each dataset was 1:1.

3.2 Biochemical analysis and biomarker
research

To obtain the average Raman spectrum, the Raman spectrum
data on all collected samples of the embryo culture medium were

FIGURE 1
Technical route flow chart. (A) Raman detection using a 532-nm laser platform and 785-nm laser platform; the Al@SiO2 slide and Au@Cu sample
pool were used as the sample containers. (B) Dataset and labels. Data were labeled based on clinical records. (C)Modeling. After data preprocessing, the
classification model was established by quantitative and qualitative algorithms. The modeling process includes training and validation. (D) Prediction and
evaluation. A blind test dataset was developed to test the model’s accuracy, and the performance of predicted clinical outcomes was evaluated.
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averaged, as depicted in Figure 3. Analysis of the Raman shift and
intensity of characteristic peaks in the Raman spectrum revealed
molecular fingerprints that express biochemical information on the
culture medium. The characteristic peaks of amino acids, proteins,
lipids, nucleic acids, and other molecules in the biological fingerprint
region appeared within the Raman frequency shift range of
600–1,800 cm−1, as shown in Table 2. By referring to the Raman
database used in biological research, we can deduce the molecular
vibration modes and material distribution corresponding to
different Raman peaks.

The study found that, based on the biochemical information
characterized by each characteristic peak in Table 2 and Figure 3, the
most intense signal was contributed by the phenylalanine ring
symmetrical vibration at 1003/1004 cm−1. Other commonly
strong signals included C–C bond stretching (853 cm-1),
carbonate/phosphate or C–C bond vibration (1071/1073 cm-1),

C–C stretch of the phenyl or nucleic acid (DNA/RNA) mode
(1339/1341 cm−1) in amino acid, CH2CH3 deformation or CH2

or C–H vibration (1447/1448 cm−1), and C=C or amide I or fatty
acids (1657 cm−1). Some weak Raman signals, including 621 and
644 cm-1 contributed by the C–C twisting mode in phenylalanine,
tryptophan (758 cm−1), O–P–O stretching/phosphodiester
(828 cm−1), CH2CH3 bending modes (1032 cm−1), and ν(C-N)
(1127/1122 cm−1), can be found in the Raman database
summarized by previous biomedical reports (Talari Sekhar et al.,
2015).

The Raman spectrum depicts the vibration distribution of
molecules within the complex mixed components. Our study
analyzed samples to obtain information on the residual
components in the culture medium, following cellular uptake
and the products of cellular metabolism. The underlying reasons
for variations in cellular metabolism across different cell types

FIGURE 2
Data preprocessing visualization. (A) Spectral clipping. Extraction of the “biological fingerprint region” of Raman spectra. The processed Raman
spectra are limited to the range of 600–1,800 cm−1. (B) Noise reduction. Smoothing filtering can reduce the spectral noise and improve the signal-to-
noise ratio. (C) Baseline correction. Fitting the background fluorescence signal in the original signal and subtracting it. (D)Normalization. Standardizing all
data to a range of [0, 1] allows all spectral intensities to be on the same scale. (E) Data quantification. Statistical analysis of the data volume.
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are multifaceted. Simple biochemical analyses are not sufficient
to identify the physiological state of cells or reflect their
developmental potential. Thus, further information mining
through advanced algorithms is necessary.

3.3 Machine learning classification models

After processing the original data, there were still
approximately 600–700 discrete feature values in the biometric

fingerprint region of the Raman spectrum. Such high-
dimensional Raman spectrum data usually contain a large
amount of redundant information, which is not conducive to
finding the differences between different species, so it was
necessary to reduce the dimension of the data. Calculated by
the PCA algorithm, the first three principal components of each
spectrum after data dimensionality reduction were extracted, the
counts of different principal components were counted, and a
histogram and a kernel density map were drawn. As shown in
Figure 4A, the crystalline samples detected by the 532-nm
instrument platform had more obvious differences in Raman
characteristics between the different groups. It may be that
crystalline samples with higher concentrations of substances
can express more metabolite differences, and the second and
third principal components have more significant differences. (B)
The liquid culture medium sample detected by the 785-nm
instrument platform had a low material concentration, so the
differences in expressed metabolites were not significant enough.
The first three principal components showed only small
differences in characteristics.

Unsupervised analysis can extract hidden information from
large-scale datasets, and it is not difficult to find the distribution
differences of their features through clustering. However, this did
not directly distinguish the attributes of the sample, so it was
necessary to further combine supervised learning algorithms to
establish a classification model. Before modeling, we reduced the
dimensions of the data involved in the modeling and extracted
the first 100 principal components. It not only avoided the
overfitting of redundant data but also sped up the training. In
the external blind test datasets, 95 and 94 spectra participated in
the evaluation of the pregnancy outcome model of the 532-nm
and 785-nm platforms, respectively. Compared with other
machine learning methods, the one-dimensional convolutional
neural network (1D-CNN) model can achieve higher prediction
accuracy, with the accuracy of predicting pregnancy outcomes

FIGURE 3
Average spectrum of all data. Data from (A) 532-nm Raman
platform and (B) 785-nm Raman platform.

TABLE 2 Vibration mode and composition distribution of the partial Raman shift position.

Position (cm−1) Vibration mode and composition
distribution

Position (cm−1) Vibration mode and composition
distribution

621 C–C twisting mode of phenylalanine (proteins) 1157 In-plane vibrations of the conjugated = C–C =

644 1174/1175 Tyrosine, phenylalanine, and C–H bend (protein)

666 G, T (DNA bases)-tyrosine-G backbone in RNA 1208 ν(C − C6H5)/protein assignment

758 Tryptophan 1243 Amide III

828 O–P–O stretching/phosphodiester 1273 δ(C � CH)

853 C–C stretch/tyrosine 1339/1341 C–C stretch of the phenyl/nucleic acid mode

900/895 (C–O–C) skeletal mode/glycine/β-glucose 1447/1448 CH2CH3 deformation/CH2/C–H vibration

941/934 Skeletal modes/polysaccharides 1556 Amide II

1003/1004 Phenylalanine and C–C skeletal mode 1584 C=C bending mode of phenylalanine

1032 CH2CH3 bending modes 1606 C=C bending

1071/1073 Phosphate vibrations (nucleic acids) 1657 C=C/amide I/fatty acids

1127/1122 ν(C − N)
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reaching 71.5% and 67.85%, respectively. In addition, we
evaluated the performance of the model by several measure
indexes, such as precision, recall, and F1-score, which were

calculated according to the confusion matrix. The prediction
results of pregnancy outcome and performance evaluation of the
PCA-CNN model are shown in Table 3.

FIGURE 4
PCA feature analysis. Data from the 532-nm (A) and 785-nm (B) experiment platforms. Extracting the Raman feature principal components of the
pregnancy and non-pregnancy groups, counting the first three principal component values, and exhibiting the histogram and nuclear density map of the
feature distribution.
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3.4 Relative quantitative analysis of amino
acids

In recent years, there has been increasing interest in studying the
correlation between the quality of IVF embryo development and the
metabolites in the culture medium. Several studies have been
conducted to investigate the relationship between the metabolic
activity of embryo cells and their developmental potential. The study
by Seli et al. (2008) used proton nuclear magnetic resonance (NMR)
spectroscopy to analyze the metabolites in the culture medium of
human embryos. The study found that certain metabolites, such as
glucose and pyruvate, were associated with embryo quality and
could be used as predictors of pregnancy outcomes. The study
highlighted the potential of NMR spectroscopy as a non-invasive
tool for assessing embryo quality. In the study by Inoue et al. (2021),
metabolomic analysis was performed on the culture medium
obtained from a single blastocyst that was cryopreserved after
culturing. A total of 469 metabolites were identified, of which
187 (39.8%) were organic acid metabolites. Significant changes
(p < 0.05) were observed in eight metabolites between the high-
quality embryo group and the low-quality embryo
group. Differences in several metabolic pathways were found
between the high-quality and low-quality embryo groups, with
the significantly changed metabolites involving mainly the
metabolism of branched-chain amino acids. The study by Xia L.
et al. (2014) used gas chromatography/mass spectrometry (GC/MS)
to analyze the metabolites in the follicular fluid and oocyte culture
medium of women undergoing IVF treatment. The study found that
certain metabolites, such as amino acids and lipids, were associated
with oocyte developmental competence and could be used as
biomarkers for predicting IVF outcomes. The study highlighted
the potential of GC/MS as a tool for identifying biomarkers of IVF
success and developing personalized treatment strategies for women
with infertility. Further research in this area could lead to the
development of new diagnostic tools and personalized treatment
strategies for infertility.

This research paper used Raman spectroscopy and internal
standard quantification methods to present a statistical analysis of
the metabolic levels of seven amino acid components in discarded
culture media of embryonic cells with and without pregnancy potential.
The internal standard quantification algorithm used the characteristic
peak intensity of a biomarker as the expression value Itargets for
molecular concentration and the characteristic peak of a standard
substance in the detection system as the expression value Istandards
for internal standard molecular concentration. The quantitative ratio
was obtained from Equation 1. The seven amino acids analyzed were
aspartic acid, glycine, tryptophan, tyrosine, taurine, serine, and proline.
These were quantified based on the peak intensity of the biomarker
characteristic peaks at 941 cm-1, 900 cm-1, 758 cm-1, 853 cm-1, 1032 cm-

1, 1326 cm-1, 828 cm-1, and the internal standard characteristic peak at
1003 cm-1. For the complex mixing system, the characteristic peak with
the most intense molecular vibration of each amino acid was chosen as
the quantitative analytic value. For example, the characteristic peaks of
aspartic acid, taurine, and serine at 941, 1032, and 1326 cm-1 belonged
to the C–H bending vibration, S=O stretching vibration, and C–N
stretching vibration, respectively (Wang et al., 2022). The characteristic
peak at 900 cm-1 of glycine could be assigned to the scissoring and
stretching vibration of δ(COOH) and ν(C–C) (Tanaka, et al., 2017).
The peaks observed at 758, 853, and 828 cm-1 for tryptophan, tyrosine,
and proline, respectively, could be attributed to the bending vibrations
of aromatic C–H and C–C–C bonds (Socrates, 2004). The results of the
quantitative analysis with the specificity of the molecular vibration
mode are shown in Figure 5. All spectral data from pregnancy and non-
pregnancy groups represent the levels of metabolism of the seven amino
acids by embryos capable of developing to pre-densification. The results
showed that there were differences in three amino acids (i.e., tyrosine,
tryptophan, and serine), while no significant differences were noticed in
the other four amino acids. The differences in amino acid components
obtained by Raman characteristic analysis expressed the amino acid
metabolism levels of embryos with different pregnancy outcomes. It can
be proven that some amino acid metabolism levels may be used to
represent different physiological states.

TABLE 3 Prediction results and performance evaluation of the PCA-CNN model. Model of the (A) 532-nm platform and (B) 785-nm platform.

A Confusion matrix Performance evaluation

Species Predicted Precision Recall F1-score Accuracy

Pregnancy Non-pregnancy

Pregnancy 31 14 0.70 0.69 0.70 68.89%

Non-pregnancy 13 37 0.73 0.74 0.73 74%

Total 71.5% (68/95)

B Confusion matrix Performance evaluation

Species Predicted Precision Recall F1-score Accuracy

Pregnancy Non-pregnancy

Pregnancy 28 15 0.65 0.65 0.65 65.12%

Non-pregnancy 15 36 0.71 0.71 0.71 70.59%

Total 67.85% (64/94)
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Quantitative ratio value � log Itargets/Istandards( ). (1)

3.5 Performance evaluation of different
classification algorithms

There are differences in the performance of different classification
algorithms. Machine learning models are widely used in various fields,
including image recognition, natural language processing, and speech
recognition. However, the performance of different models varies, and it
is necessary to evaluate the performance of different models to select the
most suitable model for a specific task. Performance evaluation can help
researchers understand the strengths and weaknesses of different models
and improve their performance. There are several commonly used
performance evaluation metrics, including accuracy, precision, recall,
F1-score, and the area under the curve (AUC). These metrics can be
used to compare the performance of different models and select the best
model for a specific task. For example, if the goal is to minimize false
positives, precision may be the most important metric to consider. In
addition to selecting the bestmodel, performance evaluation can also help
researchers optimizemodel parameters and improvemodel performance.

By evaluating the performance of different models under different
parameter settings, researchers can identify the best parameter values
for a specific task (GéRon., 2017).

In the present study, PCA was used to reduce data dimensionality,
and the resulting datasets were used to build artificial intelligence
classification models for predicting pregnancy outcomes on the 532-
nm and 785-nm platforms using CNN, SVM, RF, and XGBoost
algorithms. The predicted accuracies are shown in Table 4, revealing
a significant difference in the blind test accuracies of the different
algorithms. Among the models developed for the 532-nm platform, the
CNN algorithm achieved an accuracy of up to 71.5%, while for the 785-
nm platform, the CNNmodel had an accuracy of 67.85% in predicting
pregnancy outcomes. These results demonstrate that the CNN
algorithm outperforms the other algorithms. By comparing the
modeling results of the data generated from the two platforms, we
found that data from the 532-nm platform can be used to establish a
model with better classification performance. The performance of the
four classifiers was assessed using ROC andAUC, as depicted in Figures
6A, B, for the 532-nm and 785-nm platforms, respectively. The results
suggest that for the 532-nm platform, the CNN classifier outperformed
the other classifiers. On the other hand, for the 785-nm platform, the
CNN classifier performed the best, followed by the SVMclassifier, while
the other two classifiers (RF and XGB) exhibited poor performance.

4 Discussion

In clinical applications, pre-embryo transfer screening is generally
used to select the D3 cleavage-stage embryo or D5–6-stage blastocyst
using a morphological grading evaluation system (Martínez, M. et al.,
2018) or morphological kinetics. Embryo cells in different stages have
different clinical characteristics. Furthermore, as is the case in patients
with normal ovarian function, transplantable embryos and high-
quality embryos can also be obtained in patients with poor

FIGURE 5
Relative quantitative ratio value of different embryo outcomes. (*p < 0.05 = significant difference, **p < 0.01 = extremely significant difference, and
ns = not significant.)

TABLE 4 Performance of models with different algorithms.

Algorithm Optimum accuracy of various models

532-nm platform 785-nm platform

CNN (68/95) 71.50% (64/94) 67.85%

SVM (53/95) 55.79% (59/94) 62.77%

RF (62/95) 65.26% (53/94) 56.38%

XGBoost (58/95) 61.05% (48/94) 51.06%
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prognoses (Wu, W., et al., 2020) (Boucret, L., et al., 2022). For those
patients, selecting D3 cleavage-stage embryos for transplantation can
avoid the risk of embryo-free transplantation and has a lower cost
(Maxwell, S. M. et al., 2015). Furthermore, the transfer of blastocyst-
stage embryos was associated with shorter LTL in children than was
the transfer of cleavage-stage embryos (Wang, C., et al., 2022).
However, the accuracy of the assessment of the embryonic
development potential of the cleavage-stage before transplantation
is low. Aneuploidy is highly associated with embryo failure. In
addition, at least 35%–40% of euploid embryos still fail to implant
due tometabolic or other non-genetic viability parameters (Scott, RT.,
et al., 2013). Embryo development and metabolism based on Raman
spectra can explore biomarkers that affect embryo development by
analyzing the difference in vibration modes of substance molecules
(Lima, C. et al., 2021). Previous reports have confirmed that the
nutrient substrates and metabolites consumed by embryonic cells in
the developmental process are strongly related to embryo outcomes.
These studies indicated that the physiological state of cell development
could be reflected by metabolic levels (Gardner and Wale, 2013).

Understanding and providing these nutrients in the culture
medium is vital for supporting the early development of human
embryos in patients treated by assisted reproductive technology.
Nutrients such as amino acids (e.g., Gly, Arg, and Leu) and fatty
acids have been shown to play a crucial role in oocyte maturation,
which involves an increased metabolic rate and oxidative
metabolism. The utilization of amino acids also reflects the
developmental competence of oocytes in early embryonic
development (Gao, H., 2020). Van Winkle reviewed a large body
of literature on the impact and related mechanisms of amino acid
transporters/transport systems and metabolism on early embryonic
development (Van Winkle, 2021). There are still many aspects that
need to be clarified regarding the mechanisms by which amino acids

affect embryonic cell development. However, current research seems
to indicate that certain amino acids play a crucial role in determining
the quality of embryonic development.

In this study, we observed significantly higher levels of
tryptophan, tyrosine, and serine in the spent culture media of the
non-pregnancy group than in the pregnancy group. Our findings are
consistent with a previous study by Olcay et al. (2022), which
reported that the concentration of tyrosine was significantly
higher in aneuploid embryos than in euploid embryos. The
authors speculated that chromosomal abnormalities may lead to
altered transcription related to protein metabolism, resulting in
metabolic alterations in the blastocyst. Notably, Olcay et al.
analyzed blastocyst culture media, which is different from our
study, suggesting that changes in tyrosine concentration in
culture media may occur before blastocyst formation. Our results
are also consistent with previous reports that the content of
tryptophan and serine differs between embryos that develop from
the 8-cell stage to blastocyst and those that arrest before blastocyst
formation (Houghton et al., 2002). However, further research is
needed to fully understand the possible mechanisms underlying the
relationship between amino acid profiles and embryonic
development potential.

Raman spectroscopy data analysis combined with machine
learning algorithms has been widely used in various qualitative
analysis scenarios (Dustin W et al., 2017). In terms of model
optimization, it is mainly to adjust the calculation rules by
modifying the hyperparameters in the algorithm to adapt to the
data characteristics in different scenarios and maximize the
accuracy to complete the classification task (Yang and Shami,
2020). In our study, the CNN model needs to consider the number
of convolution layers and the number of convolution kernels in
each convolution layer because these two parameters have a strong

FIGURE 6
Multi-classifier ROC and AUC evaluation. Data from the (A) 532-nm platform and (B) 785-nm platform.
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influence on the performance of the model, followed by the
number of neurons in the fully connected layer and the
selection of the loss function. In addition, the hyperparameters
that have a greater impact on the performance of SVM include the
selection of kernel functions, penalty coefficients, and parameters
of kernel functions. Because it is a classification tree model, the
classification performance of the RF algorithm depends on the
number of trees, the maximum depth of the tree, the minimum
number of samples split, the minimum number of samples on the
split leaf nodes, and the randomly selected number of features to
build the tree structure. The XGBoost algorithm is also a classifier
with a tree structure, but its parameters are different from those of
a random forest, such as the maximum number of iterations, the
iteration step, the maximum depth of the tree, the proportion of
random sampling, and the descending value of the minimum loss
function. To find the best parameters, many computing resources
are needed for searching. Our experimental results show that
model optimization can effectively improve the performance of
the classifier. By modifying the parameter values input in the
algorithm, the established model can obtain different classification
effects. We used the grid search–cross-validation method to find
the best parameters and took the final prediction accuracy rate as
the standard for evaluation. The 1D-CNN model could extract
feature information more effectively through convolution
calculation, and it may be more suitable to solve the
classification problem of high-dimensional complex Raman
spectrum data by recording the data features of different labels
with multilayer perceptual neuron weights.

Although our research could reveal some trends, there are still
shortcomings. For example, due to the limited number of clinical
samples, the generalization performance of the present model has
yet to be improved. The remedial work can enhance the robustness
of the model by continuing to collect clinical samples and expanding
the Raman database. On one hand, the application of algorithms
plays an important role in the process of data analysis, and the
optimization of algorithms could also compensate for the
shortcomings in the current work. On the other hand, the
discovery of more significant biomarkers and their quantitative
analysis by Raman characteristics may prove more convincing in
future clinical applications.

5 Conclusion

In this research, a total of 107 samples of the embryo medium
were collected and analyzed by Raman spectroscopy to evaluate
the metabolic levels of embryo development. The proposed
quantitative analysis method based on Raman spectroscopy
was applied to assess the metabolic levels of seven amino acids
in the D3 culture medium of in vitro fertilization embryos. The
results indicated significant differences in the metabolism of
tyrosine, tryptophan, and serine between pregnancy and non-
pregnancy embryo culture media, while no significant changes
were observed in the other amino acids. In addition, we adopted
four machine learning algorithms, and based on the data obtained
from the 532-nm and 785-nm experimental platforms, we

established a prediction model of embryo pregnancy results.
The prediction accuracy of the PCA-CNN model for the 532-
nm platform reached 71.5%, and for the 785-nm platform, it
reached 67.85%.
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