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Introduction: Asthma is the most common chronic condition in children, with
allergic asthma being the most common phenotype, accounting for
approximately 80% of cases. Growing evidence suggests that disruption of iron
homeostasis and iron regulatory molecules may be associated with childhood
allergic asthma. However, the underlying molecular mechanism remains unclear.

Methods: Three childhood asthma gene expression datasets were analyzed to
detect aberrant expression profiles of iron metabolism-related genes in the
airways of children with allergic asthma. Common iron metabolism-related
differentially expressed genes (DEGs) across the three datasets were identified
and were subjected to functional enrichment analysis. Possible correlations
between key iron metabolism-related DEGs and type 2 airway inflammatory
genes were investigated. Single-cell transcriptome analysis further identified
major airway cell subpopulations driving key gene expression. Key iron
metabolism-related gene SLC40A1 was validated in bronchoalveolar lavage
(BAL) cells from childhood asthmatics with control individuals by quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) and
immunofluorescence. The intracellular iron content in BAL cells was assessed
by Perls iron staining and the iron levels in BAL supernatant was measured by iron
assay to assess airway iron metabolism status in childhood asthmatics.

Results: Five common ironmetabolism-related DEGs were identified, which were
functionally related to iron homeostasis. Among these genes, downregulated
SLC40A1 was strongly correlated with type 2 airway inflammatory markers and the
gene signature of SLC40A1 could potentially be used to determine type 2-high
and type 2-low subsets in childhood allergic asthmatics. Further single-cell
transcriptomic analysis identified airway macrophages driving SLC40A1
expression. Immunofluorescence staining revealed colocalization of FPN
(encoded by SLC40A1) and macrophage marker CD68. Down-regulation of
SLC40A1 (FPN) was validated by qRT-PCR and immunofluorescence analysis.
Results further indicated reduced iron levels in the BAL fluid, but increased iron
accumulation in BAL cells in childhood allergic asthma patients. Furthermore,
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decreased expression of SLC40A1was closely correlatedwith reduced iron levels in
the airways of children with allergic asthma.

Discussion:Overall, these findings reveal the potential role of the ironmetabolism-
related gene SLC40A1 in the pathogenesis of childhood allergic asthma.
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Introduction

Asthma is the most common chronic airway inflammatory
disease in children, with high morbidity and financial burden,
accounting for 1%–2% of the healthcare budget in developed
countries (Asher et al., 2006; Serebrisky and Wiznia, 2019).
Studies have shown that children with early allergic sensitization,
tobacco smoke exposure, as well as recurrent wheezing and severe
wheezing exacerbations exhibit persistently low lung function
trajectories that persist into adulthood and increase the risk of
developing chronic obstructive pulmonary disease (COPD) (Berry
et al., 2016; Belgrave et al., 2018). Therefore, the potential lifelong
impact of poorly controlled childhood asthma on respiratory health
is of great concern. Exploring the molecular mechanisms underlying
childhood asthma may improve early diagnosis, prognostic
evaluation, and disease control.

Childhood asthma is divided into two main phenotypes according
to airway inflammation: i.e., type 2 (T2)-high allergic asthma and T2-
low non-allergic asthma (Just et al., 2017; Fainardi et al., 2022). Up to
80% of asthmatic children show the allergic phenotype, which is
characterized by eosinophilic airway inflammation with allergen-
specific sensitization, increased blood eosinophil counts, and
elevated total and specific serum immunoglobulin E (IgE) levels
(Raedler et al., 2015; Fainardi et al., 2022). The primary mechanism
responsible for the T2 immune response is thought to involve a
complex molecular network between epithelial cell-derived alarmins
[interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin] and
T2 cytokines (IL-4, IL-5, IL-9, and IL-13), mainly secreted by
T2 immune cells (e.g., T helper 2 cells and T2 innate lymphoid
cells) (Boonpiyathad et al., 2019; Hammad and Lambrecht, 2021).
With deepening research, the roles of other cell types (e.g.,
macrophages and inflammatory monocytes) in allergic asthma have
gradually been revealed (Draijer and Peters-Golden, 2017; Jiang et al.,
2019). However, our understanding of the changes in the airway
microenvironment in children with allergic asthma remains poor.

Accumulating evidence suggests that disruption of systemic and
airway iron homeostasis and iron regulatory molecules may be
associated with respiratory diseases, including asthma (Neves
et al., 2019; Zhang et al., 2019). A longitudinal study found that
lower umbilical cord iron status is associated with increased
incidence of eczema and wheezing (Shaheen et al., 2004). In
addition, lower exhaled breath condensate and serum iron levels
are potential risk factors for childhood asthma (Vlasić et al., 2009;
Ramakrishnan and Borade, 2010). Adult asthmatic patients also
show reduced iron levels in bronchoalveolar lavage fluid (BALF)
accompanied by increased expression of iron accumulation
molecules transferrin receptor 1 (TFR1) and divalent metal
transporter 1 (DMT1) in airway tissue (Ali et al., 2020).
However, results in adults cannot simply be extrapolated to

children due to the impact of their immature immune system
and developing lungs. To the best of our knowledge, no studies
on asthmatic children have explored the role of iron metabolism-
related (IMR) genes.

Traditional transcriptional assays, such as bulk microarray and
RNA sequencing (RNA-seq), have been widely used to identify
abnormal gene expression and potential biological mechanisms in
different diseases. The advent of high-throughput single-cell RNA-
seq (scRNA-seq) has enabled the measurement of gene expression at
single-cell resolution, opening a new avenue for understanding
disease-related mechanisms (Paolillo et al., 2019; Vieira Braga
et al., 2019). In the present study, we repurposed three publicly
available bulk transcriptomic datasets to investigate the
dysregulation of IMR genes and possible regulatory mechanisms
in childhood allergic asthma. A public scRNA-seq dataset was used
to identify the cell populations driving key gene expression, as well as
the potential biological roles of these genes. Additionally, we
performed in silico deconvolution analysis to identify the
different cell types present in normal and allergic asthmatic
airways. Finally, the expression of key IMR genes and the
correlation between IMR gene expression and iron levels were
validated using bronchoalveolar lavage (BAL) samples from
asthmatic children and controls.

Materials and methods

Ethics statement

The studies involving human participants were reviewed and
approved by Ethics Committee of the Children’s Hospital of
Chongqing Medical University. Written informed consent to
participate in this study was provided by the participants’ legal
guardian/next of kin.

Study design, participants, and settings

The flow chart illustrating the study process and design is presented
in Figure 1. Childhood asthma was diagnosed by physicians according
to the Global Initiative for Asthma (GINA) (Global Initiative for
Asthma, 2021) guidelines based on typical childhood symptoms.
Allergy in children was defined as serum-specific IgE positivity to at
least one of the tested inhalant allergens or parent-reported history of
anaphylaxis (Khoo et al., 2019; Kicic et al., 2020). We collected BAL
cells from 31 individual children, including 18 asthmatic patients (eight
allergic and 10 non-allergic asthmatics) and 13 controls (children who
underwent bronchoscopy based on patient condition with no current
respiratory tract infection and no history of allergy, persistent wheezing,
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or asthma). Collection of BAL from controls and asthmatics was carried
out using standard procedures (Experts Group of Pediatric Respiratory
Endoscopy, 2018). BALF was gently aspirated and centrifuged at
2,500 rpm for 5 min at 4°C after collection. The BAL cells were
collected in phosphate-buffered saline (PBS) and stored at −80°C.
Details on subject characteristics are included in Supplementary File
1: Supplementary Table S1.

Retrieval of IMR genes

Thirty-four IMR gene sets containing 772 IMR genes
(Supplementary Table S2) were extracted from the Molecular
Signatures Database (MSigDB) (Subramanian et al., 2005) (http://
software.broadinstitute.org/gsea/index.jsp).

Bulk microarray and RNA-seq dataset
collection and processing

The mRNA expression profiles of asthmatic children were
obtained from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). The following eligibility
criteria were used to include datasets: 1) a minimum of 20 subjects
in the dataset, containing both children with allergic asthma and
healthy controls; and 2) nasal cells collected by nasal brushing. Three

datasets (GSE152004, GSE65204, and GSE19187) met the criteria and
were included in the study. The GSE152004 dataset contains
441 asthmatic children and 254 healthy individuals, the
GSE65204 dataset contains 36 allergic asthmatic children and
33 healthy individuals, and the GSE19187 dataset contains
13 allergic asthmatic children and 11 healthy individuals.

For GSE19187, gene expression data were acquired by reading raw
CEL files using the “oligo” R package (v1.58.0) (Carvalho and Irizarry,
2010) with background correction and Robust Multiarray Average
(RMA) normalization, after which batch effects were removed using
the “sva” package (v3.42.0) (Leek et al., 2012). For GSE65204,
microarray raw data were normalized using the “limma” (Ritchie
et al., 2015) package (v3.50.0), following background correction using
the “normexp” method and quantile normalization and
log2 transformation. For the RNA-seq GSE152004 dataset, the raw
count matrix of each sample was acquired directly from the dataset.

Identifying T2-high and T2-low asthmatic
children in GSE152004

The T2 immune response is the principal mechanism
responsible for allergic asthma (Fainardi et al., 2022). Thus, to
identify T2-high and T2-low asthmatic individuals within the
GSE152004 dataset, we first performed weighted gene co-
expression network analysis (Zhang and Horvath, 2005)

FIGURE 1
Schematic workflow of study design. Step 1: Identification of SLC40A1 as the key IMR DEG in childhood allergic asthma by bulk transcriptomic
analysis. Step 2: Single-cell transcriptomic analysis revealed high SLC40A1-expressing cell subsets. Step 3: Validation of SLC40A1 expression and
exploration of its involvement in altered iron levels in the airways of children with allergic asthma. AA, allergic asthma; BAL, bronchoalveolar lavage; DEGs,
differentially expressed genes; FC, fold-change; HC, healthy control; IF, immunofluorescence; IMR, ironmetabolism-related; qRT-PCR, quantitative
reverse transcription-polymerase chain reaction; SCENIC, single-cell regulatory network inference and clustering; scRNA-seq, single-cell RNA
sequencing.
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(WGCNA) using the “WGCNA” (Langfelder and Horvath, 2008) R
package (v4.1.2) to detect T2-high gene-related modules. Pairwise
Pearson correlation analysis was conducted for all expressed genes
in the dataset and a gene network was constructed based on these
correlations. To identify modules of co-regulated genes,
hierarchical clustering analysis based on the topological overlap
matrix was performed to group genes into modules. We ran the
analysis using 17,446 genes and 441 asthma samples. The soft
thresholding power was set to 9, deepSplit parameter was set to 2,
and minimum module size was set to 30. WGCNA identified
56 modules, with the maroon module found to be enriched in
several known T2-high markers, including POSTN, CLCA1, and
CST1 (Jackson et al., 2020) (Supplementary Table S3). We used the
“factoextra” R package (https://CRAN.R-project.org/package=
factoextra) to hierarchically cluster all asthmatic patients based
on maroon module expression and used the first split as the basis
for assignment to T2-high and T2-low groups. Hierarchical
clustering was performed using the “ward.D” method and
“Euclidean” distance. Finally, 257 samples were assigned to the
T2-high group and 184 samples were assigned to the T2-low group
(Supplementary File 1: Supplementary Figure S1). The T2-high
asthmatic children and all 254 healthy controls were retained for
subsequent analysis.

Identification and analysis of differentially
expressed genes (DEGs)

Differential gene expression analysis between childhood allergic
asthmatics and controls was performed for GSE65204 and
GSE19187 using the “limma” package and for GSE152004 using
the “DESeq2” (Anders and Huber, 2010) package (v1.34.0).
Thresholds of p < 0.05 and |fold-change| > 1.5 were used to
define significant DEGs. Fold-changes, significance, and gene
expression patterns of the DEGs were visualized with volcano
plots using the “ggplot2” (Ginestet, 2011) package (v3.3.5). To
identify common IMR DEGs among the three datasets, the
“UpSetR” (Lex et al., 2014) R package (v1.4.0) was used to
construct an UpSet diagram, and common IMR DEGs were
retained for further analysis.

Construction of protein-protein interaction
(PPI) network and transcriptional regulatory
network of common IMR DEGs

The PPI network of common IMR DEGs was constructed using
co-expression, pathway, physical interactions, and shared protein
domains obtained from the GeneMania database (Warde-Farley
et al., 2010).

To recognize potential regulatory transcription factors (TFs) for
the common IMR DEGs, we performed enrichment analysis of TF
binding motifs (TFBMs) and TFs surrounding the transcription start
site (TSS) of the genes using the “RcisTarget” (Aibar et al., 2017) R
package (v1.14.0). Significantly enriched TFBMS [normalized
enrichment score (NES) > 3.0] were annotated to TFs using the
provided annotation database. Finally, the TF-target network was
visualized with Cytoscape (v3.8.2) (Shannon et al., 2003).

Single-cell RNA-seq data acquisition and
processing

Single-cell transcriptome data (count matrix) of nasal cells
collected from 18 healthy children were obtained from the
FigShare repository (https://doi.org/10.6084/m9.figshare.14938755)
(Supplementary File 1: Supplementary Table S4). The R package
Seurat (Butler et al., 2018) (v4.1.2) was used to preprocess the scRNA-
seq data. To ensure high-quality single cells were used for downstream
analysis, we filtered out cells with fewer than three genes and cells with
more than 15% mitochondrial reads or fewer than 200 genes
expressed. The final quality controlled dataset contained
36,406 cells with a mean of 2,390 counts and 2,496 genes per cell
(Supplementary File 1: Supplementary Figure S2A).

Raw data were normalized using the “NormalizeData” function,
and 2,000 highly variable genes were identified using
“FindVariableFeatures.” Subsequently, principal component analysis
(PCA) was performed for dimensionality reduction after data scaling.
The top 50 principal components were selected to perform
downstream analysis. The Uniform Manifold Approximation and
Projection (UMAP) algorithm was used for cell visualization.

Cell clustering and annotation

The “FindClusters” function was used to perform unsupervised
cell clustering. To annotate the cell clusters, DEGs for each cell
cluster were identified by comparing each cluster to all other clusters
with the “FindAllMarkers” function using the default non-
parametric Wilcoxon rank sum test with Bonferroni correction.
Genes with adjusted p < 0.05 were considered as DEGs. The cell
subsets were annotated based on the DEGs and known markers
from the literature (Chua et al., 2020; Mould et al., 2021; Loske et al.,
2022). For subclustering analysis, we applied a similar procedure,
including variable gene identification, dimensionality reduction, and
clustering identification, to the cluster derived from overall analysis.

Functional annotation and pathway
enrichment analysis

To identify the biological function of DEGs from bulk
transcriptional analysis, the common IMR DEGs were subjected
to Gene Ontology (GO) (Consortium, 2017) annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2008) analysis using Metascape (http://metascape.org/gp/index.
html), with significant enrichment considered at p < 0.01. For
the scRNA-seq dataset, cell cluster marker genes were used for
KEGG and GO enrichment analysis with “biological process”
annotations using the “clusterProfiler” (Yu et al., 2012) R
package (v4.2.2), with significant enrichment considered at p < 0.05.

Single-cell regulatory network inference
analysis

Single-cell regulatory network inference analysis was performed
using the “SCENIC” (Aibar et al., 2017) R package (v1.2.4). First,
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genes expressed at either very low levels or in too few cells were
removed. The GRNBoost2 algorithm was then applied to infer
potential transcription factor targets based on expression data
with default parameters. Finally, cells were scored for TF regulon
activity using the AUCell algorithm. Average regulon activity was
compared between clusters in the heatmap using the “pheatmap” R
package (v1.0.12) (https://CRAN.R-project.org/package=
pheatmap). To identify cell-type-specific regulators for cell
clusters of interest, we screened the top five cell-type-specific TFs
based on the Regulon Specificity Score (RSS) (Suo et al., 2018) using
the “calcRSS” function.

Single-cell trajectory analysis

We performed pseudotemporal trajectory inference analysis
using the “Monocle” (Qiu et al., 2017) R package (v2.22.0).
Trajectory analysis was performed with highly variable genes
identified by Seurat. The input was created from the raw count
matrix of highly variable genes using the “newCellDataSet” function
with default parameters. After calculating size factors and estimating
dispersions, dimensionality reduction was performed using the
“DDRTree” method. Finally, cells were ordered along a
pseudotime trajectory with the “orderCells” function. To identify
genes that dynamically changed along the trajectory, a DEG test
along the cell trajectory was performed using the
“differentialGeneTest” function. The expression patterns of
representative genes were visualized along the pseudotime using
the “pheatmap” R package (v1.0.12).

Deconvolution of bulk transcriptomic
datasets

We performed cell composition estimation using the
“BisqueRNA” (Jew et al., 2020) R package (v1.0.5) for the bulk
transcriptomic datasets of nasal samples, with the scRNA-seq data as
a reference. Default parameters were used during analysis.

RNA extraction and quantitative reverse-
transcription polymerase chain reaction
(qRT-PCR)

Total RNA was extracted from human BAL cells using TRIzol
reagent (Invitrogen, USA), and purified using a Micro Total RNA
Extraction Kit (Tianmo Biotech, China). Total RNA quality was
assessed using a NanoDrop 2000 spectrophotometer, and cDNAwas
synthesized using a PrimeScript RT Kit (TaKaRa, Japan) according
to the manufacturer’s instructions. Reactions were carried out in a
total volume of 10 μL, including 5 μL of TB Green®Premix Ex Taq™
II (TaKaRa, Japan), 0.2 μL of each specific primer, 2.6 μL of dd H2O,
and 2 μL of cDNA. Using the 2−ΔΔCt method, the relative expression
levels of target genes were calculated. GAPDH was used as an
internal reference. Specific primers for each gene and cycling
conditions are provided in Supplementary File 1: Supplementary
Table S5.

Perls stain

In order to observe the distribution of iron in BAL cells, Perls
Prussian blue staining was performed according to the
manufacturer’s kit protocol (Prussian Blue Iron Stain Kit,
Solarbio, China).

Iron assay

Iron concentrations in the BALF were measured via the
chromogen method with an Iron Assay Kit (MAK025, Sigma-
Aldrich, United States) according to the manufacturer’s
instructions (Wang et al., 2019).

Immunofluorescence

BAL cells were washed twice with sterile PBS and fixed with 4%
paraformaldehyde (FA) for 10 min. FA fixed cells were washed three
times with PBS and then blocked in 5% bovine serum albumin
(BSA) for 30 min. Primary antibody incubations were performed
overnight at 4°C. Secondary antibody incubations were performed
for 1 h at room temperature followed by washing with PBS.
CD68 was detected with FITC-conjugated mouse anti-CD68
antibody [eBioY1/82A (Y1/82A), eBioscience, United States]
diluted 1/200 times, FPN with rabbit anti-FPN (PA5-22993,
Invitrogen, United States) diluted 1/500 times, TFR1 with rabbit
anti-TFR1 (R25971, ZENBIO, China) diluted 1/100 times,
DMT1 with rabbit anti-DMT1 (20507-1-AP, Proteintech, China)
diluted 1/100 times. As secondary antibody, CY3-conjugated goat
anti-rabbit IgG (A0516, Beyotime, China) diluted 1/200 was used.
Samples were observed with a fluorescence microscope (BX53,
Olympus, Japan).

Statistical analysis

Continuous data are expressed as mean ± standard deviation
(SD). All statistical analyses were conducted using R software
(v4.1.2; https://www.r-project.org/). Wilcoxon rank-sum test was
used to compare gene expression levels (Figures 3D–F, 4E, 6E) and
inferred cellular composition between groups (Figure 5G). Multiple
group comparisons were performed using the Kruskal–Wallis test
with Dunn’s multiple comparisons (Figures 6A,C, Supplementary
File 1: Supplementary Figures S5A, B). For correlation analyses
(Figures 3G–I, 6F), correlation coefficients (r) and p values were
acquired by Pearson correlation test. For all the above statistical
analyses, a p-value of <0.05 was considered statistically significant.
To determine the power of genes of interest for distinguishing
childhood allergic asthmatics from controls, receiver operating
characteristic (ROC) curves and corresponding area under the
ROC curves (AUC) were calculated for logistic regression
analyses incorporating all five common iron metabolism-related
(IMR) DEGs across all datasets (Supplementary File 1:
Supplementary Figures S3D–F) or mRNA expression value of
SLC40A1 relative to GAPDH (Figure 6G). Statistic methods and

Frontiers in Cell and Developmental Biology frontiersin.org05

Wang et al. 10.3389/fcell.2023.1164544

https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://www.r-project.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1164544


associated threshold used for other analysis are detailed in the
specific method sections.

Results

Identification of IMR DEGs in childhood
allergic asthma

Compared with healthy controls, we initially identified
1,270 DEGs (499 upregulated and 771 downregulated),
149 DEGs (79 upregulated and 70 downregulated), and
298 DEGs (210 upregulated and 88 downregulated) in

childhood allergic asthma in the GSE152004, GSE65204, and
GSE19187 bulk transcriptomic datasets, respectively (Figure 2A).
The UpSet diagram in Figure 2B shows the number of
overlapping DEGs among the three datasets and the
overlapping IMR DEGs among the datasets. There were
41 common DEGs and five common IMR DEGs, including
SLC40A1, SLC39A8, ALOX15, CA2, and C3, across the
datasets. Among them, SLC39A8, ALOX15, and CA2 showed
higher expression, while SLC40A1 and C3 exhibited lower
expression in patients with allergic asthma (Figure 2C). These
five common IMR DEGs were retained for subsequent analysis.
Detailed information on the above datasets is shown in
Supplementary File 1: Supplementary Table S4.

FIGURE 2
Identification and enrichment analysis of dysregulated IMR genes in childhood allergic asthma. (A) Volcano plots of DEGs between healthy controls
and children with allergic asthma. (B) UpSet diagram showing overlapping DEGs and overlapping IMR DEGs among the three datasets. Datasets shared
five common IMR DEGs. (C) Heatmap of common IMR DEGs derived from integrated analysis. Each circle represents one dataset, and each sector
represents one gene. (D) Protein-protein interaction network for common IMR DEGs using GeneMANIA database. Each node represents a protein
(labelled with gene name); node color represents possible function of respective protein; and line color of connections represents different interaction
type. (E) Significantly enriched GO terms and KEGG pathways of common IMR DEGs using Metascape. (F) TF-gene regulatory network of common IMR
DEGs constructed using “RcisTarget” R package. Hub nodes represent five common IMR DEGs; outer nodes represent TFs; and each color indicates
enriched TFs for common IMR DEG. DEGs, differentially expressed genes; FC, fold-change; GO, gene ontology; KEGG, kyoto encyclopedia of genes and
genomes; IMR, iron metabolism-related; TF, transcription factor.
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Functional annotation and construction of
transcriptional regulatory network of IMR
DEGs

To investigate the interactions between proteins encoded by
common IMR DEGs and other proteins, a PPI network was

constructed. Results showed that five proteins encoded by the
common IMR DEGs were surrounded by 10 potentially
interacting proteins (Figure 2D). Notably, SLC40A1 and
SLC39A8 and their interacting proteins are involved in the
regulation of iron homeostasis (Figure 2D). To further investigate
the latent biological behaviors of the common IMR DEGs, GO

FIGURE 3
Association between SLC40A1 and type 2 airway inflammatory markers. Hierarchical clustering of all patients using common IMR DEGs
distinguished allergic asthmatic patients from controls in (A) GSE152004, (B) GSE65024, and (C) GSE19187 datasets. Hierarchical clustering was
performed using the “ward.D”method and “Euclidean” distance. Comparison of gene expression levels of nine T2 airway inflammatory markers between
SLC40A1 high-expression group (H) and SLC40A1 low-expression group (L) of all asthmatic patients in (D) GSE152004, (E) GSE65024, and (F)
GSE19187. Statistical significance was assessed using Wilcoxon rank-sum test. Asterisks indicated p values for SLC40A1 high-expression versus
SLC40A1 low-expression. *p < 0.05, **p < 0.01, ***p < 0.001. Scatter plots of SLC40A1 vs. type 2 airway inflammatory marker expression in (G)
GSE152004, (H)GSE65024, and (I)GSE19187. Correlation coefficients (r) and p-values were obtained by Pearson correlation analysis. DEGs, differentially
expressed genes; NS, no significance; IMR, iron metabolism-related.
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enrichment analysis indicated that these genes were mainly involved
in iron ion transmembrane transport, cellular iron ion homeostasis,
and regulation of phagocytosis (Figure 2E). Moreover, the
ferroptosis pathway was the major biological pathway involved
(Figure 2E). Ferroptosis is a newly identified form of cell death
characterized by cellular iron accumulation and lipid peroxidation
(Jiang et al., 2021; Tang et al., 2021). Excess cellular iron due to
dysregulation of IMR-molecules can promote ferroptosis (Jiang
et al., 2021). Together, these results suggest that disturbance in
iron metabolism may be involved in the pathogenesis of childhood
allergic asthma.

Next, we used TFBM enrichment analysis to identify potential
upstream TFs for the common IMR DEGs. The TF-gene interaction
network was constructed, which included five genes and 118 TFs
(Figure 2F). SLC40A1, SLC39A8, ALOX15, C3, and CA2 were
regulated by 21, 51, 51, 17, and 16 TFs, respectively. The
enriched TFs are shown in Supplementary Table S6.

SLC40A1 was closely related to T2 airway
inflammatory markers

We further explored whether the common IMR DEGs could be
distinguished between children with allergic asthma and healthy
subjects. Using the five common IMR DEGs, we performed
independent unsupervised hierarchical clustering of all patients
derived from the different datasets. Heatmap visualization of the
five common IMR DEGs indicated that 1) hierarchical clustering
grouped samples into two major clusters and 2) hierarchical
clustering based on expression profiles of common IMR DEGs
clearly distinguished patients from controls in GSE65204 and
GSE19187 datasets (Figures 3A–C). Although PCA based on the
five common IMR DEGs well separated patients from controls in
GSE19187, but was unable to clearly distinguish asthmatics from
controls in GSE152004 and GSE65204 (Supplementary File 1:
Supplementary Figures S3A–C).To evaluate the power of common
IMR DEGs to distinguish childhood allergic asthmatics from healthy
individuals, we measured the AUC values derived from logistic
regression analyses incorporating all five common IMR DEGs
across the datasets. The ROC analyses showed that all five IMR
DEGs displayed moderate-high ability (AUC from 0.81–0.99) to
distinguish allergic asthmatic children from healthy controls in the
three datasets (Supplementary File 1: Supplementary Figures S3D–F).

Ferroportin (encoded by SLC40A1) is the only recognized
mammalian cellular iron exporter (Neves et al., 2019; Zhang et al.,
2019). Given its importance in cellular iron homeostasis, we explored
whether SLC40A1 plays a potential role in childhood allergic asthma.
We stratified all asthmatic patients across the datasets into two groups
based on median SLC40A1 expression and compared the gene
expression levels of nine markers of T2 airway inflammation
identified in previous studies (Jackson et al., 2020; Kicic et al.,
2020). Interestingly, genes related to T2 airway inflammation
showed an overall elevated trend in patients with low
SLC40A1 expression in each dataset (Figures 3D–F). We also
observed negative correlations between the expression levels of
SLC40A1 and T2 inflammatory markers (Figures 3G–I). Taken
together, these results implicate the potential role of SLC40A1 in
T2 airway inflammation in childhood allergic asthma.

Single-cell transcriptomic analysis revealed
high SLC40A1-expressing cell
subpopulations within airway

To identify which specific cell types within the airway express
SLC40A1, we employed scRNA-seq data using cells from the upper
airways of 18 healthy children (Loske et al., 2022). After stringent
quality control, 36,406 cells were subjected to further analysis.
Unsupervised clustering by UMAP identified 18 cell subtypes
(Figure 4A) based on representative marker genes from previous
studies (Chua et al., 2020; Loske et al., 2022). The cell populations
identified by cell lineage-specific marker gene expression are shown in
Supplementary File 1: Supplementary Figures S2B, C.We investigated
SLC40A1 expression in each cell subset and found that macrophages
expressed the highest level of SLC40A1 (Figure 4B). Thus, the
following analyses focused on the macrophage subpopulation.

We re-clustered themacrophages to further explore the distribution
of SLC40A1 expression. Macrophages were re-clustered into two
distinct subpopulations (Ma1 and Ma2) (Figure 4C). The
Ma1 cluster expressed high levels of antigen processing and
presentation-associated genes, such as HLA-DRA, HLA-DQB1, and
HLA-DPA1 (Figure 4D; Supplementary Table S7). The Ma2 cluster
showed high expression of IMR genes SLC40A1, HMOX1, FTH1, and
FTL, metallothionein genes MT2A and MT1X, and resident
macrophage marker CD163 (Figures 4D, E; Supplementary Table
S7). GO analysis of DEGs in cluster Ma2 indicated enrichment in
metal ion homeostasis and IMR terms (Figure 4F). Furthermore,
pathway analysis revealed that Ma2 was enriched in multiple
pathways, including ferroptosis and mineral absorption (Figure 4G).
Of note, several recent scRNA-seq studies identified an alveolar
macrophage cluster that expresses metallothionein (Mould et al.,
2021; Sauler et al., 2022). In our analysis, we found that a
macrophage subpopulation in the upper airway exhibited concurrent
high expression of metallothionein and IMR genes. Taken together, our
findings revealed high expression of SLC40A1 in the Ma2 macrophage
subset. However, the specific role of this subpopulation in physiological
and pathophysiological states requires further exploration.

Potential biological role of SLC40A1 based
on single-cell trajectory and transcriptional
regulatory network analyses

Once monocytes are released into circulation from bone marrow,
they can migrate to peripheral tissue and differentiate into tissue-
resident macrophages under homeostasis and inflammation
(Guilliams et al., 2018). To clarify possible developmental
connections between macrophage subsets and monocyte-derived
macrophages (moMa), we performed pseudotime analysis using
Monocle, which ordered cells along the pseudotime trajectory
based on gene expression patterns (Figure 5C). Results showed
that moMa, Ma1, and Ma2 were primarily positioned at the start,
middle, and end of the pseudotime trajectory, respectively
(Figure 5C). Indeed, single-cell regulatory network analysis
indicated increasing TF activity associated with macrophage
maturation (Kurotaki et al., 2017; Zhao et al., 2018), with MAFB
and CEBPA moving from moMa to Ma1 to Ma2 (Figure 5A). These
results suggest that moMamay exist along a continuum ofmaturation
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towards mature macrophages, while Ma2 macrophage are in the late
stage of maturation.

As the Ma2 subpopulation showed the highest level of
SLC40A1 expression (Figure 4E), we explored the potential
upstream regulators of Ma2. Based on RSS, we identified the top
five TFs (Figure 5B) with major transcriptional regulatory roles in the
Ma2 subset, including ETV5. Notably, ETV5 was also shown to be an
upstreamTF of SLC40A1 based on the bulk transcriptional regulatory
network (Figure 2F). Furthermore, ETV5 activity progressively
increased during the differentiation of moMa into macrophages
(Figure 5A), and thus we investigated the potential roles of
ETV5 and SLC40A1 in this process using pseudotime analysis.
During moMa to macrophage maturation, ETV5 expression
increased with pseudotime and was co-expressed with SLC40A1
(Figure 5D), suggesting that ETV5, together with SLC40A1, may
be involved in the differentiation process. Furthermore, we explored
dynamic transcriptional changes in gene expression during
differentiation from moMa into macrophages, resulting in two
clusters with different time-dependent expression patterns

(Figure 5E). Cluster 2 consisted of 314 genes (Supplementary
Table S8), including SLC40A1 and ETV5, which showed increased
expression with pseudotime, underscoring their possible roles in
moMa to macrophage differentiation. The biological functions of
genes in cluster 2 were also assessed using GO analysis. Results
indicated that these genes were enriched in several pathways
involved in metal ion metabolism, antigen processing and
presentation, and T cell activation (Figure 5F). These findings
suggest that SLC40A1 and ETV5 may be involved in the
differentiation of moMa into macrophages.

Deconvolution of bulk transcriptomic data
to infer changes in cell composition within
airways of children with allergic asthma

Asthma is a heterogeneous disease involving complex interactions
of multiple cell types. However, comprehensive investigations of
changes in the airway microenvironment of children with allergic

FIGURE 4
Single-cell transcriptomic analysis revealed high SLC40A1-expressing cell subpopulations within airway. (A) Overall cell-type composition of
36,406 cells from 18 healthy children visualized using UMAP. CD8_Tm, memory CD8+ T cells; CTL, cytotoxic T cells; DNT, double-negative T cells;
FOXN4, FOXN4+ cells; IL-17A_CD8, IL-17A-expressing CD8+ T cells; mDC, myeloid dendritic cells; moMa, monocyte-derived macrophages; pDCs,
plasmacytoid dendritic cells. (B) Feature plot of SLC40A1 expression in all cell populations. (C) Subclustering of macrophages, showing two distinct
subpopulations (Ma1 and Ma2). (D)Dot plots of scaled expression levels of canonical markers used to identify each macrophage subtype. Color key from
gray to purple indicates low to high expression levels. Dot size indicates percentage of cells that expressed genes. (E)Violin plot of SLC40A1 expression for
macrophage subsets. Statistical significance was assessed usingWilcoxon rank-sum test. (F) Enriched GO terms for DEGs in Ma2macrophage subset. (G)
KEGG enrichment analysis of DEGs in Ma2 macrophage subset. GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; UMAP, uniform
manifold approximation and projection.
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asthma are limited. Deconvolution of bulk tissue RNA to infer cellular
composition has the potential to contribute to a better understanding
of the pathogenesis of multiple diseases (Huang et al., 2022). Thus, we

performed gene deconvolution of the three bulk transcriptomic
datasets to deduce changes in cell type frequency within the
airways of children with allergic asthma.

FIGURE 5
Single-cell trajectory and transcriptional regulatory network analysis revealed potential biological role of SLC40A1. (A) Heatmap of transcription
factor (TF) activity (rows) in macrophages (subclusters Ma1 and Ma2) and moMa (columns), as identified by SCENIC. (B) Ranks of TFs in macrophage
Ma2 subset based on regulon specificity scores, with fivemost transcriptionally active TFs screened. (C)Monocle pseudotime trajectory analysis of moMa
and macrophages (subclusters Ma1 and Ma2), showing a major trajectory of moMa differentiation into macrophages. Direction of arrow indicates
pseudotime direction. (D) Feature plot showing the expression patterns of ETV5 and SLC40A1 along the pseudotime cell trajectory. (E) Gene expression
dynamics along pseudotime trajectory. Genes clustered into two gene sets, each characterized by specific expression profiles. Genes in cluster
2 exhibited increased expression along pseudotime, as depicted by a selection of characteristic genes. Color bars from green to purple represent Z score.
(F) Enriched GO terms for genes in cluster 2. (G) Heatmap of proportion of major cell subtypes within airways of allergic asthmatic patients and healthy
controls in each dataset predicted from deconvolution analysis. Statistical significance was assessed using Wilcoxon rank-sum test. Asterisks indicated p
values for childhood allergic asthma versus control. *p < 0.05, **p < 0.01. GO, gene ontology; moMa, monocyte-derived macrophages; SCENIC, single-
cell regulatory network inference and clustering.

Frontiers in Cell and Developmental Biology frontiersin.org10

Wang et al. 10.3389/fcell.2023.1164544

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1164544


Compared with the healthy controls, a higher proportion of goblet
cells and a lower proportion of club cells were observed in the asthmatic
airways across all datasets (Figure 5G). Interestingly, allergic asthmatics
also showed a lower fraction of SLC40A1-expressing Ma2macrophages
(Figure 5G). The significance of this cell subpopulation, which is
implicated in iron metabolism, deserves further exploration in
childhood allergic asthma. However, differences in several cell
fractions (e.g., B cells and basophils) between groups were not
completely consistent across the datasets. Thus, single-cell RNA-seq

studies on childhood asthma are necessary to further explore the cellular
heterogeneity within the complex asthmatic airway microenvironment.

Effects of SLC40A1 on altered iron levels in
airways of children with allergic asthma

Analysis showed that SLC40A1 exhibited much lower
expression in the nasal samples of patients with allergic asthma

FIGURE 6
Effects of SLC40A1 on altered iron levels in airways of children with allergic asthma. (A) Boxplot showing differences in BALF iron levels among
groups, as determined by iron assay. Statistical significance was assessed using Kruskal–Wallis test with Dunn’s multiple comparisons. (B) Perls iron stain
of BAL cells from control individuals and childhood allergic asthmatics (blue stain represents iron positive areas). (C) Boxplot showing mRNA expression
levels of SLC40A1 among groups. mRNA expression of SLC40A1 was measured by qRT-PCR. Statistical significance was assessed using
Kruskal–Wallis test with Dunn’s multiple comparisons. (D) Representative immunofluorescent images of BAL cells stained with anti-CD68 antibody and
anti-FPN antibody. (E) FPN mean fluorescence/cell per group. Statistical significance was assessed using Wilcoxon rank-sum test. (F) Scatter plot of
relative SLC40A1 expression vs. BALF iron levels. Correlation coefficients (r) and p-values were obtained by Pearson correlation analysis. (G) ROC curve
evaluating diagnostic utility of SLC40A1 for childhood asthma. BAL, bronchoalveolar lavage, BALF, bronchoalveolar lavage fluid; AUC, area under ROC
curve; qRT-PCR, quantitative reverse-transcription polymerase chain reaction; ROC, receiver operating characteristic.
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(Figure 2C). BAL can provide direct and useful information about
local airway inflammation (Fainardi et al., 2022). Thus, to investigate
potential iron metabolism disorder in the airways of children with
allergic asthma, we examined iron levels and SLC40A1 expression
using qRT-PCR analysis of BAL samples from 18 controls and
28 asthmatic children. We also assessed iron distribution in BAL
cells using Perls iron staining. Results indicated that iron levels in
BALF were significantly lower in children with allergic asthma than
in controls (p = 0.00019) (Figure 6A). In contrast, children with
allergic asthma showed significant iron accumulation in BAL cells
compared to controls (Figure 6B). Together these results suggest that
decreased iron levels in the airway, but increased iron accumulation
in BAL cells in childhood allergic asthma. Furthermore,
SLC40A1 mRNA expression was markedly decreased in allergic
asthmatic children compared to controls (p = 0.00028), and there
was no statistical significance between controls and non-allergic
asthmatics (Figure 6C). Single-cell transcriptomic analysis suggested
that macrophages expressed the highest level of SLC40A1
(Figure 4B). To clarify the protein expression of SLC40A1 in
BAL macrophages, immunofluorescence staining of BAL cells
was performed in which macrophages were stained by anti-
CD68. Results showed that the expression of FPN was mainly
co-localized with CD68 staining in BAL cells (Figure 6D).
Furthermore, fluorescence intensity quantification showed lower
levels of FPN in allergic asthmatic samples than in control samples
(Figure 6E).

Most cells acquire iron by importing transferrin-bound iron
from the extracellular environment via TFR1 (Neves et al., 2019). As
another cellular iron importer, DMT1 is responsible for transporting
dietary non-heme iron through the cellular membrane (Zhang et al.,
2019). Here, we further investigated whether the decreased iron
levels in BALF were due to elevated expression of TFR1 or DMT1.
However, we found no differences in the TFR1 and DMT1 mRNA
expression levels between the asthmatic children and controls
(Supplementary File 1: Supplementary Figures S5A, B).
Immunofluorescent staining also showed similar TFR1 and
DMT1 staining between the groups (Supplementary File 1:
Supplementary Figures S4A, B).

Pearson correlation analysis showed a negative association
between SLC40A1 expression and iron levels (Figure 6F).
Furthermore, SLC40A1 displayed moderate discriminatory
power in distinguishing overall asthma [area under the ROC
(AUC) = 0.79] and non-allergic asthma (AUC = 0.70) from
controls, and high discriminatory power to distinguish between
allergic asthma and controls (AUC = 0.87) (Figure 6G). Taken
together, these results suggest that lower SLC40A1 expression may
be correlated with reduced iron levels in the airways of children
with allergic asthma.

Discussion

Despite mounting evidence implicating iron metabolism
disorder in childhood asthma pathogenesis, the underlying
mechanism remains unclear. In the current study, we identified
common aberrantly expressed IMR genes in childhood allergic
asthma via integrative analysis of three bulk transcriptomic
datasets. Among these genes, SLC40A1 was strongly correlated

with markers of T2 airway inflammation. Subsequent single-cell
transcriptomic analysis identified a distinct subset of macrophages
driving SLC40A1 expression and revealed the potential biological
role of SLC40A1. Reduced SLC40A1 expression may be associated
with declined iron levels in the airways of children with allergic
asthma.

We performed integrative analysis of three bulk gene expression
profiles and identified five common IMRDEGs in childhood allergic
asthma, including C3 and ALOX15, which are implicated in allergic
asthma pathogenesis (Hasegawa et al., 2004; Yang et al., 2012;
Nagasaki et al., 2022). Complement component C3 plays a
central role in the complement system and is required for the
three complement-activating pathways. A Japanese study of
864 asthmatic patients and controls identified a single-nucleotide
polymorphism (SNP) in the C3 gene associated with childhood
allergic asthma (Hasegawa et al., 2004). Another adult study
reported decreased expression of C3 in the bronchial epithelium
of allergic asthmatic patients compared with normal controls (Yang
et al., 2012), similar to our results. ALOX15 is a member of the
lipoxygenase (LOX) family, which catalyzes the peroxidation of
polyunsaturated fatty acids (Çolakoğlu et al., 2018). Under
T2 conditions (IL-13 stimulation), upregulation of ALOX15 in
human airway epithelial cells has been shown to induce
hydroperoxyl-phospholipid generation and lower intracellular
glutathione (GSH) (Nagasaki et al., 2022). Lowering GSH by
inhibiting SLC7A11 enhances periostin (POSTN, a
T2 inflammatory marker) protein expression and increases
susceptibility to ferroptotic death (Nagasaki et al., 2022).
SLC40A1 encodes ferroportin, the only known cellular iron
exporter in mammals (Neves et al., 2019; Zhang et al., 2019).
SLC39A8 is widely expressed in tissues and encodes the
ZIP8 protein, which is a multi-functional membrane transporter
that influxes essential metals such as iron, zinc, and manganese (Liu
et al., 2018). Carbonic anhydrase II (CA2) plays physiological roles
in erythrocytes, including ion secretion, CO2 transport, and
pH regulation (Supuran, 2008). To date, however, few studies
have reported on the relationship between SLC40A1, SLC39A8,
CA2, and asthma, or examined the functional roles of the five IMR
genes in iron homeostasis imbalance. Thus, the identified IMR genes
warrant further investigation, especially their roles in asthma-related
dysregulation of iron metabolism, which may help elucidate novel
mechanisms related to childhood allergic asthma.

Interestingly, we found that allergic asthmatic children with
lower SLC40A1 expression exhibited higher T2 airway
inflammatory gene expression. Identification of potentially
valuable biomarkers in asthma may aid risk stratification and
management of patients (Kuruvilla et al., 2019). Several
T2 airway inflammatory biomarkers, including POSTN, CPA3,
IL1RL1, KLK11, and DPP4, which may facilitate evaluation of
disease severity and predictive response to therapy, have been
identified in adult asthmatics (Zissler et al., 2016; Mogensen
et al., 2020; Winter et al., 2021). However, existing data on the
pediatric asthma population are limited. Given the high correlation
between SLC40A1 and T2 airway inflammatory genes, we
hypothesized that stratification of children with allergic asthma
based on SLC40A1 expression may help predict treatment
response and disease severity. Nevertheless, we could not draw
further conclusions due to the lack of individual patient data.
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Thus, further studies on SLC40A1 and other possible biomarkers of
childhood allergic asthma are warranted.

Based on scRNA-seq data, SLC40A1 was highly expressed in the
Ma2 macrophage subset, which expressed genes related to iron
metabolism and metallothionein. Functional annotation analysis
revealed that these cells were enriched in biological processes related
to iron metabolism and metal ion homeostasis. In terms of
transcriptional phenotype and potential function, these cells may
correspond to a novel associated alveolar macrophage
subpopulation (Mould et al., 2021; Sauler et al., 2022). However,
little is known about the effects of accumulation or scarcity of these
cells in the pathogenesis of lung disease (Sauler et al., 2022). The
specific role of the SLC40A1-expressing macrophage subset under
physiological and pathophysiological states deserves further
exploration.

Based on pseudotime and SCENIC analysis, our study also
indicated that SLC40A1 and ETV5 may be involved in the
differentiation of moMa into macrophages. A previous study
found that ETV5 was significantly upregulated during
differentiation of primary human monocytes into macrophages
(Liu et al., 2008). Further functional studies are necessary to
confirm and characterize the roles of ETV5 and SLC40A1 in
moMa to macrophage differentiation. Even under homeostatic
conditions, bone marrow-derived monocytes can differentiate
into resident tissue macrophages, which may be accelerated by
inflammation (van de Laar et al., 2016; Gundra et al., 2017).
However, the mechanisms that enable the conversion of
monocytes into tissue-resident macrophages are unknown.
Previous research has indicated that moMa can differentiate into
tissue-resident peritoneal macrophages in Schistosoma mansoni-
infected mice, but failure to convert moMa into a tissue-resident
phenotype is associated with dysregulated inflammation and
increased mortality (Gundra et al., 2017). A recent study also
revealed that activation of the IL33-ST2 axis can facilitate moMa
differentiation into resident alveolar macrophages and promote
bronchial epithelial repair in a mouse model of naphthalene-
induced bronchiolar epithelial injury (Dagher et al., 2020). These
studies suggest that the conversion of moMa to macrophages with a
resident phenotype contributes to tissue homeostasis. Thus, we
hypothesize that conversion of moMa into macrophages with a
resident phenotype is disrupted in children with allergic airway
inflammation, with the potential involvement of SLC40A1 and
ETV5. However, further studies are required to confirm this
conjecture.

Using deconvolution analysis, we found that the proportion of
goblet cells was increased, and the promotion of club cells was
decreased in allergic asthmatic airways. The airway epithelium is the
first line of defense against pathogenic factors. Prominent goblet cell
hyperplasia is a typical pathological feature of asthma (Carlier et al.,
2021). Moreover, airway epithelial injury and dysregulated epithelial
barrier function play key roles in the development and progression
of asthma (Heijink et al., 2020; Carlier et al., 2021). In response to
injury, epithelial regeneration is largely driven by multipotent
progenitor stem cells of the bronchial conducting airways,
specifically a subset of club progenitor stem cells (Hong et al.,
2001). Consistent with our findings, a previous scRNA-seq study
revealed that goblet cells are increased, and club cells are reduced in
the airways of adult asthmatic patients compared to healthy controls

(Vieira Braga et al., 2019). Intriguingly, we found that the
Ma2 macrophage subset was decreased in the airways of
asthmatic children. Recent mouse model studies have revealed an
important dichotomy, in which resident macrophages primarily
maintain lung homeostasis by suppressing inflammation, while
monocyte-derived macrophages primarily promote allergic airway
inflammation (Zasłona et al., 2014; Lee et al., 2015; Draijer and
Peters-Golden, 2017). Whether the Ma2 macrophage subpopulation
possesses a similar tissue-resident phenotype and exerts similar
inhibitory effects on allergic airway inflammation remains to be
elucidated.

Finally, we found that iron levels were reduced in the airways of
the allergic asthmatics, which may be due to the decreased expression
of SLC40A1 rather than elevated expression of iron accumulation
molecules TFRC1 and DMT1. This differs from previous research on
adults, showing that reduced iron levels in asthmatic patients are
mainly attributable to TFRC1 overexpression (Ali et al., 2020). These
inconsistent results may be due to several factors. Firstly, the altered
iron levels in our study were observed in children with allergic asthma,
while the previous study focused on all asthmatic patients, which may
be influenced by population heterogeneity. Secondly, the T2-high
phenotype accounts for more than 80% of all childhood asthma cases,
but only about 50% of adult asthma cases (Komlósi et al., 2022). Even
under the T2-high asthma phenotype, underlying endotypes differ
between child and adult asthmatic patients (Kuruvilla et al., 2019),
suggesting potential mechanistic differences between adult and
childhood asthma. Thus, additional research is needed to clarify
these discrepancies.

This study has several limitations. Although we integrated
single-cell and bulk transcriptomic datasets to comprehensively
profile IMR genes involved in childhood allergic asthma, our
single-cell transcriptomic analysis was built on healthy samples,
and we could not fully explore the disease state mechanisms. To
address this, we applied deconvolution analysis with bulk
transcriptomic datasets to infer changes in the cellular
composition of airways in children with allergic asthma.
However, our results were not completely coincident across
datasets, which could be attributed to two reasons. First, inferring
cell composition with bulk transcriptomic data may be less precise
than that with scRNA-seq. Second, the heterogeneity in
methodology, population, and underlying disease states among
patient cohorts may have contributed to the observed
discrepancies. Thus, further single-cell RNA-seq studies on
asthmatic children with more precise exploration of cellular
heterogeneity in asthmatic airways are warranted. In addition,
while the potential roles of SLC40A1 and ETV5 were explored,
further in-depth study is required, and the corresponding results
need to be verified by further biological experiments. Finally,
although our study implicated the dysregulation of iron
metabolism in childhood allergic asthma, the underlying
signaling pathways and the specific roles of critical cell
populations (e.g., Ma2 macrophage subset) in the regulation of
iron homeostasis need to be elucidated.

In summary, we identified aberrant gene expression profiles of
IMR genes in childhood allergic asthma through bulk
transcriptomic analysis. Of note, SLC40A1 was highly correlated
with T2 airway inflammatory markers. Single-cell transcriptomic
analysis identified a distinct macrophage subpopulation driving
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SLC40A1 expression and indicated a possible role of SLC40A1 at
single-cell resolution. Our results also showed that SLC40A1 may be
involved in changes in airway iron levels in children with allergic
asthma. Additional in-depth research on childhood asthma should
be conducted to validate our findings.
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