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Background: Gastric cancer (GC) is one of the most commonmalignancies in the
human digestive tract. CD4+T cells can eliminate tumor cells directly through the
mechanism of cytolysis, they can also indirectly attack tumor cells by regulating
the tumor TME. A prognostic model of CD4+T cells is urgently needed to improve
treatment strategies and explore the specifics of this interaction between
CD4+T cells and gastric cancer cells. Methods: The detailed data of GC
samples were downloaded from the Cancer Genome Atlas (TCGA), GSE66229,
and GSE84437 datasets. CD4+ T cell-related genes were identified to construct a
risk-scoremodel by using the Cox regressionmethod and validated with the Gene
Expression Omnibus (GEO) dataset. In addition, postoperative pathological tissues
of 139 gastric cancer patients were randomly selected for immunohistochemical
staining, and their prognostic information were collected for external verification.
Immune and molecular characteristics of these samples and their predictive
efficacy in immunotherapy and chemotherapy were analysed.

Results: The training set and validation set had consistent results, with GC patients
of high PROC and SERPINE1 expression having poorer prognosis. In order to
improve their clinical application value, we constructed a risk scoring model and
established a high-precision nomogram. Low-risk patients had a better overall
survival (OS) than high-risk patients, consistent with the results from the GEO
cohort. Furthermore, the risk-score model can predict infiltration of immune cells
in the tumor microenvironment of GC, as well as the response of immunotherapy.
Correlations between the abundance of immune cells with PROC and
SERPINE1 genes were shown in the prognostic model according to the
training cohort. Finally, sensitive drugs were identified for patients in different
risk subgroup.

Conclusion: The risk model not only provides a basis for better prognosis in GC
patients, but also is a potential prognostic indicator to distinguish the molecular
and immune characteristics of the tumor, and its response to immune checkpoint
inhibitor (ICI) therapy and chemotherapy.
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Introduction

Gastric cancer (GC) is one of the most common malignancies
in the human digestive tract. According to the global cancer
statistical analysis data, GC has become the sixth most diagnosed
cancer and the third largest cause of cancer death, and thus it is a
major global health crisis (Sung et al., 2021). Clinically, GC is
mainly treated with surgical resection, chemotherapy,
radiotherapy, targeted therapy, or in combination. In spite of
this, patients still face many life-threatening issues like
recurrence, metastasis, drug resistance, lack of corresponding
drug targets, side effects and so on. The 5-year survival rate is
as low as 10%–15% (Li Y. et al., 2020; Smyth et al., 2020), hence
exploring new and more effective treatment methods have
become a hot spot of research.

Immunotherapy is based on the study of the mechanism of
immune escape, which can reactivate the anti-tumor immune
response and overcome the escape pathway by “manipulating”
the immune system (Kennedy and Salama, 2020). In recent years,
it has been used to treat malignancies as a new treatment model,
and has shown good therapeutic effects. Tumor
microenvironment (TME), due to its key role in cancer
progression and drug resistance, has become a potential
immunotherapy target for many kinds of malignant tumors,
including GC (Rihawi et al., 2021).

TME consists of different types of cells, including immune
and inflammatory cells (lymphocytes and macrophages), stromal
cells (fibroblasts, adipocytes and pericytes), small organelles,
RNA, blood and lymphatic vessels, extracellular matrix (extra
cellular matrix, ECM) and secreted proteins (Arneth, 2019).
Many studies have reported that the occurrence and
development of any tumor and the clinical prognosis of
patients are closely related to the level of infiltration of tumor
immune cells (Hainaut and Plymoth, 2013; Dashti et al., 2016;
Kono et al., 2020). As a member of the immune regulatory
network, the changes in immune-related genes (IRGs) will
cause cascade reactions, thus promoting the progression of
tumors (Zhang S. et al., 2020). Studies have shown that IRGs
are closely related to the occurrence, development and metastasis
of tumors. For example, studies have shown that the
overexpression of YKT6 is closely related to the poor
prognosis of OSCC, and its low expression is associated with
the high level of CD8+T cells in OSCC and the potential response
to immunotherapy (Yang et al., 2021). The high expression of
HCST is closely related to the level of tumor infiltrating immune
cells, especially dendritic cells, and is closely related to the
clinicopathology and poor prognosis in renal clear cell
carcinoma as well (Zhou et al., 2021). Gene ANGPT1 can
increase T Cell infiltration and improve the prognosis of EC
patients (Nong et al., 2021). CD4+T cells are a special type of
T cells that can target tumor cells in many ways. On the one hand,
they can eliminate tumor cells directly through the mechanism of
cytolysis, while on the other, they can indirectly attack tumor cells
by regulating the tumor TME (Kennedy and Celis, 2008; Melssen
and Slingluff, 2017). Additionally, CD4+ T cells can also kill
tumor cells by increasing the number and quality of B Cells and
CTL (Cytotoxic T Lymphocytes) responses (Bevan, 2004;
Castellino and Germain, 2006).

Lately, the emergence of immune checkpoint inhibitor (ICI)
represented by PD-1 (programmed cell death protein-1) has
brought about a new dawn of treatment for tumor patients.
Tumor tissue disables our T cells by expressing programmed
death molecules such as PD-1 and B7-1 and subsequently
binding them to PD-L1 (programmed death ligand-1) and
CTLA-4 (cytotoxic T lymphocyte antigen-4) receptors on said
T cells (Sharma and Allison, 2015). By blocking this binding, ICI
keeps T cells alert and capable of searching and destroying tumor
cells (Ganesh et al., 2019). ICI therapy is effective in the treatment of
melanoma and non-small cell lung cancer, for example, and can be
as effective as 50% in advanced melanomas (Mushti et al., 2018;
Carlino et al., 2021). Hence, seeking for more potential targets for
immunotherapy is understandably prioritized in many bleeding-
edge studies. At present, there are many studies on immunotherapy
for gastric cancer, but most of these studies only focus on one or two
genetic biomarkers related to the prognosis of gastric cancer, which
is far from enough. At the same time, more evidences are required to
detect specific characteristics in GC patients which makes
immunotherapy effective.

Therefore, in this study, WGCNA (weighted gene co-expression
network analysis) was used to construct a network map of co-
expression of immune cells, from which the key marker related to
gastric cancer was screened. Then the risk-score model was
established and verified in clinical practice in the aspects of
prognosis, immune microenvironment and drug sensitivity of
patients with gastric cancer. Thus, it provides important insights
and strategies for individualized treatment of patients with gastric
cancer.

Methods

Datasets collection of GC and preprocessing

The flow chart (Supplementary Figure S1) shows sample
utilization at each stage of the statistical analysis. Data such as
somatic mutation, gene expression, and corresponding clinical
information of gastric cancer (GC) samples were collected for
further analysis from The Cancer Genome Atlas (TCGA)
database (https://tcga-data.nci.nih.gov/tcga/), which includes
detailed information of tumor and para tumor samples. In
addition, detailed characteristics and survival time of 433 gastric
cancer samples in South Korea (GSE84437) and 300 gastric cancer
samples in the ACRG (Asian Cancer Research Group) study
(GSE66229) were obtained from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/).

Evaluation of immune cell infiltration

CIBERSORT is used to dissect the mixture of data from
unknown content and noise. The algorithm can statistically
estimate the relative proportions of subtype populations in
complex tissue expression profiles and is a useful tool for
estimating specific cell abundances in mixed tissues. We used
CIBERSORT algorithm to analyze RNA-seq data of GC patients
to estimate the relative proportions of various immune-infiltrating
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cells and its content. Then, each subtype of immune cells in these GC
sample was used as trait data for WGCNA.

Construction of co-expression network

In this study, we have selected 493 genes to construct a weight
co-expression network in order to identify the relationship between
functional modules and immune cell infiltration in GC patients.
According to the Pearson correlation value between paired genes,
the expression levels of individual transcripts were transformed into
a similarity matrix, and then to an adjacency matrix, as calculated by
amn = |cmn| β (cmn = Pearson’s correlation between paired genes;
amn = adjacency between paired genes). Parameter β can enhance
the strong correlation between genes and decrease the weak
correlation. When the power of β is set to 6, the adjacency
matrix was converted into a topological overlap matrix. To divide
genes with similar expression patterns into different modules, we
applied a dynamic hybrid cutting method by using a bottom-up
algorithm with a minimum block size truncation of 60.

Identification of hub genes

The candidate hub genes were selected according to the module
connectivity and immune cell relationship of each gene in hub
module. Module connectivity is defined as the absolute value of the
Pearson’s correlation between genes (Module Membership). The
immune cell relevance is defined as the absolute value of the
Pearson’s correlation between each gene and its trait (Gene
Significance). For each gene, we define the MM by the
correlation between the gene expression profile and the ME
(Module Eigengenes) of a given module. For example,
MMturquoise (a) = cor (xa, Eturquoise) measures the correlation
between gene “a” and the ME of the turquoise module. If
MMturquoise (a) is close to 1 or −1, it is highly connected to the
ME of the turquoise module. On the other hand, if MMturquoise (a)
is close to 0, the “a” gene is not part of the turquoise module. In this
study, we selected the MEblue module that is highly relevant to
activated memory CD4+ T cells for further analysis.

Function enrichment analyses

To verify the biological functions of modules, we employed
the gene ontology (GO) annotation and Kyoto encyclopedia of
genes and genomes (KEGG) pathway enrichment analysis by
clusterProfiler R package (Huang da et al., 2009; Yu et al., 2012).
The parameters of clusterProfiler R package were set to default.
The thresholds of the GO functions and KEGG pathways were set
as p-value <0.05 and qvalue <0.05 respectively. Gene Set
Enrichment Analysis (GSEA) is used to identify a set of
basically defined genes which exhibit statistical differences
between two biological states (Hänzelmann et al., 2013).
“c2.cp.kegg.v7.4.symbols.gmt” gene set enrichment analysis
was executed according to gene expression, with
p-value <0.05 and q-value <0.05 as indicative of statistical
significance. In this study, we applied GSEA to find the

signaling pathways of core genes by R packages “ggplot2” and
“clusterProfiler”.

Construction and validation of prognostic
model

In our research, we used Lasso-Cox analysis to minimize the risk
of over-fitting by using the “glmnet” R package. Multivariate Cox
analysis was used to select the candidate genes for establishing a
prognostic risk-score in the training cohort. The risk-score was
calculated as follows:

Risk − score � Σi Expi * coef i( )

where Coefi and Expi denote the risk coefficient and expression of
each gene, respectively. The cut-off point was determined by the
“survminer” package. According to the risk-score, we showed that
the survival curve was used for visualization with both training
and testing cohorts in the high- or low-risk group by Kaplan-
Meier analysis. p values <0.05 were considered to be statistically
significant.

In vitro validation and survival analyses

Surgically treated and pathologically confirmed GC patients
(n = 139) between 2010 and 2012 from the First
Affiliated Hospital of Sun Yat-sen University (FAHSYSU)
were randomly selected. The follow-up period was up to
January 2019.139 paraffin-embedded GC specimens were
obtained from Department of Pathology of FAHSYSU, and
their IHC staining and tissue microarrays were
conducted using an anti-PROC antibody (1:200; Proteintech,
Wuhan, China) and anti-SERPINE1 antibody (1:100;
Proteintech, Wuhan, China) as previously described. IHC
results were evaluated by two independent investigators
blinded to the experiments, and a semiquantitative
method was used to score the specimens (Zhai et al., 2018).
Positive was defined as samples in which more than 10% of the
tumor cells were stained. The staining intensity was defined as
follows: 0 (negative), 1 (weak), 2 (moderate), and 3 (strong).
Negative to weak staining indicated low PROC and
SERPINE1 expression, and moderate to strong staining
indicated high PROC and SERPINE1 expression. Patient
consent and ethical approval from the Institutional Review
Board of Seventh Affiliated Hospital of Sun Yat-sen
University were obtained for this study. Statistical analyses
were performed using SPSS 22.0. The chi-square test was used
for numerical data. Survival curves were generated using the
Graphpad Prism 8.0.

Assessment of immunotherapy

In further analysis, we showed the correlations between the
abundance of immune cells and two genes, specifically PROC and
SERPINE1 in the prognostic model according to the training
cohort. Beside comparing the prognostic among the risk-score,
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we also utilized the immunophenoscore (IPS) to predict the
response of immune checkpoint inhibitors (ICIs) based on the
expression of the main component in tumor immunity. On a scale
of 0–10 based on representative z-scores of cell type gene
expression, IPS was calculated where the immunogenicity was
positively correlated to its IPS (Charoentong et al., 2017). The
IPSs of patients with GC were derived from The Cancer
Immunome Atlas (TCIA) (http://tcia.at/home). The result was
obtained using the R package “ggpubr”.

Establishment and validation of a nomogram
scoring system

According to the independent prognosis outcome, a predictive
nomogram was created by incorporating clinical characteristics and
risk-score using the R package “rms”. In the nomogram scoring
system, each variable has a corresponding score and the total score is
obtained by adding up the scores of all variables for each sample
(Iasonos et al., 2008). The Nomogram was evaluated using ROC
curves for 1-, 3-, and 5-year survival rates. The nomogram
calibration plots were used to describe the predictive value of the
anticipated 1-, 3-, and 5-year survival events in relation to the actual
observed outcomes.

Assessment of drug sensitivity

The sensitivity of various drugs was predicted between high-risk
and low-risk subgroups using the R package “pRRophetic”

(Geeleher et al., 2014). The differences in IC50 between the two
groups was compared using Wilcoxon signed-rank test. The results
were plotted using the R package “ggplot2”.

Statistical analysis

We used R software for statistical analyses (version 4.1.3; https://
www. R-project.org). The significance of different immune cell
infiltration and gene expression was calculated using Wilcoxon
test analysis. Pearson correlation analysis was used to calculate
the correlation between genes (Module Membership). When the
p < 0.05, the result was considered statistically significant.

Results

Differentially expressed immune-related
genes and analysis of immune cell
infiltration in GC

The process flow chart of our study was clearly illustrated in
Supplementary Figure S1. Initially, we obtained the transcriptome
profiling data of Stomach adenocarcinoma (STAD) project from the
Cancer Genome Atlas (TCGA) database, which included 375 tumor
samples and 32 normal samples. Through differential expression
genes analysis, there were 8,832 differentially expressed genes
retrieved from the TCGA cohort, including 7,497 upregulated
genes and 1,335 downregulated genes in the tumor samples when
compared with normal samples (Supplementary Table S1A)

FIGURE 1
Differentially expressed immune-related genes and Analysis of Immune Cell Infiltration in GC. (A) Differentially expressed immune-related genes
from the intersecting list. (B) Differentially expressed genes retrieved from the TCGA cohort. (C) The heat map of the immune cells between tumor and
normal. (D) Correlation analysis of immune cells.
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(Figure 1A). Meanwhile, we cross-referenced these differential genes
with the lists of immune-related genes retrieved from ImmPort and
InnateDB. A total of 493 differentially expressed immune-related
genes were obtained from the list, which can be broken down into
309 upregulated genes and 184 downregulated genes in the tumor
samples when compared with normal samples (Supplementary
Table S1B) (Figure 1B). In addition, we analyzed the different
cell subtype abundance between GC and normal tissues by using
the CIBERSORT algorithm. As a result, we identified the
composition of immune cells in each GC sample (Supplementary
Figure S2). The immune cells between tumor and normal sample are
presented in the heat map (Figure 1C). The correlation analysis of

immune cells can be found in Figure 1D. These results suggested that
the aforementioned immune cells may be involved in the
progression of GC.

Construction weighted gene Co-Expression
network

The expression values of these 493 genes were utilized to build
a co-expression network of GC using the R package “WGCNA”.
We clustered the samples of TCGA by estimating average linkage
and Pearson’s relation values. Soft threshold power analysis

FIGURE 2
Construction Weighted Gene Co-Expression Network. (A) The scale-free fit index of the network topology in the WGCNA pipeline. (B) Dynamic
hybrid cutting to construct hierarchical clustering tree.

FIGURE 3
Identification of hub modules and Validation of enrichment analysis. (A) The correlation between the modules and immune cell. (B) The GO
enrichment analysis of the MEblue module. (C) The ICEGG pathway enrichment analysis of the MEblue module.
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revealed the scale-free fit index of the network topology in the
WGCNA pipeline. We used β = 6 as the soft thresholding value to
build a scale-free network (Figure 2A). Dynamic hybrid cut was
utilized to construct hierarchical clustering tree. Each leaf of the
tree shows a single separate gene, in which genes with similar
expression data are grouped close together to form a branch of the
tree representing a gene module (Figure 2B).

Identification of hub modules and validation
of enrichment analysis

The correlation between the modules and immune cell is
showed in Figure 3A. Compared with other immune cells, the
relationship between activated memory CD4+ T cells and GC is
less studied. In this study, the MEblue module was highly related
to activated memory CD4+ T cells. All genes in the MEblue
module are shown in Supplementary Table S2. Hence, we
selected MEblue module and activated memory CD4+ T cells
for further analysis. There was a very significant correlation
between module membership and gene significance (cor =
0.48, p = 1E-22), suggesting that the 173 genes in the MEblue
module tended to be significantly correlated with the infiltration
level of activated memory CD4+ T cells. For this reason, the
MEblue module was considered to be a GC-related hub module.
To illustrate the affected functions of the genes clustered in the
MEblue module, GO and KEGG analysis was further performed.
Based on the GO enrichment analysis, cellular response to biotic
stimulus, cellular response to molecule of bacterial origin,
response to lipopolysaccharide, neutrophil chemotaxis, and
neutrophil migration were tagged as significantly enriched GO

terms (Figure 3B). The KEGG pathway enrichment analysis
revealed that most genes were mainly enriched in pathways
including leukocyte chemotaxis, myeloid leukocyte migration,
cell chemotaxis, and so on. (Figure 3C).

Establishing risk assessment model and
survival outcomes in GC

Through a univariate Cox survival analysis, 21 CD4+ T cell-
related hub genes among the 173 genes in MEblue module
deemed closely correlated with GC patient are set for follow-
up analysis, as shown in Figure 4A (p < 0.05, log-rank test). To
determine the best independent prognostic genes, lasso and
multivariate Cox regression analysis for OS was performed
among those 21 CD4+ T cell-related hub genes (Supplementary
Figure S3). There were only 2 genes (PROC, SERPINE1) that
significantly affected the OS of GC patients. Meanwhile, based on
the selected CD4+T cells-related hub genes, we constructed a
prognostic index for all cancer samples. The risk model was
established by multiplying expression data of hub genes by the
Cox regression coefficient, such as follows: risk-score =
expression level of PROC*(0.193,582) + expression level of
SERPINE1*(0.267008). The distribution plot of the risk score
demonstrated that the survival times were reduced while the risk-
score increased in Figure 4B.

Finally, we used the identified cut-off point to re-distinguish
high-risk groups from low-risk groups in the cohort for validation.
As illustrated in Figures 4C,D, the patient within low-risk groups
had a better OS than the high-risk patients (p < 0.05, log-rank test)
no matter the TCGA cohort or GEO cohort.

FIGURE 4
Establishment Risk AssessmentModel and Survival outcomes in GC. (A) 21 CD4+ T cells-related hub genes Through a univariate Cox survival analysis
in MEbluemodule. (B) The distribution plot of the Risk score with survival times. (C, D) Kaplan-Meier analysis of the OS between the two risk groups in the
GSE84437 and TCGA cohort.
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The 2 gene survival and GSEA of risk model
in GC

The GC patient with low-expression of PROC and SERPINE1 had
a better OS than the high-expression patients (Figures 5A,B).
Consistent with our results, compared to normal tissues, the protein
expression of PROC and SERPINE1 were both significantly higher in
GC tissues (Figures 5C,D). In addition, GSEAwas conducted to identify

gene sets associated with the different risk subgroups. The top 5 GSEA
terms of PROC and SERPINE1 were illustrated in Figures 5E,F,
respectively. The genes of PROC were enriched in graft versus host
disease, hematopoietic cell lineage, leishmania infection, olfactory
transduction, and ribosome. While, the gene of SERPINE1 were
enriched in aminoacyl-tRNA biosynthesis, cell cycle, DNA
replication, pyrimidine metabolism, and spliceosome. Detailed
GSEA results can be viewed in Supplementary Table S3.

FIGURE 5
The 2 gcnc survival and GSEA of risk model in GC. (A) The relationship between gene expression of PROC and SERPINE I and OS. (B, C) Protein
expression of PROC and SERPINEI in tumor and normal GC tissue. (D) The top 5 GSEA terms of PROC and SERPINEI. .

FIGURE 6
In Vitro Validation and Survival Analyses. (A) IHC staining of the PROC protein in GC tissues. (B) IHC staining of the SERPINEI protein in GC tissues. (C)
Survival analyses of the PROC protein in GC patients. (D) Survival analyses of the SERPINEI protein in GC paticnts.
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In vitro validation and survival analyses

PROC and SERPINE1 genes were further validated in vitro.
Immunohistochemistry and western blotting experiments on
139 paired GC patients and normal tissue samples showed
that the protein expression of PROC and SERPINE1 were
significantly higher in GC samples than in normal tissue
samples (Figures 6A,B). Moreover, patients with high
expression of PROC and SERPINE1 were found to have worse
prognosis in our cohort (Figures 6C,D). These findings were
consistent with the results obtained from the GC cohort
of TCGA.

Construction of a nomogram to assess
survival

Given the inconvenient clinical value of the risk-score
in predicting OS in patients with GC, a nomogram
incorporating risk-score and clinicopathological characteristics
was developed to predict 1-, 3-, and 5-year OS rates in patients
with GC (Figure 7A). For TCGA, our AUC studies on the
nomogram model revealed a good accuracy for OS at 1-, 3-,
and 5- years (Figure 7B). In TCGA, the proposed nomogram
performed similarly to an ideal model according to the
calibration plots (Figure 7C). Finally, we compared the
nomogram’s prediction accuracy to that of the TNM stage in
the TCGA (Figure 7D). The results illustrated that the

nomogram’s AUC values were greater than the TNM stage in
three cohorts.

Characteristics in clinicopathology and gene
mutation in GC

Univariate Cox regression analysis illustrated that risk-score and
stage were significantly associated with the prognosis of GC
(Figure 8A). Multivariate Cox regression analysis showed that
risk-score is an independent prognostic factor after adjusting for
other clinicopathologic factors (Figure 8B). We analyzed the gene
mutations to further understand the immunological nature in
different risk subgroups. We identified the top 20 genes with the
highest mutation rates in the high-risk subgroup (Figure 8C) and
low-risk subgroup (Figure 8D). The results showed that missense
mutation was the most common mutation type. The mutation rates
of TTN, TP53, and MUC16 were not only higher than 25% in both
groups, but are also the most common in both groups. Additionally,
we analyzed the relationship between the risk-score and tumor
mutational burden (TMB). The expression of TMB was
significantly higher in the low-risk subgroup than in the high-
risk subgroup (Figure 8E). Moreover, risk-score was correlated
with TMB in gene subtypes (r = −0.18, p < 0.05), as revealed in
Figure 8F. Finally, we found that high TMB was associated with
longer survival time, with the effect of higher TMB on prognosis
more obvious in the low-risk group. This may be related to the
immune cells in the tumor microenvironment (Figures 8G,H).

FIGURE 7
Construction of a nomogram to assess survival. (A) Nomogram for prcdicting the 1-, 3-, and 5-year OS of GC patients in TCGA cohort. (B) ROC
curves for predicting the I-, 3-, and 5-year ROC curves in TCGA. (C) Calibration curves of the nomogram for predicting of I-, 3-, and 5-year OS in the
TCGA. (D) The prediction accuracy of nomogram and the TNM stage in the TCGA.
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FIGURE 8
Characteristics in clinicopathology and gene mutation in GC. (A, B) The univariate and multivariate cox regression analysis in Risk-score subgroups.
(C, D) Significantly mutated genes in the mutated GC samples of the high and the low risk groups, respectively. Mutated genes (rows, top 20) are ordered
by mutation rate; samples (columns) are arranged to emphasize mutual exclusivity among mutations. The right shows mutation percentage, and the top
shows the overall number of mutations. The color-coding indicates themutation type. (E) The TMB of two different risk subgroups. (F) Relationships
between Risk-score and TMB. (G) The prognosis of GC in different Risk-score and TMB subgroup. (H) The prognosis of GC in different Risk-score
and TMB.

FIGURE 9
Drug sensitivity. (A–D) The relationship between different risk groups and the effectiveness of chemotherapy for treating GC in the TCGA cohort.
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Drug sensitivity

We attempted to discover the relationship between different risk
groups and the effectiveness of chemotherapy for treating GC in the
TCGA cohort. We elucidated that low risk was associated with a
lower half maximal inhibitory concentration (IC50) of chemo-
therapeutics such as Nutlin.3a (p < 0.05), whereas high risk was
associated with a lower IC50 in drugs such as Bexarotene, Imatinib,
and Bortezomib (p < 0.05). Therefore, Figures 9A–D revealed that
Risk-score acted as a potential predictor for chemo-sensitivity and
the detail can be found in Supplementary Figure S4.

Relationship of risk-score with immune
checkpoint inhibitors and immunotherapy
prediction

In our study, we found an inverse relationship between the
number of CD8+ T cells and the degree of risk in the model
(Supplementary Figure S5). In addition, we found that these two
genes and risk-score are highly related to most immune checkpoints,
such as CTLA4 and CD274 (PDL-1) (Figure 10A). As such, it is no
surprise that immune checkpoint inhibitors have achieved good
clinical results in recent years, even replacing and becoming the
main treatment in some malignant tumors.

In order to assess the potential efficacy of clinical
immunotherapy in different risk subgroups, we analyzed the
correlation between the risk-score and IPS in GC patients to
predict the response of ICIs. For IPS, the immune checkpoints
were CTLA-4, PD-1 and PD-L1. Therefore, their immune
checkpoints were utilized to evaluate the potential of ICI
treatment (Figures 10B–E). As a result, we found that the
immune response was significantly elevated in the low-risk
group, which means that the ICIs will illicit more

immunogenicity in the low-risk group. Collectively, these results
suggested that the low-risk group will benefit more from
immunotherapy due to a better immune response.

Discussion

GC is one of the human malignant tumors with the highest
incidence in the world, but because the early symptoms are not
obvious, most patients are diagnosed late stage (Nie et al., 2020), and
the recurrence rate in these later stages are high, with poor prognosis
and high rates of fatality (Galon and Bruni, 2020). In recent years,
due to the incredibly complex and heterogeneous tumor
microenvironment, more and more attention has been paid to
the changes of tumor-associated immune cells. Many reports
have pointed out that evading immune surveillance is one of the
bases for the occurrence and development of cancer (Griss et al.,
2019). Studies have concluded that the type and proportion of
immune cell infiltration are closely related to the clinical
outcome of patients (Zeng et al., 2019). IRGs participate in the
regulation of the immune system and play an important role in the
complex regulatory network of tumors. Thus, as our understanding
grew, immunotherapy has sprouted as a new treatment method, and
is now actively applied to a variety of tumors, with its efficacy
verified (Das et al., 2020).

Therefore, in this study, we first analyzed the differentially
expressed genes between gastric cancer samples and normal
tissues in the TCGA database, and found hundreds of immune-
related genes that may be meaningful. At the same time, we analyzed
the types of immune cells in GC and explained the close correlation
between them through CIBERSORT. Then, we selected the key
modules from among them throughWGCNA. Our study found that
MEblue is a key module of gastric cancer, which contains gene
groups related to the level of activated CD4 memory T Cell

FIGURE 10
Relationship of Risk-Score with Immune checkpoint inhibitors and Immunotherapy prediction. (A) The relationship between PROC, SEP,PINEI, Risk-
score and immune checkpoints. (B–E) The vioplot of the difference expression of Cf LA4 and PD- I between high- and low-risk groups.
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infiltration. Currently, it is known that CD4+ T cells have a variety of
ways to kill tumor cells, and memory T cells are a subset of CD4+

T cells. However, there are few studies on this kind of cells at present,
so exploring the function of activated CD4+ T cells has important
research significance. Studies have shown that CD4 memory T cells
are associated with better survival in patients with gastric cancer.
Such as, Activin-A can enhance the anti-tumor ability of the body by
preventing the depletion of CD4 T cells (Morianos et al., 2021). In
mice, IL11 can inhibit the anti-tumor effect mediated by CD4+

T cells (Huynh et al., 2021). Activated CD4 T cells can enhance
antigen reactivity through NOTCH signaling pathway (Wilkens
et al., 2022). GO and KEGG pathway enrichment analysis found
that many of the above genes are related to leukocyte chemotaxis
and neutrophil migration signal pathways, and these components
play an important role in tumormicroenvironment and affect tumor
occurrence and development. According to study, MMP-9 is mainly
secreted by neutrophils. By up-regulating the expression of MMP-9,
SETDB1 can promote the occurrence and metastasis of gastric
cancer (Shang et al., 2021). IL-17 can promote the proliferation
and migration of gastric cancer cells by targeting SLP1 (Xu et al.,
2020). CXCL5 can promote the metastasis of gastric cancer by
inducing epithelial-mesenchymal transformation and activating
neutrophils (Mao et al., 2020). Based on the regression analysis
of the above genes, we found that only two genes (PROC and
SERPINE1) had significant effects on OS in patients with gastric
cancer.

SERPINE1 is an important inhibitor of serine protease and plays
a major role in signal transduction, cell adhesion and cell migration
(Simone et al., 2014; Zhang Q. et al., 2020). Plasminogen activator
inhibitor-1 (PAI-1), the coding product of SERPINE1 gene, is a key
regulator of tissue plasminogen activator (tPA) and urokinase
plasminogen activator (uPA), and is a member of the
plasminogen activator system. As a secretory protein, increased
activity of PAI-1 increases the risk of metastasis in melanoma
(Hanekom et al., 2002). In patients with breast cancer, elevated
plasma PAI-1 level is a potential prognostic marker as well
(Palmirotta et al., 2009; Ferroni et al., 2014). In GC, LncRNA
NKX2-1-AS1 promotes tumor progression by up-regulating the
expression of SERPINE1. SERPINE1 is an effective biomarker
related to epithelial mesenchymal transformation of GC (Xu
et al., 2019). In addition, the expression of PAI-1 is abnormal in
ovarian cancer, glioma, renal clear cell carcinoma and other tissues,
and is related to the poor prognosis of patients (Liao et al., 2018;
Peng et al., 2019; Vachher et al., 2020; Ahluwalia et al., 2021; Ma
et al., 2021; Zhao et al., 2021). Furthermore, as a protein encoded by
the PROC gene, protein C is known to engage in hemostasis,
inflammation, and signal transduction, and it has a protective
effect on the endothelial barrier as well. In recent years, protein
C has been recognized for its importance in a multitude of diseases,
including sepsis, myocardial infarction, and cancer (Griffin et al.,
2015). For example, activated protein C cross-activates sphingosine-
1-phosphate receptor-1 (S1P1) in cancer thus leading to greater cell-
to-cell junction stability, thereby decreasing extravasation (Van Sluis
et al., 2009). In fact, addition of activated protein C in vitro decreases
endothelial adhesion and transmigration of melanoma cells
(Bezuhly et al., 2009). Other researches show that activated
PROC-PROCR-F2R axis can stimulate the MAPK pathway via
activation of epidermal growth factor receptor (EGFR) to

promote the progression of breast cancer (Gramling et al., 2010).
Additionally, activated protein C promotes anticoagulation of
cancer cell microenvironment and upregulates cancer cell
migration in ovarian cancer (Althawadi et al., 2015). However, at
present, there is not much research on PROC gene in gastric cancer,
so we predict that this gene may be associated with gastric cancer.

Our study found that age, risk-score and pathological stage were
significantly associated with the prognosis of gastric cancer. Gastric
cancer is an age-related disease because the overall survival outcome
of elderly cancer patients is poor (Nelen et al., 2018). In the latest
edition of AJCC, In et al. found that pathological stage was closely
related to the prognosis of gastric cancer (In et al., 2017). Therefore,
in order to better improve the accuracy of prognosis prediction, we
combined risk-score with age and pathological stage to construct a
line map to predict the OS of patients with gastric cancer. The results
show that the line chart has high accuracy in OS prediction and is
close to the ideal model after correction. And in the test of TCGA
data set, the prediction accuracy of line chart risk-score is better than
that of TMN stages. The results showed that risk-score was an
independent prognostic factor. Chemotherapy is one of the
important treatment methods for patients with gastric cancer,
which generally needs to be evaluated after several cycles of
treatment, so as to judge the efficacy of those chemotherapeutic
drugs. In the calculation, we found that there are great differences in
drug sensitivity among different risk groups, which may help
patients with gastric cancer to select sensitive drugs before
chemotherapy and reduce potential trial and error, potentially
prolonging survival time.

A large number of studies on various tumors have shown that
patients with high TMB tend to have a good survival rate (Cheng
et al., 2022). Similarly, our study found that higher TMB was found
in patients with low risk-score. The OS of patients with high TMB
was significantly longer than that of patients with low TMB. In some
literatures, MUC16 mutation is associated with better prognosis and
higher TMB in gastric cancer, while TTN mutation is associated
with immune checkpoint blockade in solid tumors (Li et al., 2018;
Yang et al., 2020). Although TP53 is one of the most common
mutant genes, it is not enough to correctly predict the prognosis of
patients (Li L. et al., 2020; Wang et al., 2022). Therefore, gastric
cancer patients with low risk-score benefit better from
immunotherapy. Our study found that risk-score is closely
related to many immune cells, such as macrophages, dendritic
cells, NK cells, B Cells, T cells and so on, and these cells play an
important role in the tumor microenvironment. For example,
CD80 and CD86 are markers of M1 macrophages, which can
inhibit tumor growth of gastric cancer (Xie et al., 2020). CD40 is
a marker of dendritic cells. Its main roles in anti-tumor immune
response are phagocytosis of dead tumor cells, capture and
presentation of tumor-associated antigens and activation of
various T cells, thus stimulating a series of immune responses to
kill tumor cells (Murphy and Murphy, 2022). CD48 is a marker of
NK cells. Inhibiting the function of NK cells can promote the growth
of gastric cancer cells (Guo et al., 2021). Therefore, the TME score
can reflect the prognosis of the tumor.

It has been reported that CD8+ T cells are a highly destructive
immune effector cell population in anti-tumor response. After
activation, they form CD8+ cytotoxic T cells, which circulate to
the tumor site to induce immune clearance (Farhood et al., 2019).
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Immune checkpoint blockade therapy uses immune checkpoint
blocking agents to relieve the inhibitory pressure on CD8+ T cells
and restore their sensitivity and killing ability to tumor cells (Darvin
et al., 2018). In our study, it was found that CD8+ T Cell infiltration
in the low-risk group was significantly higher than that in the high-
risk group and had a stronger killing effect on the tumor. To find out
which gastric cancer patients are sensitive to immunotherapy, we
investigated the sensitivity of two risk subgroups to ICI. In our study,
we used IPS to explore risk-score based on TME differences that may
reflect the different immune benefits of ICI therapy. IPS is mainly
associated with several immune checkpoints, including CTLA4, PD-
1 and PD-L1. Our study shows that the low-risk group has a higher
potential for ICI response. For clinical trials of immunotherapy, the
literature shows that pd-1 has anti-tumor activity and is safe for
patients with GC. It has been included in NCNN guidelines as an
important treatment for advanced gastric cancer (Ajani et al., 2022).
Consistent with our results, mortality was significantly lower in the
low-risk group (classified according to Risk-score score). Based on
the results of IPS, we found that risk-score can distinguish the
different outcomes of individuals receiving immunotherapy. Risk-
score as a predictive score is expected to provide a theoretical basis
for the selection of ICI treatment in clinical trials. This means that
further research can focus on the combination therapy of patients
with gastric cancer, and the predictive model may help to accelerate
the development of personalized cancer treatment.

In conclusion, our research shows that risk-score plays a very
important role in analyzing the clinicopathological features,
immune infiltration and clinical prognosis of patients with gastric
cancer. In addition, this study also revealed the role of risk-score in
predicting the prognosis, and provided a guide to immunotherapy
combined with chemotherapy in GC patients. However, the
interaction between these model genes and their biological
mechanisms needs to be further studied.
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