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Graves’ ophthalmopathy (GO) is an inflammatory autoimmune disease that affects
the eyes. It can significantly alter the quality of life in patients because of its
distinctive pathological appearance and the effect on vision. To date, the exact
pathological mechanism of GO has not been explicitly discovered. However,
several studies have associated autophagy with this disease. Autophagy is a
catabolic process that helps maintain homeostasis in all organisms by
protecting the cells and tissues from various endogenous and exogenous
stress factors. Based on our results, patients affected with GO have
comparatively elevated levels of autophagy, which critically affects the
pathological mechanism of the GO. In this review, we have summarized the
autophagy mechanism in the pathogenesis of GO.
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1 Introduction

Graves’ ophthalmopathy (GO) is the most common extrathyroidal manifestation in
Graves’ disease (GD) patients, and it is an autoimmune disease that causes inflammation and
damages the extraocular muscles and orbital adipose tissues (Bahn, 2010). Exophthalmos,
upper eyelid retraction, conjunctival edema, and periorbital fat are some of the typical
symptoms of GO. Most severe cases also present with corneal ulcers, perforation, and
compressive optic neuropathy (Bartalena et al., 2021). However, the overall pathological
mechanism is very complicated and not yet clearly established. T cells, which are stimulated
by antigens, migrate and multiply continuously during the initiation and progression of GO.
This process produces effector T cells, such as CD4+ helper T cells, CD8+ T cells, and
regulatory T cells (Treg cell) (Fang et al., 2018). Interleukin-2 (IL-2), interferon-γ (INF-γ),
and tumor necrosis factor (TNF) are all secreted primarily by type-1 helper T (Th1) cells
during the early stages of GO, thereby promoting the progression from acute to chronic
inflammation. The production of IL-4, IL-10, and auto-antibodies are all stimulated by type-
2 helper T (Th2) cells, which predominate in the later stages of GO (Aniszewski et al., 2000).
Research on the cytokines in GO indicates over-expression of Th1-like cytokines, including
IL-1β, TNF-α, INF-γ, and IL-6, which are macrophage-derived. (Hiromatsu et al., 2000;
Kumar and Bahn, 2003). Past studies have associated the primary pathological mechanism of
GO with inflammation (Jang et al., 2016), adipogenesis (Longo and Higgins, 2019; Schrijver
et al., 2019; Ko et al., 2021), and glycosaminoglycan (GAG) accumulation (Yoon et al., 2020).
It has been suggested orbital fibrocytes (OFs) are the primary effector cell in GO (Wang and
Smith, 2014). OFs contribute to orbital inflammation by proliferating and differentiating
into myofibroblasts and adipocytes, producing excessive adipogenic factors and GAGs, and
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engaging in active crosstalk with macrophages and monocytes
through chemokines and cytokines (Lehmann et al., 2008;
Kuriyan et al., 2013).

Very few studies have related it to autophagy, a catabolic
pathway that balances the degradation and synthesis of
intracellular substances in almost all organisms. Autophagy is
also associated with growth, development, and homeostasis at
both the cellular and organismal levels (Morgan-Bathke et al.,
2013; Fernández-Albarral et al., 2021). Under physiological
conditions, appropriate levels of autophagy can help maintain
cellular and organismal homeostasis. However, abnormal
conditions, such as the production and accumulation of large
amounts of inflammatory cytokines and excessive oxidative stress
can lead to either insufficient autophagy or aggressive autophagy,
which, in turn, can contribute to the pathogenesis of several different
diseases (Yu et al., 2018). Thus, autophagy is a double-edged sword,
with both positive and negative effects on the body. Autophagy is
essential for the degradation of dysfunctional organelles and
substances. However, autophagy can trigger programmed cell
death that is not apoptotic if activated in an unchecked fashion
(Mizushima and Levine, 2020).

In this review, we have focused on the aberrant role of autophagy
in the development of GO pathogenesis. Excessive orbital
inflammatory mediator, adipogenesis, and hydrophilic GAG
deposit (including hyaluronic acid; HA) have all been linked to
the pathological process of GO, as demonstrated in previous studies
(Zhang et al., 2009; Yoon et al., 2015; Bifulco and Ciaglia, 2016; Li
et al., 2018; Guo Y. et al., 2020; Li et al., 2021).

2 Overview of autophagy

Macroautophagy, chaperone-mediated autophagy, and
microautophagy are the three types of autophagy. Cargo delivery
into the lysosome (main autophagic organelle) can be classified into
several categories based on the approaches followed. Among them,
macroautophagy is the most dominant autophagy-regulation
mechanism responsible for both external and internal
environmental and physiological stimuli (Yang et al., 2019).
Various factors, such as hypoxia, nutritional deficiencies, or
infections, can induce autophagy. Therefore, cells need to
regulate the autophagy levels appropriately to maintain the tissue
and intracellular homeostasis. Autophagy participates in several
processes that are vital for cell survival, such as removing altered
organelles, eliminating viruses and bacteria, and preventing the
accumulation of abnormal proteins (Mizushima and Klionsky,
2007). Indeed, past studies have shown that deleting the
regulators of autophagy causes a significant accumulation of
damaged organelles and proteins and increases the level of
reactive oxygen species (ROS), which damage the various cellular
components (Hara et al., 2006; Komatsu et al., 2006). Moreover,
autophagy can affect the immune response by stimulating cytosolic
antigen presentations regulated by major histocompatibility
complex class II (MHC II) and compromising T and B cell
homeostasis (Harris et al., 2009). Lysosomes also directly engulf
the cytoplasmic materials due to microautophagy (Wang L. et al.,
2022), a chaperone-mediated mechanism characterized by
chaperone assistance in moving proteins, DNA, RNA, and other

substrates across the lysosomal membrane (Kaushik and Cuervo,
2018). In this review, we primarily focused on the process and
characteristics of macroautophagy.

2.1 Regulation of autophagy: Signaling
pathways

Autophagy is a cellular process that involves various signaling
pathways. Among these pathways, the mammalian target of
rapamycin (mTOR), AMP-activated protein kinase (AMPK),
phosphoinositide 3-kinase (PI3K)–protein kinase B (AKT),
nuclear factor erythroid 2-related factor 2/Kelch-like ECH-
associated protein 1 (NRF2/KEAP1), and endoplasmic reticulum
(ER) stress pathways all play critical roles in coordinating autophagy
(Figure 1). Autophagy can be activated by inhibiting mTOR
signaling, whereas enhancing mTOR activity impairs it. In this
regard, various growth factors and amino acids have been shown
to activate the mTOR signaling pathway, while AMPK and p53 have
been shown to inhibit it. Moreover, UNC-51–like kinase1 or
2(ULK1/2) phosphorylation is a downstream effector of activated
mTOR that inhibits autophagy. AMPK activates autophagy by
inhibiting mTORC1 signaling, as demonstrated by previous
studies (Kim et al., 2011; Holczer et al., 2019; Li and Chen,
2019). When the cells are subjected to physicochemical
irritations, NRF2/KEAP1 signaling is a crucial defense pathway
against oxidative stress (Baird and Yamamoto, 2020). Some
autophagy-deficient mice were found to have an abnormal
accumulation of p62, which, in turn, led to an abnormal
accumulation of NRF2 (Inami et al., 2011; Ichimura et al., 2013).
Furthermore, p62 could inhibit KEAP1-mediated ubiquitination of
NRF2 (Lau et al., 2010).

2.2 Pathological implications of autophagy

Autophagy is a fundamental process, and, like any other, it needs
to be monitored to ensure a healthy equilibrium. Devastating
pathologies in the body are triggered by disruptions in the
autophagic pathways. Neurodegenerative disorders such as
Alzheimer’s disease (Zhang et al., 2021), Parkinson’s disease
(Lizama and Chu, 2021), and Huntington’s disease (Croce and
Yamamoto, 2019), can all be triggered by impaired autophagy.
As an essential housekeeping mechanism for maintaining energy
homeostasis and cellular metabolisms, dysfunctional autophagy has
been demonstrated to play the key role in the pathogenesis of
cardiovascular diseases, including heart failure, atherosclerosis,
cardiomyopathies, and ischemia-reperfusion injury (Wu et al.,
2021). In several types of cancers, autophagy is crucial for
cellular survival. It inhibits apoptosis, which helps induce tumor
progression (Degenhardt et al., 2006; Cocco et al., 2020). Moreover,
the homeostatic operation in the lung tissues requires functional
autophagic reactions to maintain and ensure functional gas
exchange. Dysfunctional autophagy has been linked to chronic
obstructive pulmonary diseases (Yoshida et al., 2019) and
pulmonary fibrosis (Zhao et al., 2020). In addition, aberrant
autophagy has been linked to several eye diseases, such as
cataracts (Zhou et al., 2016), glaucoma (Porter et al., 2013), age-
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related macular degeneration (ARMD) (Wang et al., 2009), diabetic
retinopathy (DR) (Yao et al., 2014), and GO (Yoon et al., 2015). The
interpretation of the underlying mechanisms linked with autophagy
in ocular tissues and cells is of utmost significance and a crucial
target in the potential therapeutic strategy (Maiuri et al., 2007).

3 The autophagy in GO

The CD34+ CD40+ orbital fibroblasts (OFs) initiate the
pathogenesis of GO by activating helper T cells to recognize
thyrotropin receptor (TSHR) peptides. Using the thyrotropin
receptor antibody (TRAb), it forms a ligand for TSHR. This
autoimmune reaction then stimulates the secretion of pro-
inflammatory cytokines and increases GAG accumulation and
adipogenesis in the periorbital tissues (Bahn, 2015). OFs can also
express insulin-like growth factor I receptor (IGF-IR), with which
TSHR can form physical and functional complexes. They can
function synergistically to promote inflammation and activation
of TSHR signaling and elevate the accumulation of HA. The activity
of IGF-IR is an essential component in mediating the downstream
signaling of TSHR. The inhibition of IGF-IR activity can reduce
signaling initiated by either of the receptors. The induction of
specific gene expression in fibroblasts and OFs by TSH can be
attenuated with specific monoclonal antibodies to inhibit the activity
of IGF-IR (Smith and Janssen, 2019). In recent years, an anti-IGF-IR
antibody, teprotumumab, has been demonstrated to be efficient in

alleviating several manifestations of TAO (Smith et al., 2017).
Furthermore, the effects of the IGF-I/IGF-IR pathway on host
immunity, tissue remodeling, and inflammatory regulation
suggests its possible involvement in autoimmune diseases in
addition to TAO. This finding has stimulated research into
potential crossover components of the IGF-I pathway and other
autoimmune disorders (Suzuki et al., 2015; Tsushima et al., 2017).

The pathogenesis of GO has been linked to inflammation,
adipogenesis, and GAG accumulation, according to a few past
studies (Jang et al., 2018). However, some other studies suggest
that autophagy is only linked to GO. Notably, autophagy at an
appropriate level can withstand a wide range of stresses, both
endogenous and exogenous. For instance, the body can defend
itself from infection, aging, hypoxia, and low energy by
increasing the autophagy levels. However, the condition worsens
and causes damage due to the extremely high level of autophagy
(Jiang et al., 2019).

It has been shown that OF, an effector cell, is indispensable in the
pathogenesis of GO, and that it can participate actively in the
remodeling of orbital tissues (Meyer zu Hörste et al., 2011).
Orbital tissue modeling results from chronic fibrosis in the
dormant stage of GO. At this stage, HA deposition and
adipogenesis are possible. Thus, to slow the development of GO,
inflammation, adipose tissue formation, and HA deposition must all
be reduced, thereby making autophagy inhibition an essential
therapeutic strategy (Potgieser et al., 2015). Inflammatory activity
and oxidative stress can increase autophagy, which may ensure the

FIGURE 1
Major regulatory signaling pathways of autophagy. Autophagy is a process consisting of initiation, elongation,maturation and degradation steps. The
PI3K-AKT pathway is the upstream activator of mTORC1, whereas AMPK initiates autophagy by inhibiting the mTORC1 activity or directly activating the
ULK1/2 complex. mTORC1 activation inhibits autophagy by inhibiting the ULK1/2 complex, which is necessary for the induction of autophagy. When
activating the ULK1/2 complex, it can recruit Beclin 1/III class PI3K complexes to the site of autophagosome formation. LC3-II exerts an essential role
in the formation of autophagosome through binding to the autophagosomal membrane. P62 can serve as a connection between LC3 and ubiquitinated
proteins. Autophagosome fuses with lysosome to form autolysosome. Eventually, autolysosome is degraded by lysosomal enzymes. We have highlighted
in red the autophagic steps linked to inflammation, adipogenesis and HA accumulation in GO that have been discussed in this review. mTORC1,
Rapamycin complex 1; ER, endoplasmic reticulum; rapamycin (mTOR) kinase; AMPK, AMP-dependent protein kinase; PI3K-AKT pathway,
phosphoinositide 3-kinase (PI3K)–protein kinase B (AKT) pathway; ULK1/2 complex, UNC-51–like kinase1 or 2; LC3, light chain 3 protein; ATG, autophagy
related genes; CQ, Chloroquine; HCQ, hydroxychloroquine.

Frontiers in Cell and Developmental Biology frontiersin.org03

Chen et al. 10.3389/fcell.2023.1158279

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1158279


survival of effector cells and contribute to GO pathogenesis. They
can be triggered into an autoimmune pathological process by the
primary pathogenic factors, as depicted in Figure 2.

3.1 Autophagy on inflammation in GO

OFs fromGO patients can secrete inflammatory factors. There is
a marked increase in the secretion level of these factors in GO
patients when compared to those without GO. The inflammatory
response of OFs may be exacerbated, and Th17 cells may be
mobilized to further exacerbate GO as a result of their
interactions with OFs (Fang et al., 2018). Thus, inflammatory
processes are critically important in the pathogenesis of GO.
Autophagy and inflammation have been linked by numerous
researchers. The early stage of GO is marked by the interactions
of infiltrating T cells with OFs, which causes increased cytokines and
T cell activating factors (Lehmann et al., 2008). Suppressing orbital
inflammation is a critical treatment in GO. Autophagy plays an
important regulatory role through crosstalk with immune and
inflammatory pathways, and aberrant autophagy underlies the
pathogenesis of several inflammatory disorders (Ban and Tomer,
2003). Autophagy is essential for maintaining cellular homeostasis.
The eye is an immunologically privileged organ (Niederkorn, 2006),

and autophagy has been proved to be critical for the maintenance of
eye immune privileges. Deletion of ATG5 in macrophages can cause
uveitis, which, like GO, is also an autoimmune ocular disease.
Inhibiting autophagy in macrophage can activate inflammasome-
mediated IL-1β secretions in uveitis, and inhibitions of
Caspase1 and Caspase4 completely reverse the disease phenotype
(Santeford et al., 2016). Jaggi et al. (Jaggi et al., 2022) proved that
blocking autophagy in M1 macrophage enhanced herpes simplex
virus 1 replications in the eye, suggesting that modulating autophagy
within macrophage may serve as a therapeutic pathway for ocular
infections and inflammations. Macrophages are important in the
intrinsic immunity of the eyes. Furthermore, macrophages are also
indispensable in the pathogenesis of GO, producing a large number
of pro-inflammatory factors, including IL-1β, TNF-α, and INF-
γ(Kumar and Bahn, 2003). Interestingly, a study on the
susceptibility of ATG5 variants to GD showed that the variant
rs6937876 is located in ATG5 region and is closely related to
susceptibility to GO (Wang W. et al., 2022). Li et al. (Li et al.,
2018) demonstrated that IL-1β increased the mRNA levels of the
inflammatory cytokines IL-6, IL-8, TNF-α, and MCP-1 in cultured
OFs. The IL-1β-induced inflammation was concomitant with
elevated autophagic activity, as manifested by elevated
expressions of autophagy-associated proteins Beclin-1 and ATG-5
and conversions of LC3-I to LC3-II. Pre-treatment with the

FIGURE 2
Autophagy regulation in GO pathogenesis. The underlying mechanisms of GO has been linked to inflammation, adipogenesis, and GAG
accumulation in OFs, and finally lead to enlarged extraocular muscles with orbital fat expansion. Elevated secretion of inflammatory factors such as TNF-
α, IL-1β, and INF-γ is associated with the induction of autophagy in OFs of GO. Progression of OFs adipogenesis can be mitigated by inhibition of
autophagy. Furthermore, lysosomal inhibitors can reduce GAG accumulation through blocking the autophagic flux of OFs in GO. TNF-α, tumor
necrosis factor-alpha; IL-1β, interleukin-1 beta; INF-γ, interferon-gamma.
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autophagic inhibitors 3-MA and bafilomycin A1, or silencing of the
Beclin-1 and ATG-5, prevented IL-1β-induced inflammation in
OFs, whereas pre-treatment with the autophagy activator
rapamycin showed the opposite effect. These data suggested that
autophagy was involved in GO and lead to orbital inflammation. In
another study, Li et al. (Li et al., 2021) examined the effect of IL-13-
induced autophagy on inflammation, ROS production and fibrosis,
OFs derived from GO patients were treated with or without IL-13
and with or without the autophagy inhibitors 3-MA. The result
showed that IL-13 treatment significantly upregulated TNF-α, IL-1β,
and IL-6, but these effects could be partly reverted by 3-MA,
suggesting that inflammation was correlated with the induction
of autophagy in OFs of GO. Neferine is an alkaloid extracted from
Nelumbo nucifera. It suppresses autophagy-mediated inflammation
in OFs of GO, which may be moderated by the upregulation of Nrf2.
It also elevates the LC3-II/LC3-I levels and reduces the p62 levels in
OFs. The anti-inflammatory effect of neferine is correlated with the
enhanced expression of Nrf2. Therefore, the proper control of
autophagy has been associated with the attenuation of the orbital
inflammation and alleviation in the progression of the GO, which
makes this mechanism one of the potent therapeutic processes (Li
et al., 2021). Moreover, it was found that neferine suppress
autophagy through activating Nrf2 and PI3K/Akt/mTOR
pathway in muscle cells (Baskaran et al., 2016). More evidence
andmechanistic studies on the relationships between autophagy and
inflammatory response in GO are still needed.

3.2 Autophagy on adipogenesis in GO

The level of proptosis in GO patients is largely determined by
adipogenesis, which is an essential factor in its pathological
process, as revealed by various studies. Nishida et al. (Nishida
et al., 2002) found that the volume of the orbital tissue in GO
patients is markedly larger than that in the non-GO ones. This
study revealed a significant increase in the adipose tissues than that
of the extraocular muscles. It has been hypothesized that adipose
tissue’s cytokine-secreting capabilities contribute to the
pathogenesis of GO (Ehrhart-Bornstein et al., 2003; Mimura
et al., 2003; Park et al., 2020). Thus, it is evident that
adipogenesis and OFs are critical for GO pathogenesis. It has
been hypothesized that autoimmune activity leads to OF
dysfunction (Bahn, 2003; Prabhakar et al., 2003) and that a
subgroup of OFs can differentiate into mature adipocytes
(Sorisky et al., 1996). GO patients have orbital muscle
enlargement and fat expansion due to the overexpression of
TSHR in mature adipocytes. Important factors in adipogenesis
include growth arrest and the induction of transcriptional
regulators; peroxisome proliferator-activated receptors γ (PPAR-
γ) are also some of the pivotal factors (Rosen and MacDougald,
2006). Studies have demonstrated that autophagy is necessary for
adipogenesis and can be inhibited by deleting the ATG7 gene to
exert an anti-obesity action (Zhang et al., 2009). It has been
observed that orbital adipogenesis could be activated by PPAR-
γ agonists, which is accompanied by the TSHR upregulation in
preadipocytes in vitro (Smith et al., 2002). In this regard, Yoon
et al. (Yoon et al., 2015) observed that the autophagy levels were
elevated in GO patients compared to that in the non-GO

counterparts, indicating the involvement of autophagy in the
pathogenesis of GO. This study demonstrated that
inflammatory factors could induce autophagy. Moreover, it was
shown that autophagosomes accumulated with lipid droplets in the
GO tissues, thereby linking it with its pathogenesis. Furthermore,
the treatment of Bafilomycin A1 and the knockdown of
ATG5 expression via shRNA resulted in the inhibition of
adipogenesis. The treatment of statins in such patients
alleviated the progression of orbital fibroblast differentiation
and adipogenesis by balancing the apoptosis and autophagy
processes (Bifulco and Ciaglia, 2016). According to Li et al.,
icariin can inhibit the differentiation of preadipocytes into
mature adipocytes by restoring the increases in LC3-II/LC3-I
ratio; this effect is mediated by the inhibition of the AMPK/
mTOR pathway (Li et al., 2017). Similarly, neferine was shown
to inhibit autophagy-induced adipogenesis in OFs of GO, along
with an upregulation of Nrf2 (Li et al., 2021). A previous study
demonstrated that p62 inhibits adipocyte differentiation at early
stages by blocking the basal ERK activity (Rodriguez et al., 2006).

3.3 Autophagy on GAG accumulation in GO

GAG accumulation is a pivotal process among all factors that
lead to GO proptosis (Łacheta et al., 2019), and HA is the primary
component of GAG (Guo J. Y. et al., 2020). The extraocular muscles
of GO patients tend to swell (Zhang and Zhu, 2022) and pathological
examination revealed that the swollen muscles are intricately
subdivided by multiple amorphous particles primarily composed
of GAG and collagen fibers (Smith et al., 1989). Additionally, due to
its inherent hydrophilicity, the orbital fat and connective tissue can
absorb water and result in edema. Chloroquine (CQ) and its
derivative hydroxychloroquine (HCQ) are lysosomal inhibitors
that prevent the degradation of autophagic substrates by blocking
lysosomal acidification (Amaravadi et al., 2007). Both CQ and HCQ
were found to decrease HA production by impairing the autophagic
flux of GO-OF with or without IL-1 stimulation (Guo Y. et al., 2020).
Deeper effects of autophagy on HA accumulation in GO remain to
be investigated.

4 Autophagy in other eye diseases

Past studies have demonstrated that autophagy can play a crucial
role in preserving cellular homezostasis in most cases (Klionsky
et al., 2021) and that it is associated with the pathogenesis of other
eye diseases (Panigrahi et al., 2019; Ishikawa et al., 2021; Kumar and
Jurkunas, 2021; Shim et al., 2021; Villarejo-Zori et al., 2021; Feng
et al., 2022; Yan et al., 2022). Autophagy is intricately involved in the
development of ocular diseases such as glaucoma, cataract, DR, and
ARMD. Trabecular meshwork (TM) cells regulate aqueous outflow
and intraocular pressure (IOP). To protect themselves from
oxidative stress and maintain intracellular homeostasis, TM cells
activate autophagy, a process that removes damaged proteins and
organelles. However, when autophagy is insufficient, non-
degradable substances accumulate in lysosomes and reduce their
activity, thereby decreasing autophagic flux and glaucoma
progressions (Porter et al., 2013). Shim et al. reported that
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primary cilia (PC) can modulate autophagy through AKT and
SMAD2/3 pathways in trabecular meshwork cells. When PC is
absent, the compensatory responses to high IOP is impaired,
which increases the LC3-II protein levels in response to increased
pressures challenge (Shim et al., 2021). This finding implies that PC-
mediated autophagy can play a role in modulating IOP homeostasis.
Under normal conditions, the autophagic activity can contribute to
the maintenance of normal lens function and transparency (Costello
et al., 2013). However, when the elimination of organelles in the lens
fiber cytoplasm is disturbed, ROS increases and homeostasis within
the lens is disrupted, which decreases lens transparency and results
in cataract development (Zhou et al., 2016). TBC1 domain family
member 20 (TBC1D20) is an important factor regulating
autophagosome formation. It alters the autophagosome
expression, resulting in the accumulation of autophagic material
and pathological cataract development in mouse lenses (Sidjanin
et al., 2016). In addition, the knocking out of Atg5 mice also reduced
transparency in the cortical region of the lenses (Morishita et al.,
2013). These findings indicated that autophagy regulates
intracellular homeostasis, preserves cell integrity, and maintains
the physical properties of lens tissues.

Autophagy normally acts as a self-defense system against
damage to the retinal pigment epithelium (RPE) by removing
damaged materials and organelles. However, excessive metabolic
stress leads to dysfunctional autophagy (Volpe et al., 2018). Cell
death (through apoptosis, necrosis, and autophagy) can be induced
by reactive oxygen species (ROS) and inflammatory cytokines (ILs)
secreted in response to hyperglycemia (Volpe et al., 2018). As a
result, retinal impairment is associated with autophagy activity in
diabetic patients (Adornetto et al., 2021). In fact, the onset and
development of ARMD has been attributed to the dysfunction of
autophagy of RPE cells. Past studies have demonstrated two
different ARMD mouse models (the knockout of Sod2 and
APOE4-HFC); the autophagy elevated in the early stages and
declined in the later ARMD stages (Mitter et al., 2014). In
addition, the loss of LAMP2 (lysosomal associated membrane
protein 2) expression in RPE cells is a typical step involved in
the pathogenesis of dry ARMD in humans. The knocking out of
Lamp2 in mice led to accelerated aging and the development of
ARMD-like diseases. This observation can be attributed to an
increase in the formation of basal layer deposits in the retina
(Notomi et al., 2019).

5 Conclusion

We reviewed the current understanding of the role of
autophagy in the onset and development of GO. Orbital tissue
homeostasis, development, and cellular survival are all reliant on
autophagy (Mizushima et al., 2008). Both excessive or insufficient
autophagy can induce the pathogenesis of GO. In most cases,
autophagy is responsible for maintaining homeostasis by

regulating metabolism and recycling the cellular components
(Mizushima et al., 2008). Keeping a balance between defective
and excessive autophagy is therefore essential for the critical
pathogenesis in GO, as abnormal autophagy can lead to orbital
inflammation, adipogenesis, and GAG accumulation.
Nevertheless, further work is required to develop a holistic
comprehension of autophagy. Several signaling pathways have
been demonstrated to regulate autophagy, such as mTOR,
AMPK, and ER stress signaling pathways. Thus, to establish
better therapeutic targets for GO, we need to investigate the
mechanisms that regulate autophagy. Maintaining ocular
homeostasis is crucial, and autophagy modifies several
pathological processes associated with GO. As multiple factors
participate in autophagy regulation, its complete mechanism
remain unknown. Potential therapeutic strategies for GO can
thus be established with the help of future research into the
interplay between autophagy and the pathogenesis of GO in
inflammatory responses, adipogenesis, and GAG accumulation.
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