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Introduction: Reliable biomarkers are in need to predict the prognosis of
hepatocellular carcinoma (HCC). Whilst recent evidence has established the critical
role of copper homeostasis in tumor growth and progression, no previous studies have
dealtwith the copper-relatedgenes (CRGs) signaturewithprognostic potential inHCC.

Methods: To develop and validate a CRGs prognostic signature for HCC, we
retrospectively included 353 and 142 patients as the development and validation
cohort, respectively. Copper-related Prognostic Signature (Copper-PSHC) was
developed using differentially expressed CRGs with prognostic value. The hazard
ratio (HR) and the area under the time-dependent receiver operating characteristic
curve (AUC) during 3-year follow-up were utilized to evaluate the performance.
Additionally, the Copper-PSHC was combined with age, sex, and cancer stage to
construct a Copper-clinical-related Prognostic Signature (Copper-CPSHC), by
multivariate Cox regression. We further explored the underlying mechanism of
Copper-PSHC by analyzing the somatic mutation, functional enrichment, and
tumor microenvironment. Potential drugs for the high-risk group were screened.

Results: TheCopper-PSHCwas constructedwith nineCRGs. Patients in the high-risk
group demonstrated a significantly reduced overall survival (OS) (adjusted HR, 2.65
[95% CI, 1.83–3.84] and 3.30, [95% CI, 1.27–8.60] in the development and validation
cohort, respectively). The Copper-PSHC achieved a 3-year AUC of 0.74 [95% CI,
0.67–0.82] and 0.71 [95% CI, 0.56–0.86] for OS in the development and validation
cohort, respectively. Copper-CPSHC yield a 3-year AUC of 0.73 [95% CI, 0.66–0.80]
and 0.72 [95% CI, 0.56–0.87] for OS in the development and validation cohort,
respectively. Higher tumor mutation burden, downregulated metabolic processes,
hypoxia status and infiltrated stromacellswere found for thehigh-risk group. Six small
molecular drugs were screened for the treatment of the high-risk group.

Conclusion: Copper-PSHC services as a promising tool to identify HCCwith poor
prognosis and to improve disease outcomes by providing potential clinical
decision support in treatment.

OPEN ACCESS

EDITED BY

Lin-Lin Bu,
Wuhan University, China

REVIEWED BY

Zhi-Ping Liu,
Shandong University, China
Antonio Giovanni Solimando,
University of Bari Aldo Moro, Italy
Antonella Argentiero,
National Cancer Institute Foundation
(IRCCS), Italy

*CORRESPONDENCE

Gang Ren,
rengang@xinhuamed.com.cn

Yufei Wang,
yufei8828@gmail.com

Fang Guo,
guof0818@hku.hk

†These authors have contributed equally
to this work

RECEIVED 03 February 2023
ACCEPTED 03 July 2023
PUBLISHED 18 July 2023

CITATION

Shi H, Huang J, Wang X, Li R, Shen Y,
Jiang B, Ran J, Cai R, Guo F, Wang Y and
Ren G (2023), Development and
validation of a copper-related gene
prognostic signature in
hepatocellular carcinoma.
Front. Cell Dev. Biol. 11:1157841.
doi: 10.3389/fcell.2023.1157841

COPYRIGHT

© 2023 Shi, Huang, Wang, Li, Shen, Jiang,
Ran, Cai, Guo, Wang and Ren. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 18 July 2023
DOI 10.3389/fcell.2023.1157841

https://www.frontiersin.org/articles/10.3389/fcell.2023.1157841/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1157841/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1157841/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1157841/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1157841&domain=pdf&date_stamp=2023-07-18
mailto:rengang@xinhuamed.com.cn
mailto:rengang@xinhuamed.com.cn
mailto:yufei8828@gmail.com
mailto:yufei8828@gmail.com
mailto:guof0818@hku.hk
mailto:guof0818@hku.hk
https://doi.org/10.3389/fcell.2023.1157841
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1157841


KEYWORDS

liver cancer, cuproptosis, hepatocellular carcinoma, copper, gene

Introduction

Liver cancer is the second leading cause of cancer-related death and
the seventh most common cancer worldwide (Sung et al., 2021).
Hepatocellular carcinoma (HCC) is unequivocally the most
dominant type of liver cancer, accounting for 90% of all cases
(Llovet et al., 2021). The disease burden of HCC has been rising,
with over 1 million new cases per year being estimated during the next
decade globally (Llovet et al., 2018). Despite recent advances in the
clinical management of HCC including both local and systemic
therapies, there remain large and growing unmet medical needs
(Villanueva, 2019). Due to occult onset and limited treatment
efficacy, HCC is generally subject to poor prognosis (Golabi et al.,
2017), with the 5-year survival rate as low as 18% in the United States
(Jemal et al., 2017). The conventional clinical decisions for HCC
treatment depend substantially on the tumor stage employing the
Barcelona Clinic Liver Cancer (BCLC) staging system (EASL
Clinical Practice Guidelines, 2018) and Tumor Node Metastasis
(TNM) staging system. However, these staging systems, which take
primarily tumor size andmetastasis into account, have failed to benefit a
considerable proportion of patients, owing to their insensitivity to the
molecular features in HCC (Yang et al., 2019). Thus, it is crucial to
formulate a more precise and Supplementary Model to identify the
segments of HCCpatients who are at high risk of unfavorable prognosis
necessitating additional treatment or targeted therapy (Solimando et al.,
2022), so as to improve the survival rate and terminal life quality of
patients with better clinical decision making. With the insight into the
biology of HCCupdated, several biomarkers and gene expression-based
signatures have been proposed (Mann et al., 2007; vanMalenstein et al.,
2011;Wu et al., 2020; Dai et al., 2021); yet, they were rarely incorporated
into clinical practice due to less-than-satisfactory performance and
insufficient validation (Liu et al., 2019), which warrants a high demand
for novel and robust prognostic models.

Elevated levels of copper have been previously observed in the
malignant neoplasms of breast, lung, and gastrointestinal tract (Jin et al.,
2011; Adeoti et al., 2015; Stepien et al., 2017), indicating an essential role
of copper in the genesis of carcinoma. Specifically, increased cellular
copper concentrations might contribute to cancer progression by
enhancing blood vessel formation which is critical for tumor
initiation, growth and metastasis (Blockhuys et al., 2017). With the
concept of “Cuproplasia” (i.e., copper-dependent cell growth and
proliferation) being proposed, the diverse mechanisms of copper
sensing involved in the cancer have been further unveiled (Ishida
et al., 2013). Meanwhile, cuproptosis, a newly proposed form of cell
death triggered by copper overloads (Tsvetkov et al., 2022), was found to
be closely linked to cancer such as clear cell renal cell carcinoma (Bian
et al., 2022). Notably, as the central regulatory organ of copper
homeostasis, the liver is particularly susceptible to copper-related
carcinogenesis (Kim et al., 2008). Patients with Wilson’s disease,
characterized by a progressively increased copper load in the liver,
are more likely to develop liver cancer than the general population
(Bandmann et al., 2015). This finding indicates that elevated
intracellular copper levels would impair the liver physiological
functions and increase the risk of developing HCC (McGlynn et al.,
2021). Additionally, serum copper concentrations were demonstrated

to be correlated with the BCLC stage (Tamai et al., 2020). The
alterations in copper transporter genes, such as ATP7A, ATP7B,
SLC31A1, and SLC31A2, were also found to be associated with poor
prognosis in HCC patients (Davis et al., 2020). Those findings
collectively highlight an important role of copper in the HCC,
suggesting that copper-related biomarkers might provide valuable
information for the treatment and prognosis of HCC.

Copper-related genes (CRGs) which regulate copper
metabolisms including copper homeostasis, cuproptosis and
copper binding (Ge et al., 2022) serve as a valid channel for us
to examine the copper-HCC link. Hence, in this study, we used
publicly available gene dataset to develop a prognostic stratification
model, Copper-related Prognostic Signature (Copper-PSHC), for
HCC patients based on CRGs. We then incorporated Copper-PSHC
with clinical factors to establish an integrative prognostic model for
pragmatic application. Beyond that, we also explored the potential
underlying mechanism of Copper-PSHC.

Materials and method

Study design and patients

To construct a CRG-based prognostic signature (i.e., Copper-
PSHC), we retrospectively analyzed the RNA sequencing data from
two public HCC cohorts. The overall study design was depicted in
Figure 1. HCC patients from The Cancer Genome Atlas (TCGA) liver
and intrahepatic carcinoma dataset were utilized as the development
cohort (Grossman et al., 2016) and those from Liver Cancer—RIKEN,
JP (LIRI-JP) dataset were adopted as an independent validation cohort
(The International Cancer GenomeConsortiumData Portal, 2019).We
excluded patients who had received systemic pharmaceutical therapy or
radiotherapy prior to sample collection since such treatment may
influence gene expression (Nakamura et al., 2013). Similarly, patients
with multiple samples were also excluded to minimize the bias from
tumor heterogeneity (Pe’er et al., 2021). Totally, we included
495 patients (351 men [70.9%], 304 aged ≥60 years [86.1%] and
355 at the cancer stage I/II [71.7%]), with 353 in the development
cohort and 142 in the independent validation cohort (Supplementary
Figure S1). Variables with less than 20% missing observations were
imputed using multiple imputations by Chained Equations (White
et al., 2011). Characteristics of participants following imputation were
displayed in Supplementary Table S1. Details of case identification and
imputation can be found in the Supplementary Method S1. The study
was exempted from ethical review due to its use of de-identified,
publicly available data.

Construction of the Copper-PSHC and
Copper-CPSHC

In accordance with the previous literature, ninety-six genes
relevant to copper homeostasis, cuproptosis, and copper binding
were screened (Supplementary Table S2) to construct the Copper-
related Prognostic Signature (Copper-PSHC). First, the
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differentially expressed genes (DEGs) between tumor and adjacent
non-tumor tissues with a false discovery rate (FDR) < 0.05 were
identified in the development cohort. Then, univariable Cox analysis
of overall survival (OS) was performed, with p < 0.05 chosen as the
significance threshold, to determine the DEGs having prognostic

value. Those prognostic DEGs measured in both cohorts were
included to build the Copper-PSHC. Thereafter, we used the
String Interaction Network to demonstrate the association
between these genes (Szklarczyk et al., 2021) and estimated the
correlation of gene expression. To minimize the risk of overfitting, a

FIGURE 1
Flowchart of this study.
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LASSO-Cox regression was applied to select the most contributing
prognostic genes and to construct Copper-PSHC (Engebretsen and
Bohlin, 2019). To calculate the risk score of each patient in the
development and validation cohort, the normalized expression level
of each gene and the corresponding regression coefficients generated
from the development cohort were used. Then, patients were
stratified into low-risk and high-risk groups based on the median
risk score determined by the development cohort. Details of gene
screening and Copper-PSHC construction can be found in
Supplementary Method S2.

We further applied multivariable Cox regression, which integrated
age, sex, cancer stage and Copper-PSHC risk score, to construct a
composite prognostic model, Copper-CPSHC, in the development
cohort. Age, sex, and cancer stage were treated as continuous
variables. We also presented a nomogram of Copper-CPSHC to
facilitate its use in clinical settings. The optimal cut-off value for
classifying the patients into low- or high-risk groups was determined
using a time-dependent ROC curve at 3 years of follow-up by Youden
index (Fluss et al., 2005) in the development cohort. Details of Copper-
CPSHC construction can be found in Supplementary Method S2.

Validation of the Copper-PSHC and Copper-
CPSHC

The primary endpoint was overall survival (OS), and the
secondary endpoint was disease-free survival (DFS) which was
not evaluated in the validation cohort owing to a lack of
information on tumor recurrence. Proportional hazard
assumption was not violated (Supplementary Table S3). The
prognosis value of Copper-PSHC was first assessed as binary
variables (high vs. low risk) in both cohorts by the univariable
Cox proportional hazard model and represented with the Kaplan-
Meier curve. Restricted mean survival time (RMST) was estimated
for the high- and low-risk groups to quantify the life expectancy at
3 years of follow-up, while the difference between the two risk
groups was determined by their disparity. Stratified analyses by
age, sex, cancer stage were conducted for both cohorts, and the
hazard ratio (HR) was merged using a fixed model. Then, we
combined Copper-PSHC with age, sex and cancer stage in
multivariable Cox proportional hazard regression to justify the
prognostic value of Copper-PSHC. Adjusted HR (controlling for
age, sex and cancer stage) was used to assess the performance of
Copper-PSHC as a binary variable.We additionally performed time-
dependent ROC analysis for OS and DFS to evaluate the predictive
power of the model over time. The performance of Copper-PSHC
continuous risk score was assessed by the area under the curve
(AUC) of the time-dependent ROC curve at 3 years of follow-up.
The concordance index (c-index) was also estimated to quantify the
prognostic accuracy of the Copper-PSHC. Details of Copper-PSHC
validation can be found in Supplementary Method S3.

Similarly, we performed univariable analysis for Copper-
CPSHC using Kaplan-Meier curve and compared the RMSTs of
two risk groups. The performance of Copper-CPSHC was also
evaluated by HR (in binary scenario) and AUC of time-
dependent ROC curve at 3 years of follow-up (in continuous
form). The c-index was calculated. Additionally, calibration
curves were depicted to characterize the discrimination of

Copper-CPSHC. Decision curve analysis (DCA) was applied to
measure the net benefits, which was compared with tumor stage
and the clinical model. Details of Copper-CPSHC validation can be
found in Supplementary Method S3.

Annotation of Copper-PSHC

Somatic mutation analysis
In an attempt to explore the somatic mutations in high- and low-

risk groups determined by Copper-PSHC in the development
cohort, gene mutation data (available at cBioprotal, in “.maf”
format) (Cerami et al., 2012) were analyzed. The 20 most
commonly mutated genes were listed for each risk group and
measured as frequency. Meanwhile, the total mutation frequency
and tumor mutation burden (TMB) were also estimated. The
waterfall plots were depicted to manifest the mutation landscape
for the high- and low-risk groups by the “maftool” R package
(Mayakonda et al., 2018).

Functional enrichment analysis
We performed the functional enrichment analysis in both the

development and validation cohorts. Biological function and
pathways regarding Copper-PSHC were analyzed based on Gene
Ontology (GO) (The Gene Ontology Consortium, 2019) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa et al., 2021) using the DEGs between high- and low-risk
groups. Further, Gene Set Enrichment Analysis (GSEA) was conducted
to determine the upregulated and downregulated cellular pathways in
high-risk group compared with low-risk group, with an FDR <0.01 as
the screening criteria (Kos et al., 2021). The function enrichment
analysis was conducted by the “clusterProfiler” R package (Yu et al.,
2012). We also estimated the HCC hypoxia score proposed by Hu et al.
(2020) (Supplementary Method S4.1) for two risk groups.

Tumor microenvironment analysis
The correlation between Copper-PSHC and the tumor

microenvironment (TME), which is comprised primarily of immune
cells and stromal cells, was investigated in both the development and
validation cohorts.We first applied ESTIMATE (Yoshihara et al., 2013)
algorithm to depict the presence of immune cells, stromal cells, and
tumor purity in two risk groups. Then, we adopted CIBERSORT
(Newman et al., 2015), ssGESA (Barbie et al., 2009) and xCell (Aran
et al., 2017) for the comparison of TME cells infiltration in two groups
(Supplementary Method S4.2). Moreover, we also analyzed the
expression of multiple cell markers related to immune checkpoint
blockade (ICB) and exhausted T-cells (Kos et al., 2021) between
high- and low-risk groups. These markers could represent the cell
progressively losing function due to long-term exposure to persistent
antigens or chronic inflammation (Wherry and Kurachi, 2015).

Exploration of potential therapy for HCC
We explored potential therapy for HCC patients in different risk

groups via the CLUE (Subramanian et al., 2017) based on the DEGs
between the high- and low-risk groups (Lamb et al., 2006). CLUE was
developed based on the concept of CMap (connectivity map), where
genes, drugs and disease states are connected. Hence, the potential drug
to reverse the current disease status for the high-risk group can be
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FIGURE 2
Performance of Copper-PSHC. (A) The distribution of Copper-PSHC risk score, survival time and the expression of each gene in Copper-PSCH in
the development and validation cohort. (B) Kaplan-Meier survival curves showing the difference of overall survival (OS) and disease-free survival (DFS)
between high- and low-risk groups in the development cohort. (C) Kaplan-Meier survival curves showing the difference of OS between high- and low-
risk groups in the validation cohort. (D) Time-dependent ROC curves of 1-year, 2-year and 3-year OS and DFS for Copper-PSHC in the development
cohort. (E) Time-dependent ROC curves and AUC in 1-year, 2-year and 3-year OS for Copper-PSHC in the validation cohort.

Frontiers in Cell and Developmental Biology frontiersin.org05

Shi et al. 10.3389/fcell.2023.1157841

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1157841


identified by DEGs. See Supplementary Method S4.3 for detail. The
potential drugs were selected with the criteria of enrichment
score < −0.60 with p < 0.005 as the significance level (Yue et al., 2022).

Statistical analysis
All statistical analyses were carried out using R software (version

4.1.0). To compare the difference in proportions, Chi-square test
was implemented. Student’s t-test was used for the comparison of
continuous variables between two groups when the assumption of
normal distribution was met; otherwise, its non-parametric
counterpart Mann-Whitney U test was adopted. The correlation
between gene expressions was examined by Spearman’s correlation
coefficient. RMST was estimated by the “survRM2” package
(survRM2, 2022) and c-index was calculated by the “survminer”
package. A two-tailed p < 0.05 was deemed as statistically significant,
unless otherwise specified.

Results

Construction of the Copper-PSHC

A total of 59 CRGs selected from 96 CRGs in previous literature
were screened as DEGs between tumor and adjacent non-tumor
tissues. By assessing the association of 59 DEGs with OS in the
development cohort, 19DEGSwith prognostic value were determined
as candidate genes (All p < 0.05, Supplementary Figures S2A–C). The
correlation between these genes was shown in Supplementary Figure
S2D and Supplementary Table S4, where ALB and LOX were
identified as hub genes (Supplementary Figure S2E).

Thirteen DEGs out of the 19 candidate genes were measured in
both cohorts and were included for further analysis. Finally, nine
genes were selected by LASSO-Cox regression to construct the
Copper-PSHC index, i.e., CDKN2A, GPC1, LOX, MEMO1,
SLC25A3, STEAP1, STEAP4, UBE2D2, and XIAP (Supplementary
Figure S3), where high expression of those genes portended a poor
prognosis, with an exception for STEAP4. The associations of the
nine genes with OS were presented in Supplementary Figure S4.
According to the normalized expression level of each gene and the
corresponding Cox regression coefficients, the Copper-PSHC risk
score was generated for each individual as follows:

Copper-PSHC risk score = 0.069*expression level of CDKN2A+
0.228*expression level of GPC1 + 0.119*expression level of LOX +
0.089*expression level of MEMO1 + 0.007*expression level of
SLC25A3 + 0.150* expression level of STEAP1 −0.187*expression
level of STEAP4 + 0.147*expression level of UBE2D2 +
0.017*expression level of XIAP.

Taking the median risk score in the development cohort as the
optimal cut-off value, the patients in the development cohort and the
validation cohort were dichotomized into the low-risk (risk
score < −0.021) and high-risk (risk score ≥ −0.021) groups (Figure 2A).

Validation of the prognostic value of
Copper-PSHC

Copper-PSHC demonstrated outstanding prognostic value. In
terms of the primary endpoint, patients from the high-risk group

demonstrated a significantly reduced OS (Figure 2B; HR: 2.65 [95%
CI, 1.83–3.84] and 3.30 [95% CI, 1.27–8.60] in the development and
validation cohorts, respectively) compared with those from the low-
risk group. The 3-year RMSTs were significantly prolonged for the
low-risk group in both the development (RMST difference:
−7.4 [95% CI, −10.0 to −4.8] months) and validation cohorts
(RMST difference: −4.1 [95% CI, −6.8 to −1.4] months)
(Supplementary Table S5). After adjusting for age, sex and cancer
stage, Copper-PSHC remained as an independent prognostic factor
in the development cohort (HR: 2.33 [95% CI, 1.60–3.39]) as well as
the validation cohort (HR: 3.11 [95% CI, 1.15–8.42]), as shown in
Supplementary Table S6. Stratified analysis indicated that the
Copper-PSHC maintained a prognostic factor for all subgroups,
except for females (Supplementary Figure S5; Supplementary Table
S7). Concerning the secondary endpoint, patients in the high-risk
group had a significantly worse DFS than the low-risk group with
(Figure 2C; HR: 2.07 [95%CI, 1.53–2.79]) or without adjusting for
age, sex, vascular invasion and cancer stage (HR: 1.86 [95% CI,
1.36–2.52]) in the development cohort (Supplementary Table S8).

Time-dependent ROC curves for OS and DFS exhibited an
excellent discriminative power of Copper-PSHC at 3 years of
follow-up (Figure 2D). In development cohort, the AUC of OS
achieved 0.80 [95% CI, 0.73–0.87], 0.74 [95% CI, 0.66–0.81] and
0.74 [95% CI, 0.67–0.82] at 1-, 2- and 3-year time points, respectively
(Figure 3F). In validation cohort, the AUC value of OS remained
0.70 [95% CI, 0.30–1.10], 0.75 [95% CI, 0.60–0.89] and 0.71 [95% CI,
0.56–0.86] at 1-, 2- and 3-year time points, respectively (Figure 2D).
For DFS, AUC yielded 0.71 [95% CI, 0.65–0.77], 0.66 [95% CI,
0.58–0.73] and 0.66 [95% CI, 0.58–0.75] at 1-, 2- and 3-year of
follow-up, respectively (Figure 2E). Copper-PSHC also demonstrated
accurate prediction for OS in both cohorts (c-index: 0.64 [95% CI,
0.60–0.68] and 0.68 [95% CI, 0.58–0.78] for development and
validation cohorts, respectively; Supplementary Table S5).

A higher risk score was observed in patients with undesirable
biological behaviors or processes, including more advanced TMN
stage (III-IV, p < 0.001), margin residual (p = 0.021) and higher
tumor grade (G3/G4, p < 0.001), as shown in Supplementary Figures
S6A–I. Additionally, PCA analysis also divided patients into two
directions, which was consistent with the classification pattern
generated by Copper-PSHC (Supplementary Figures S6J, K).

Construction and validation of the Copper-
CPSHC

The Copper-CPSHC was derived after combining Copper-
PSHC risk score with age, sex and TNM stage, leveraging the
complementary value of molecular and clinical characteristics:

Copper-CPSHC risk score = [1.07292* Copper-PSHC risk
score] + [0.12480* age] + [0.07879* sex] + [0.29818* stage].

Then, patients were classified into the high- (≥0.677) and low-
risk (<0.677) groups according to the optimal cut-off determined by
Youden index of the time-dependent ROC curve at 3-year follow-up
in the development cohort.

The significant prolonged OS was observed among the low-risk
group in the development cohort (HR: 4.27 [95% CI, 3.00–6.08]) and
validation cohort (HR: 2.63 [95%CI, 1.09–6.32]) (Supplementary
Figures S7A, C), with the difference of 3-year RMST of −11.8 (95%
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CI, −14.9 to −8.7) months and −4.0 (95% CI, −7.5 to −0.5) months for
the development and validation cohorts, respectively (Supplementary
Table S9). In development cohort, the AUC of the time-dependent
ROC for OS reached 0.78 [95%CI, 0.72–0.84], 0.70 [95%CI, 0.63–0.78]
and 0.73 [95% CI, 0.66–0.80] at 1-, 2- and 3-year time points,
respectively (Supplementary Figure S7B). The AUC for OS in
validation cohort yielded 0.72 [95% CI, 0.31–1.13], 0.75 [95% CI,
0.62–0.89] and 0.72 [95% CI, 0.56–0.87] at 1-, 2- and 3-year of
follow-up, respectively (Supplementary Figure S7D). The c-index
also demonstrated the validity of Copper-CPSHC on prognostic
prediction in the development cohort (0.68 [95% CI, 0.63–0.72]) as
well as the validation cohort (0.65 [95% CI, 0.53–0.77]), as shown in
Supplementary Table S9.

We then constructed a nomogram to provide a handy quantitative
instrument for clinical use (Supplementary Figure S7E). The
calibration curves for 1-year and 3-year follow-up confirmed that
the nomogram’s predicted probabilities were close to the observed
probabilities (Supplementary Figures S7F, G), indicating the
consistency between the prediction and the actual observation in
both development and validation cohorts. Meanwhile, DCA
demonstrated that the nomogram prediction possessed more area
than the TNM stage and a clinical model including age, sex and cancer
stage (Supplementary Figures S7H–K). Similar results were obtained
for DFS in the development cohort (Supplementary Figure S8).

Annotation of Copper-PSHC

Somatic mutation analysis
In view of the causal role of somaticmutation in cancer, we depicted

the somatic mutation spectrum of the high- and low-risk groups

determined by Copper-PSHC in the development cohort. In general,
high-risk group was characterized by a higher mutation frequency
(high-vs. low-risk: 88.6% vs. 84.3%, p < 0.01). The TMB was
significantly higher for patients in the high-risk group (high-vs. low-
risk:1.98 vs. 1.54, p < 0.05, Supplementary Figure S9). We exhibited the
20 most frequently mutated genes in two risk groups, respectively
(Figure 3). The mutation related to undesirable biological behavior was
enriched in high-risk group when compared to low-risk group, such as
TP53 (47% vs. 15%; OR: 5.15 [95% CI, 4.80–5.53]), a well-known
carcinogenic gene of P53 pathway, and DOCK2 (10% vs. 2%; OR:
4.76 [95% CI, 3.45–6.56]), an intercellular regulator of the Rho family
GTPase, RAC1 (Sanui et al., 2003). The overview of mutations was also
presented in Supplementary Figure S10 for both cohorts, revealing that
missense mutation, SNP and C>T mutation were more common.

Functional enrichment analysis

The functional enrichment analysis highlighted the role of
metabolic and biosynthesis pathways in the molecular
mechanism regarding Copper-PSHC. GO enrichment revealed
that the DEGs between high- and low-risk groups were related to
metabolic processes, such as those regarding alpha-amino acid,
hormone, and fatty acid (Figures 4A, B). Likewise, KEGG
analysis demonstrated an enrichment of carbon metabolism and
biosynthesis of amino acids in both cohorts (Figures 4C, D).
Generally, most gene pathways were downregulated in the high-
risk group when compared to the low-risk group, except for cell cycle
and DNA replication pathways (Figure 4E). Considering that several
pathways related to oxidation (e.g., pyruvate metabolism) were
downregulated in the high-risk group, we additionally estimated the

FIGURE 3
Somatic genes mutation analysis in the development cohort for high-risk group (A) and (B) low-risk group.
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hypoxia score in two risk groups. The high-risk group was associated
with a significantly increased hypoxia score than the low-risk group
(1.39 vs. 1.08, p < 0.001; Supplementary Figure S11), suggesting a low
oxygen status in HCC patients from the high-risk group.

Tumor microenvironment analysis

The association between Copper-PSHC and tumor
microenvironment was shown in Figure 5 and Supplementary

FIGURE 4
Functional enrichment analysis. The significant GO enrichment in the (A) development and (B) validation cohorts. The significant KEGG pathways in
the (C) development and (D) validation cohorts. (E) The significantly upregulated and downregulated KEGG pathways in both cohorts according to GSEA.
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Figures S12, S13. Overall, a significantly negative correlation was
demonstrated between stroma score and Copper-PSHC risk score in
both development and validation cohorts, with Spearman

correlation coefficient estimated as −0.12 (p = 0.02) and −0.56
(p < 0.001), respectively. That echoed the observation of high
stroma cell infiltration in the low-risk group (both p < 0.001).

FIGURE 5
Tumor microenvironment analysis in development cohort. (A) The immune, stroma and Estimate score according to ESTIMATE algorithm. The
differences of TME cells infiltration between high- and low-risk groups according to (B)Cibersort, (C) xCELL and (D) ssGSEA. (E) The significant difference
of the expression of the cell marker related to ICB between groups. (where *p < 0.05, **p < 0.01, ***p < 0.001).
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The enrichment of stroma cells in low-risk group is primarily driven
by (pre-) adipocytes, pericytes, lymphatic endothelial cells, and
skeletal muscle cells (Figure 5C; Supplementary Figure S12C).

The immune score was neither significantly correlated with
Copper-PSHC risk score nor differed between the two risk
groups. However, between-group differences were observed for
certain immune cell infiltration, despite disagreement using
different algorithms. For example, CD4+T cells memory resting
and conventional dendritic cell (cDC) were highly infiltrated among
the low-risk group, while CD4+T cells memory activated, natural
killer T cell (NKT), type 2T helper cell (Th2) were enriched among
the high-risk group (All p < 0.05; Figures 5B–D; Supplementary
Figures S12B–D).

Additionally, the expression of markers related to ICB and T cell
exhaustion was significantly elevated for the high-risk group in the
development cohort, including CD274, PDCD1, LAG3, CD44,
CTLA4, CD27, TIGHT and HAVCR2 (All p < 0.05; Figure 5E;
Supplementary Figure S13A, B). This result hinted that
immunotherapy might benefit the high-risk group.

Identification of potential drugs

Potential treatments were explored via CLUE based on the DEGs
between high- and low-risk groups. Under our screening criteria,
flavokavain-b, simeprevir, BRD-K88741031, RAF-265 butein and
ASC-J9 were discovered as potential drugs for the high-risk group
(Table 1). EGFR inhibitor was the primarymode of action for the drugs
above. Also, carcinogens, HCV inhibitors, tyrosine kinase inhibitors,
RAF inhibitors, Src inhibitors and androgen receptor agonists were the
potential targets for treating the high-risk group as well.

Discussion

In this study, we developed and validated a 9-CRG prognostic
signature, Copper-PSHC, for HCC patients. We also combined clinical
features including age, sex and cancer stage with Copper-PSHC to build
a composite prediction model, Copper-CPSHC, for clinical prognostic
stratification. Both Copper-PSHC and Copper-CPSHC were
demonstrated as reliable tools with excellent prognostic value in the
development and validation cohorts. Beyond that, extensive work has
been carried out for the annotation of Copper-PSHC.

An increasing number of prognostic models for HCC have been
proposed. For example, Liang et al. (2020) developed a ferroptosis-
related gene signature for OS prediction. Tang et al. (2022)
constructed an immunological phenotype-related gene signature
for predicting prognosis. Xu et al. (2021) fitted a ferroptosis-
related nine-lncRNA signature for predicting prognosis and
immune response. Compared to those models, Copper-PSHC
had an exceptional advantage in predicting OS and DFS in both
the development and validation cohorts. We also provided a
nomogram combining clinical variables and risk score for ready
clinical application. Additional advantage of our study includes
examining the potential of immunotherapy in the management
of HCC. On balance, we developed a reliable copper-related
model to predict prognosis which is of high significance in
clinical decision-making.

Our study confirmed previous findings on the association
between 9 genes in Copper-PSHC with cancer. It is collectively
speculated that these genes could play crucial roles in tumor
development and/or progression, and therefore own considerable
prognostic value for HCC. Previous research on network-based
prioritization of HCC markers by module detection and ranking
has demonstrated the diagnostic value of CDKN2A (Shang and
Liu, 2021). Besides, Luo et al. (2021) found that CDKN2A was
highly expressed in HCC and associated with a decreased OS via
facilitating the proliferation of cancer cells and inhibiting
apoptosis. LOX was the mediator of remodeling of the
extracellular matrix cross-linking, thereby contributing to the
angiogenesis (Sun et al., 2022). XIAP could induce the resistance
to apoptosis, providing survival advantage to the metastatic
tumor cells (Shi et al., 2008). As a cell surface heparan sulfate
proteoglycan, GPC1 was found to exhibit a mitogenic response to
multiple heparin-binding growth factors and lead to progression
in breast cancer (Matsuda et al., 2001). GPC1 was also used as a
potent predictive biomarker for the general prognosis of HCC
(Wang JY. et al., 2021). Analogously, SLC25 protein family,
MEMO and STEAP were identified as potential biomarkers for
prognosis (Gomes et al., 2012; MacDonald et al., 2014; Rochette
et al., 2020). However, much uncertainty still exists about the
opposite roles of STEAP1 and STEAP4 in HCC.

To our knowledge, Copper-PSHC was the first prognostic
prediction model related to copper binding, copper homeostasis
and cuproptosis. Recently, the association between cuproptosis and
HCC has been elucidated. As a mineral nutrient, the significance of

TABLE 1 Potential small molecules drug for high-risk HCC treatment.

CMap name MOA Target Enrichmenta

Flavokavain-b Carcinogen IKBKB −0.6015

Simeprevir HCV inhibitor CYP2C19, CYP2C8, SLCO1B3, CYP1A2, CYP3A4 −0.6017

BRD-K88741031 Tyrosine kinase inhibitor, EGFR inhibitor EGFR −0.6018

RAF-265 RAF inhibitor, VEGFR inhibitor BRAF, KDR, KIT, PDGFRB, RAF1 −0.6116

Butein EGFR inhibitor, Src inhibitor ACE, CXCL8, IL6, SIRT1, SRD5A1, SRD5A2, TNF −0.6118

ASC-J9 Androgen receptor agonist AR −0.6487

Abbreviations: HCC, hepatocellular carcinoma; CMap, Connectivity map.
aThe enrichment score represents the similarity between drugs and current biological process or disease status. A negative score indicates that the drug could reverse the disease status and have

potential therapeutic value.
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copper for various physiological processes has been well recognized
across the animal kingdom to human (Ge et al., 2022). Copper
functions as a crucial cofactor for enzymes that mediate a range of
cellular activities including mitochondrial respiration and
antioxidant defense (Luo et al., 2021); therefore, copper
homeostasis was critical for cellular growth and maintenance. Of
note, increasing evidence demonstrated that copper and the
disruption of copper homeostasis were involved in oncogenesis
(Brady et al., 2014; Shanbhag et al., 2019; Llovet et al., 2021).
This supports the argument that copper may activate several
proangiogenic factors such as vascular endothelial growth factor,
fibroblast growth factor 2, tumor necrosis factor and interleukin-1
(Gérard et al., 2010; Das et al., 2022; Ge et al., 2022). Meanwhile,
emerging cancer therapeutics targeting copper and copper-
dependent signaling pathways exhibit significant promise,
including copper chelators to inhibit cuproplasia and copper
supplementation to promote cuproptosis. Taken together, it is of
great importance to assess the copper status and characterize the
landscape of copper in HCC patients. Regarding this, our study
might provide valuable insights for understanding HCC and the
management of HCC patients through the lens of copper
homeostasis.

Our findings of correlation between high expression of
CDKN2A and poor prognosis in HCC further evidenced the
antitumor effect of cuproptosis, a distinct form of cell death
dependent on intracellular copper accumulation, where
FDX1 and protein lipoylation serve as the hub regulators and
CDKN2A serve as a negative regulator (Tsvetkov et al., 2022).
Besides, we found that pyruvate metabolism related to the TCA
cycle, which is a necessary condition for copper-induced cell
death, was downregulated in the high-risk group. This finding
again echoes the currently available evidence that cuproptosis
may contribute to the inhibition of tumor growth and recurrence
and thus a favorable prognosis by killing cancer cells modulated
by the tumor microenvironment. It was reported that copper-
dependent cell death was attenuated under the hypoxic
condition, leading to an increased risk of tumor growth and
progression. In support of this, we analyzed the hypoxic level in
high- and low-risk groups and found that tumor cells in high-risk
group were prone to be in hypoxic environments. Our results
reveal that evaluation of the hypoxia level may help guide HCC
treatment, especially the copper-targeted therapeutic strategies.
Patients at high-risk are warranted for more intensive or
personalized treatment strategies. For example, regorafenib
and cabozantinib should be additionally used as systemic
therapy for those high-risk patients (Solimando et al., 2022).
Also, more targeted clinical studies need to be conducted in the
high-risk populations we identified. Elesclomol, in combination
with paclitaxel for melanoma, was a good example where
statistically significant improvement was observed for patients
with normal baseline levels of lactate dehydrogenase (LDX)
(O’Day et al., 2013).

Additionally, we found that the high-risk group held a higher
mutation frequency and TMB. TP53, as the most common mutation
in the high-risk group, has been reported to be associated with
undesirable biological behaviors including high AFP, advanced
tumor stage, vascular invasion, poor tumor differentiation, and
poor Child-Pugh class (Long et al., 2019). Other undesirable

mutations were also enriched in the high-risk group, such as
DOCK2 which regulates Rac activation and cytoskeletal
reorganization (survRM2, 2022), accounting partly for poor
prognosis in the high-risk group as well.

Functional enrichment analysis suggested that the metabolic
and biosynthetic processes were instrumental in Copper-PSHC.
The downregulated pathways related to amino acid and lipid
metabolism implied that the high-risk group featured low
metabolic activity. According to the metabolism-associated
molecular classification of HCC, high metabolic activity was
related to α-fetoprotein (AFP) expression and good prognosis
(Yang et al., 2020). Another model proposed by Désert et al.
classified HCC as “ECM-type,” “STEM-type,” “PV-type” and
“PP-type.” Among them, “PP-type” characterized by high lipid
and bile salt metabolism has displayed low proliferation and
favorable prognosis (Ng et al., 2017). Given that liver is the
primary handler of amino acid and lipid metabolism, we
supposed that maintenance of high metabolic activity in the
low-risk group conferred high chances of preserving normal
liver phenotype, which may lead to less aggressive clinical and
biological behaviors (Phillips, 2022).

Importantly, we explored the association between Copper-
PSHC and tumor microenvironment. Overall, more infiltration
of stromal cells was found in the low-risk group, suggesting their
low degree of tumor purity and well differentiation. Although no
significant difference in overall immune cell infiltration was
observed between high- and low-risk groups, great disparities
exist for certain types of immune cells. Patients in the high-risk
group were prone to possess more activated cells and T helper
cells. Generally, the infiltration of immune cells including T cells,
macrophages, and B cells would conduct to the desirable
prognosis (Galluzzi et al., 2020), especially in colorectal cancer
(Picard et al., 2020) and breast cancer (Wang S. et al., 2021). Such
inconsistency led us to further explore the expression of receptors
in immune cells. As a result, high expression of immune
regulators including CTLA-4 and PD-L1 was found in the
high-risk group, which suggested that the infiltrated T cells in
the high-risk group were mainly exhausted T cells. T cell
exhaustion characterized by a loss of effector functions and
memory T cell properties would hamper optimal control of
tumors (Blank et al., 2019) and thereby account for poor
prognosis of the high-risk group. Notably, the enrichment of
cell markers related to ICB lent credence to the availability of
immunotherapy for the high-risk subpopulation. This
implication was also supported by the finding that higher
TMB was shown in the high-risk group. Tumors with high
TMB were more likely to respond to ICB agents (Chan et al.,
2019) because greater tumor load could enhance the likelihood of
being recognized by T cells (Litchfield et al., 2021).

Apart from the advantages and implications of this study as
discussed above, several limitations also require due consideration.
Firstly, restricted to the retrospective study, we may introduce the
selection bias such as the exclusion of some patients who lacked
data or were ineligible for sequencing, particularly those patients
who are unable to undertake surgery treatment due to
comorbidities or tumor metastasis. Secondly, the sample size
was not considered large enough owing to the limited number
of HCC patients in advanced stage. Further optimization of the
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Copper-PSHC index taking the stages of patient population into
account is warranted for future studies. Thirdly, due to the
unavailability of other clinical data including treatment history,
comorbidities and laboratory values, and radiomic data, we were
unable to incorporate more variables into our composite model.
Notwithstanding, the index Copper-CPSHC developed in this
study already owns satisfactory prognostic prediction value.
Fourthly, with an aim of ensuring the robustness of results in
tumor microenvironmental analysis, most immune cells were
analyzed by two or more algorithms. However, certain cells,
stromal cells for instance, were exclusively analyzed by xCell.
Fifthly, the screening of potential drugs in this study is
explorative and more efforts are warranted to further validate
these finding in future studies. Lastly, the validation was performed
using the public cohorts and we only provided a brief discussion of
the potential mechanism of the genes in the model. More
prospective studies and further exploration of the biological
mechanism in the context of copper and HCC was in warranted.

In conclusion, this study constructed a copper-related signature,
Copper-PSHC, based on nine CRGs, which has been subsequently
demonstrated to be a reliable biomarker for prognostic prediction.We
then move forward to examine the hypothesis of metabolic process
and tumor immunity being the mechanisms of this signature,
illuminating the potential of certain small molecular drugs and
immunotherapy for better management of HCC patients. It is
envisaged that further investigation using different research tools
will help to elucidate the underlying mechanism and verify its
clinical utility in the real world.
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