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Cell migration plays an essential role in physiological and pathological states, such
as immune response, tissue generation and tumor development. This
phenomenon can occur spontaneously or it can be triggered by an external
stimuli, including biochemical, mechanical, or electrical cues that induce or direct
cells to migrate. The migratory response to these cues is foundational to several
fields including neuroscience, cancer and regenerative medicine. Various
platforms are available to qualitatively and quantitatively measure cell
migration, making the measurements of cell motility straight-forward.
Migratory behavior must be analyzed by multiple metrics and then models to
connect the measurements to physiological meaning. This review will focus on
describing and quantifying cell movement for individual cell migration.
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1 Introduction

Cell movement is essential throughout the lifespan of an organism. Cells transport
passively with blood circulation throughout the body, but also actively migrate through and
within tissues. Cell migration is critical to a number of fundamental biological processes,
such as stem cell migration during embryogenesis (de Lucas et al., 2018), angiogenesis (Yang
et al., 2020), and wound healing (Rodrigues et al., 2019), but is also important to disease
states, such as metastasis during tumor development (Wu et al., 2021). Cell migration has
long been studied (Angevine and Sidman, 1961; Lauffenburger and Horwitz, 1996; Ridley
et al., 2003; du Roure et al., 2005; Peyton and Putnam, 2005; Cattin et al., 2015; Motta et al.,
2019; Cavanaugh et al., 2022; Brunetti et al., 2021), with a wide array of studies examining
how and why cells move (Isenberg et al., 2009; Roussos et al., 2011; Cortese et al., 2014; Wen
et al., 2015), defining exogenous cues that quantitatively impact cell motility. It has long been
argued that quantitative characterization of cell migration is critical to permit rigorous
comparisons (Dunn and Brown, 1987; Stokes et al., 1991). To improve medical interventions
or understand fundamental progression of disease, a quantitative understanding cell
migration is critical, including factors that direct or regulate cell movement.

The chosen analytical method must capture subtle differences in cell migration to
accurately describe the impact of the conditions on the cell behavior. Cells experiencing
individual cell migration have very short duration or no intercellular connections during the
entire migration process. In vivo, the migration of individual cells can be readily seen with
immune cell migration, e.g., neutrophil emigration from the blood stream to a site of
infection. To fully explore the relationship between cell migration and quantitative
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parameters to assess cell migration, this review will focus on
characterizing and quantifying cell movement for individual cell
migration.

2 Analytical metrics for characterization

2.1 Cell trajectory

In migration experiments, cell trajectories are tracked via
time lapse microscopy, and these paths are then used to calculate
a multitude of descriptors described below. Several plug-in
applications are available to automatically track cell position
over time (Chakrabarti et al., 2018; Fazeli et al., 2020; Hu

et al., 2021); however, cells can also be tracked manually by
tracing the cell in each image over time and using the center of
mass to determine the x, y position in 2D. Tracking in 3D is done
similarly using the x, y and z position, or 2D projection of the cell.
These positions are then collected over time to provide a basis for
the remainder of the analyses presented below. In addition, it is
useful to normalize the trajectories to a 0,0 starting position to
evaluate the randomness of movement. Motta et al. (Figures 1F, 1.
G) described cell trajectory using a visual tool to identity random
or directional migration, and showed that medium and steep
YIGSR (CYIGSR (Cys-Tyr-Ile-Gly-Ser-Arg)) concentration
gradients bias Schwann cell (SC) migration while shallow and
uniform concentration profiles do not (Motta et al., 2019). The
visualization of the cell trajectories is a way to get an overview of

FIGURE 1
Demonstration of models and metrics commonly used to describe and quantify cell migration. (A) Drawing of idealized MSD curves for Brownian
motion, subdiffusive and superdiffusive states are defined by fit of the exponent (α) of time interval (τ). See ref (Codling et al., 2008) for further information.
(B) An anomalous diffusionmodel (solid line) possessed better fits to describemesenchymal stem cell migration in 3D hydrogels than a persistent random
walk model (dashed line) for all conditions (Luzhansky et al., 2018). (C) Immature dendritic cells migrated less persistently with low persistent time
and high turning angle distribution under mechanical loaded imposed by 18.1 kPa gels (Choi et al., 2021). (D)MSD and superdiffusive migration was used
to describe Schwann cell migration on aligned nanofibers of various diameters (Cavanaugh et al., 2022). (E) Macrophage migration was subdiffusive in
different concentrations of collagen hydrogels (Pérez-Rodríguez et al., 2022). (F–I) Individual trajectories of Schwann cells were used to describe
migratory response to a peptide concentration gradient, with bias migration on steep peptide concentration profiles (F) and random migration was
observed on uniform peptide (G); velocities (H) and chemotactic index (I) of cells were increased as the profile of peptide concentration gradient
increased (Motta et al., 2019).
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how cells are moving and if there are specific motions or bias that
may impact the analysis.

2.2 Velocity

The raw data generated from cell trajectories are generally
positional coordinates in the x and y-axis, and for 3D data, a
z-axis. For simplicity, we will focus on 2D migration here. These
sets of data can be used to quantify instantaneous and overall
average velocities. Instantaneous velocity in x and y direction of
two consecutive positions of an individual cell can be calculated as
follows:

�vx,n � rx,n ti+1( ) − rx,n ti( )
τ

· �ex (1)

�vy,n � ry,n ti+1( ) − ry,n ti( )
τ

· �ey (2)

Where τ is the time interval between image captures; n refers to
the individual cell and varies from 1 . . .N, which is the total number
of cells tracked; rx,n(ti+1) and rx,n(ti) denotes two successive points
in x direction, where t varies from 0:τ: (f-1)*τ, and f is the total
number of frames; ry,n(ti+1) and ry,n(ti) denotes two successive
points in y direction, while rx,n(ti+1) and rx,n(ti) denotes two
successive points in x direction. To describe the average
directional velocity, each of the instantaneous velocities are
summed and divided by the total number of points, while the
overall average instantaneous velocities for a cell population are
then calculated based for all of the cells in a population. All velocity
terms are vectors and have a magnitude and direction.

In 2D systems, instantaneous velocities can reveal, to a certain
extent, the stepwise mode of cell migration, particularly when cells
are exposed to external cues in the form of gradients (e.g.,
chemotaxis, haptotaxis, electrotaxis, or durotaxis). Because the x
and y components are isolated, one could detect a bias in migration
if the cells primarily moved in one direction. Instantaneous
velocities can show detailed response with respect to sampling
interval, explaining the transient effect of exogenous cues or self-
response to a cell population (Figure 1H) (Maiuri et al., 2015; Motta
et al., 2019). It can also show environmental impacts on cell motility
(Wu et al., 2014). However, it should be noted that the instantaneous
velocity, which can be positive or negative, can be close to zero as a
cell moves back and forth. Overall average velocity can be used to
describe the global response of a cell population the whole time,
which can further to correlate with the effect of external stimuli
(Palecek et al., 1997; Luzhansky et al., 2018).

2.3 Mean squared displacement (MSD)

MSD is a measurement of displacement of a single cell or group
of cells traveling over a particular duration. MSD can be generally
classified to time average squared displacement (TASD) and
ensemble average square displacement (EASD) (Qian et al., 1991;
Chon et al., 1997). TASD is calculated by the following formula
within one cell trajectory:

〈r2n τ( )〉 � 〈 rx,n t + τ( ) − rx,n t( )[ ]2 + ry,n t + τ( ) − ry,n t( )[ ]
2〉 (3)

where n = 1,2,3, . . . represents a single cell migratory path,
〈r2n(τ)〉 denotes the average TASD of a single cell at interval τ.
TASD can be calculated over non-overlapping intervals or
overlapping intervals. Simply, for overlapping intervals, one
would step through the frames including the displacements for
every instance of τ; for an interval 2τ, interval 1 could be frame 3 -
frame 1 and interval 2 frame 4—frame 2, where interval 1 and
interval 2 consider overlapping frames. For non-overlapping
intervals, one would skip frames based on τ; for this same
interval example, interval 1 would be frame 3-frame 1 and
interval 2 would be frame 5-frame 3, with no overlapping of the
frames. Since one cell corresponds to one TASD curve, analyzing a
large number of cells in one plot can be extremely problematic and
unrepresentative, whether graphically or statistically. Therefore,
representation of the average mean squared displacement is
typical in presentation (Figure 1), and confidence intervals can be
added to evaluate differences. Mean squared displacement feeds into
most models, and therefore not only can be used to describe
migration via plotting log-log with time but can be further
evaluated using best fit as described below.

2.4 Turning angle distribution

Migration angles are a powerful metric to elucidate the effect of
external cues on cells over time. The distribution of these angles, or
turning angle distribution (TAD), is used to characterize cell
migration behavior and can be classified into two types, global or
relative TAD. The global TAD, denoted by θ (-π < θ < π), describes
the angle of current direction with respect to a fixed coordinate
system (either x or y-axis) (Meijering et al., 2011; Yu et al., 2021).
The relative TAD, denoted by φ (-π < φ < π), describes the angle
relative the previous cell path vector (Mokhtari et al., 2013; Choi
et al., 2021; Yu et al., 2021). Global and relative TAD can then be
easily back calculated from instantaneous velocities. Global TAD
provides an overall view of cell bias while relative TAD provides
information about persistence at each position over the time course,
allowing researchers to have a clearer and deeper understanding of
the cell dynamics between sequential time points. For example,
global TAD for mast cells on rigid substrates was independent of the
stiffness, describing that the cells had no directional migration.;
however, relative TAD (Figure 1D) (Choi et al., 2021) was either 0°

or 180°, indicating the cells moved back and forth (Choi et al., 2021;
Yu et al., 2021). A polar distribution of TAD can be used to illustrate
that cells move along the direction (homodromous or
heterdromous) of external cues, while uniform distribution of
TAD implies random migration (Masuzzo et al., 2017; Werner
et al., 2019; Choi et al., 2021). Therefore, TAD can be analyzed
for both global and local assessment of cell migration with typical
experimental time lapse capture of cell migration.

2.5 Straightness and chemotactic index

Straightness and chemotactic index are measurements of the
path of a single cell or a cell population. Straightness index (SI)
examines the straightness of cell trajectories, it is often interpreted as
a directionality or confinement ratio (Beltman et al., 2009; Gorelik
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and Gautreau, 2014; Masuzzo et al., 2015). SI is calculated by the
ratio of the net displacement of a cell to the total traveled length.
Because the experimentally measured total displacement is always
less than actual travelled distance in real time, the value of SI can
fluctuate between 0 (moving back to the origin) and 1 (perfectly
directed cell track). SI can be calculated by following formula:

SI � dnet

dtotal
(4)

dnet represents the displacement between start and end point of a cell
path, which is the Euclidean distance. dtotal represents total traveled
length at the time interval between the two points. Between two
points adjacent in time, this value is 1; however, as longer time
intervals are evaluated, dnet becomes smaller relative to total distance
traveled.

The chemotactic index (CI) is a another quantitative
measurement describing the directionality of cell migration to the
direction of a gradients, also called forward migration index
(Foxman et al., 1999) or McCutcheon index (McCutcheon,
1946). CI is defined as the distance a cell travels in the direction
of chemotactic source divided by the total path length. CI ranges
from −1 to +1, with cells migrating either opposed (negative) or in
the direction of (positive) the gradient. When CI closes to 0
(Figure 1I) (Motta et al., 2019), no chemotaxis is assumed. CI is
calculated by following formula:

CI � ddirectional

dtotal
(5)

where ddirectional denotes the distance the cell travels in the direction
of the gradient, dtotal means the total path length during the time
interval, calculated as in SI. CI plotted with sampling interval can
provide a stepwise picture of how cells respond to the surrounding
environment.

3 Generalized quantitative models for
cell migration

3.1 Random diffusion model

Models using a persistent random walk to describe cell motility
have long been the standard in the field. This random diffusion
model is similar to Brownian motion, where each individual cell has
equal probability tomove in any direction (Uhlenbeck and Ornstein,
1930; Klafter et al., 1996). The Ornstein–Uhlenbeck (OU) process,
defined by Langevin equation, has been considered as the prototype
of Persistent Random Walk model for individual cell migration
(Uhlenbeck and Ornstein, 1930) (Dunn and Brown, 1987). Based on
a 1D OU process, in 1942 Doob derived a foundational equation for
random motility:

MSD � α

β3
βT − 1 + e−βT( ) (6)

where α and β are fitted parameters to theMSD over time (T) (Doob,
1942). The above equation is adjusted to 2 or 3D by multiplying the
right-hand side by 2 or 3, respectively through geometric
correlations. By fitting the MSD of a cell population,
fundamental parameters such as persistence and speed can be

calculated (Estabridis et al., 2018; Luzhansky et al., 2018);
however speed or persistence as it relates to α or β must be
clearly defined, as authors can express these fit parameters α and
β differently (see (Stokes et al., 1991) for further information). This
traditional random walk model is ubiquitous to parameterize
random cell migration in a 2D environment (see ref (Masoliver
et al., 1993) for more details). Additionally, Stokes extended this
baseline correlation by accounting for cell migration bias with a
chemoattractant (Stokes et al., 1991). However, this model is not as
useful within 3D matrices because of discrepancies in fundamental
assumptions, such as velocity autocorrelation and Gaussian
distribution of velocities (Selmeczi et al., 2005; Kim et al., 2008;
Takagi et al., 2008), and therefore the anomalous diffusion model
has been more frequently used in these cases.

3.2 Anomalous diffusion models

In contrast to random migration models, anomalous diffusion
describes the non-Brownian motion of traced particles. This motion
can be classified to sub- or super-diffusive by examining a power-law
behavior of MSD∝ τα, where τ is time interval and α is the
anomalous diffusion exponent; 0≤ α< 1 corresponds to
subdiffusive behavior (Figure 1E) and 1< α≤ 2 corresponds to
superdiffusive behavior (Figure 1D). When α = 1, the motion of
the particle is Brownian (Figures 1A, D) and the persistent random
walk fits well. Various anomalous diffusion models fit a wide range
of cell types, both on engineered 2D surface and 3D scaffolds
(Metzler and Klafter, 2000; Harris et al., 2012; Huda et al., 2018);
see ref (Codling et al., 2008; Vlahos et al., 2008; Chen et al., 2010;
Höfling and Franosch, 2013) for more details. However, these non-
Brownian models (Dieterich et al., 2008), e.g., Levy walks, are
complex to evaluate and have yet to be generalized across cell
types or widely used. Generally, these models are used where the
persistent random walk model fails - in the subdiffusive regime
(Figure 1E) (Wu et al., 2014; Pérez-Rodríguez et al., 2022) - but is
also potentially worthwhile to further explore in the superdiffusive
regime with non-Gaussian distributions of velocity or position.

4 Discussion

Excellent reviews exist to support the choice of migratory
models (Carlsson and Sept, 2008; Dieterich et al., 2008;
Rangarajan and Zaman, 2008; Metzler et al., 2014). In vitro cell
migration is often studied with engineered biomaterials or
exogenous cues, therefore the most common situations of
prioritizing parameter selection are summarized in Table 1. The
focus in the discussion below is on the advantages and disadvantages
of the parameters.

Velocity is simple to calculate after cell trajectories are tracked. It
is an important index to understand underlying mechanisms and
systematic impact to cell migration (Gorelik and Gautreau, 2015;
Byrne Kate et al., 2016). However, the resulting values are correlated
to the sample size, whichmeans the number of tracked cells will have
an impact (Kramer et al., 2013; Wu et al., 2014). Cell velocity may be
different between species, strain, or sex (Rigaud et al., 2008; Klein
and Flanagan, 2016; Eruslanov et al., 2017), reducing the emphasis
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on the values of velocity and moving toward a focus on relative,
statistical evaluation that can better represent population behavior
based on Gaussian distribution; a small sample size cannot
accurately represent migratory behavior (Schönbrodt and
Perugini, 2013; Krithikadatta, 2014). Velocity also depends on the
status of cells, for example, the velocity of activated lymphocytes is
different than naïve (Chang et al., 1979; Miller et al., 2002; Bhat et al.,
2017); macrophages migration velocity is also different in resting
and stimulated state (Lee et al., 2020). Physical confinement can also
significantly alter cell velocity (Paul et al., 2016; Hui and Pang, 2019).

MSD is an important index that is widely used to quantify cell
migration and fitted to diffusion models (Figure 1). One advantage
of using MSD is that it can be used with other indices to explore the
relationship with environment impact (substrate, scaffold) (Angelini
et al., 2010; Isomursu et al., 2022). As noted above, the slope
generated from log(MSD)-log (τ) curve, which is the exponent α
or the anomalous diffusion exponent, is a powerful tool to describe
the cell population in response to various exogeneous cues (Alarcón
et al., 2005; Sarris et al., 2012; De la Fuente and López, 2020). One
limitation is that most researchers reported MSD results by
assuming their system is ergodic–where TASD and EASD are
equal. However, TASD and EASD are not interchangeable
(Manzo and Garcia-Parajo, 2015) and the differences will be
more significant for smaller sample size (Michalet, 2010; Ernst
and Köhler, 2013a; Ernst and Kohler, 2013b). Another limitation
is that sampling interval can impact MSD (Ernst and Kohler, 2013b;
Manzo and Garcia-Parajo, 2015); therefore the time interval of time
lapse should be selected within the range of persistent time to be able
to fit to a model (Dunn, 1983; Harley et al., 2008; Li et al., 2008;
Gorelik and Gautreau, 2014; Luzhansky et al., 2018).

Looking at the TAD can provide long or short duration
information about the path during cell migration. One common
shortcoming of TAD analysis is that TAD is highly dependent on the
sampling interval, τ. Loosley et al. simulated the scenario of long and
short capture time intervals for the same single cell migration
trajectory (Loosley et al., 2015) and demonstrated that relative

TAD tends to be a Gaussian distribution at shorter τ, meaning a
large distribution of angles are relatively flat (close to 0°) because
fewer time points are recorded at longer τ. When the sampling
interval is close to infinity, more detailed angles can be revealed. This
results in a TAD curve that is more flattened. Comparing TAD to the
CI demonstrated the interval dependency of these parameters (O
ˈBrien et al., 2014), so it is not clear that both parameters would be
valuable.

SI as a measure of cell migration can provide information on the
directedness of the paths, in addition to being a parameter that is
used in other diffusion-based calculations on the changes from a
freely-moving molecule. Limiting its application, the numeric value
of SI tends to 0 as the tracking duration increases to infinity (the
denominator is significantly greater than the numerator). One way
to overcome this situation is calculating the SI within a particular
time duration, but it may not reflect the migratory behavior over the
entire experimental duration. Another way is to multiply SI by the
square root of duration, generating a new version of SI, known as the
corrected SI (Beltman et al., 2009). However, the corrected SI is not
unitless and not restricted between 0 and 1. Similarly, the
experimental sampling gap between two consecutive frames
should be shorter than the typical persistence for CI. Because the
sampling time may not be known a priori, determining the proper
timing may necessitate more experiments.

Random cell migration on 2D substrates is well described by
persistent random walk model (Tranquillo and Lauffenburger, 1987;
Stokes et al., 1991). However, bioengineered 3D scaffolds are capable
of incorporating cells to better mimic in vivo conditions. Unlike 2D
substrates where surrounding physical disturbance are hardly any,
cells are obviously subjected to physical interactions when migrating
in 3D scaffold (Kim et al., 2008), meaning the movement is often
confined, causing the migration of the cell population to be
subdiffusive. Researchers have found random walk models
cannot well describe subdiffusive cell migration in 3D
engineering environments (Kim et al., 2008; Luzhansky et al.,
2018). For cells migrating in superdiffusive model, both random

TABLE 1 Priority rankings, strength and limitations of metrics selection for most common scenarios.

Exogenous cuesa Strength Limitations

Uniform
concentration

Concentration
gradient

None
cue

Velocity c b c Discover transient and overall cell response to
exogenous cues; Provide directional insights;

Transferable to speed

Highly depend on various independent factors, such as
number of cells being analyzed, cell type, status of cells,

experimental environment, etc.

TAD d c d Provide global overview and transient persistence Highly depend on τ and total duration; Need to be
combined with MSD to reveal gradient effect

MSD c b c Relate cell migration to cues effect in detail by
stepwise evaluation

Need to distinguish TASD and EASD carefully because
of ergodicity is easy to be ignored

Discover migration pattern; Can be joint used with
migration models

CI, SI c c d Useful to discover the effect of gradient profiles;
Provide persistence of straightness of migration

Depend on total duration and τ

aUniform type of cues profile refers to exogeneous cues are at uniform concentration, for example, chemokinesis and haptokinesis, etc. Gradient type of cues profiles refers to exogenous cues are

at gradient concentration, for example, chemotaxis and durotaxis, etc. None refers to there is no exogeneous cues, for example, intrinsic cell migration.
bFirst priority.
cSecond priority.
dThird priority.
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walk and anomalous models work equally with minor differences
(Luzhansky et al., 2018). Although there is not a one-for-all model,
overall, when high portion of subdiffusive cells are observed, the
anomalous diffusion model can better overall describe 3D cell
migration than a random walk model.

Metrics are ranked based on the presence and type of exogenous
cues (Table 1). Cues in gradient form, such as chemotaxis and
haptotaxis, can normally bias cell migration, whereas uniform cues
will enhance/depress cell migration in all direction. To evaluate cell
motility with the presence of exogenous cues, velocity andMSD are two
prioritized metrics to consider. These two metrics are powerful to
further examine the concentration-dependent or gradient-dependent
effect of exogenous cues in a stepwise fashion. SI and CI are useful to
examine the directness of cell paths but are less detailed in evaluating
multiple uniform profiles. Without exogenous cues, MSD and velocity
are still to be able to describe stepwise intrinsic cell response and
concentration-dependent effects. However, TAD, SI and CI are
expected to be uniformly distributed and close to 0.

Besides choosing appropriate quantification indices to
accurately describe cell motility, it is crucial to optimize
experimental parameters such as cell seeding density, acquisition
rate and duration, size of capture area, intensity and exposure time
of objectives, and environmental settings, such as temperature.
Assuring the movement of individual cells is a priority, and
therefore, cell seeding density needs to be sufficiently high for
viability, but low enough so that contact between cells is
minimized during the capture. Acquisition rate and capture
duration that is too slow will be incapable of capturing the
migration pattern; however, faster acquisition or duration can
lead to excessive amounts of data. The balance tends to be to
capture data slightly faster than the persistence time. The volume
of capture can also limit the acquisition rate due to relative speed of
the camera/computer. Cell labeling to allow for improved analysis
must be carefully considered; the amount of fluorescent dyes (often
in mM or nM) used to label cells needs to be sufficient but necessary
to avoid phototoxicity (Icha et al., 2017). Similarly, the exposure
time needed due to the capture area may further alter labeling and
timing. Two other parameters to consider include selecting which
cells to track along with the total number of cells to collect. While
not all report the exact number of cell tracks embedded in each
parameter, approximately 100 cells over at least 3 different
experiments provide good population analysis (Kuntz and
Saltzman, 1997; Zaman et al., 2006; Jain et al., 2012). Bias and
errors in tracking exist whether cells are manually tracked or tracked
using automation; additional specifics to avoid biased results are
detailed in a review for immune cell migration (Beltman et al., 2009;
Svensson et al., 2018), which can be readily extended to other cell
types. Images can be computationally expensive, particularly with
long duration tracking, and tracking individual paths is time
consuming; therefore, where fewer cells are tracked, care must be
taken in generalizing the results (Dolde et al., 2021; Cavanaugh et al.,
2022). Faster moving cells may require shorter tracking durations

than slow moving cells, but ultimately, similar amounts of data are
collected (Gorelik and Gautreau, 2014). Clearly, compromises exist
when using time lapse microscopy for recording cell migration.

As individual cells migrate, they can migrate in a random or in a
directed manner. Consistent and appropriate modeling and
calculation of parameters is important to allow for comparative
evaluation. With the ease of use of microscopy and improved
computational computing power, it is important to evaluate cell
paths over time to quantify their migration and include sufficient
individual cell paths to provide statistical comparisons. In parameter
quantification, migration models can further provide insight on a
cell population, but many of the parameters may overlap or not be as
useful in the overall evaluation due to the way they are calculated.
Therefore, this review provides a metrics-level and model-level
descriptions to gain a fundamental understanding of the
parameters themselves and their potential use in analyzing a
migration experiment.
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