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Bone adapts to changes in the physical environment by modulating remodeling
through bone resorption and formation to maintain optimal bone mass. As the
most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming
hemichannels are highly responsive to mechanical stimulation by permitting the
exchange of small molecules (<1.2 kDa) between bone cells and the extracellular
environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the
release of prostaglandins E2 (PGE2), a vital bone anabolic factor from
osteocytes. Although most bone cells are involved in mechanosensing,
osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is
greatly enhanced by mechanical stimulation. Mechanical stimulation-induced
PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects
that promote β-catenin nuclear accumulation, Cx43 expression, gap junction
function, and protects osteocytes against glucocorticoid-induced osteoporosis in
cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone
formation and anabolism in response to mechanical loading. This review
summarizes current in vitro and in vivo understanding of Cx43 hemichannels
and extracellular PGE2 release, and their roles in bone function and mechanical
responses. Cx43 hemichannels could be a significant potential new therapeutic
target for treating bone loss and osteoporosis.
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Introduction

Bone is a mechanosensitive tissue that undergoes constant remodeling to adapt to the
physical environment (Bonewald, 2011). Enhanced mechanical stimulation has major, positive
anabolic impacts on bone tissue (Warden et al., 2007; Erlandson et al., 2012), whereas disuse
leads to bone loss (Lang et al., 2004). As the most abundant and long-lived cells in the adult
skeleton (Bonewald, 2011), osteocytes with extensive lacunar-canalicular networks are
generally regarded as mechanosensory cells that help translate mechanical stimulation into
biological signals by regulating the function of osteoclasts and osteoblasts on the bone surface.
Prostaglandin E2 (PGE2), a member of the eicosanoid family, is an essential key factor involved
in the anabolic response of bone tissue to mechanical loading. PGE2 is not stored by bone cells
but is synthesized in response to mechanical stimulation (Klein-Nulend et al., 1997). PGE2 at
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low concentrations (0–1 nM) stimulates osteoblast proliferation and
differentiation, whereas at high concentrations (≥1 nM) inhibits
osteogenesis (Ozawa et al., 1990). Mechanical loading induces the
expression of cyclooxygenase 2 (COX-2), a key enzyme for PGE2
synthesis (Blackwell et al., 2010), and intracellular PGE2 is released
under mechanical stimulation (Ajubi et al., 1996; Ajubi et al., 1999). In
vitro studies show that released PGE2 from mechanically stimulated
osteocytes can reduce SOST/sclerostin expression through
EP4 receptors (Galea et al., 2011) and also enhance osteoclast
activity (Chan et al., 2009; Matsuzaka et al., 2021). Besides
osteocytes, osteoblasts also release PGE2 in response to mechanical
stimulation (Duncan and Turner, 1995; Klein-Nulend et al., 1997;
Saunders et al., 2001), which influences osteoblast proliferation and
differentiation (Imamura et al., 1990; Miwa et al., 1991). In vivo
studies also show that mechanical loading increases PGE2 levels in the
tibia bone of humans (Thorsen et al., 1996) and mice (Zhao et al.,
2022a; Zhao et al., 2022b). An earlier study reported that intermittent
PGE2 treatment increases bone formation and bone mass (Jee et al.,
1985; Tian et al., 2007), whereas, inhibition of PGE2 suppresses bone
formation induced by mechanical loading (Forwood, 1996).

One form of cell-cell communication is via gap junctions, the
membrane-spanning channels composed of two juxtaposed
hemichannels (Goodenough et al., 1996). In addition to direct
gap junction intercellular communication (GJIC), halves of gap
junctions, hemichannels mediate the communication between
bone cells and the extracellular environment (Civitelli, 2008).
Connexin-forming hemichannels exhibit relatively low substrate
selectivity and permit small molecules (≤1.2 kDa) to pass through
(Goodenough et al., 1996; Kumar and Gilula, 1996). Cx43 is the
predominant connexin subtype expressed in osteocytes (Yellowley
et al., 2000; Cheng et al., 2001a) and osteoblasts (Civitelli et al.,
1993). Cx43 hemichannels are highly responsive to mechanical
stimulation, and their opening induced by mechanical loading
mediates the release of anabolic factors such as PGE2, adenosine
triphosphate (ATP) and nitric oxide (NO) from osteocytes (Jiang
and Cherian, 2003; Cherian et al., 2005) and osteoblasts (Thi et al.,
2012). Both ATP and NO are related to the production of the bone
anabolic agent PGE2 (Sugiatno et al., 2006; Genetos et al., 2007). In
osteocytes, released PGE2 can act in either a feed-forward or
feedback manner in regulating Cx43 expression and function.
Mechanical loading-induced PGE2 release from osteocytic
Cx43 hemichannels increases Cx43 expression and Cx43-forming
gap junctions (Cheng et al., 2001b). Interestingly, fluid flow-induced
accumulation of extracellular PGE2 leads to the closure of
Cx43 hemichannels (Riquelme et al., 2015). The
Cx43 hemichannels and extracellular PGE2 play an inhibitory
role in glucocorticoid-induced apoptosis (Kitase et al., 2010).
Cx43 hemichannels with PGE2 release are also essential for
normal bone structure (Xu et al., 2015; Zhao et al., 2022a) and
the anabolic response of tibias to mechanical loading in vivo (Zhao
et al., 2022a; Zhao et al., 2022b). In addition to connexins, pannexins
are also capable of forming hemichannels (Plotkin et al., 2017).
Pannexin1 is the most widely distributed pannexin in bone cells, and
these hemichannels are involved in the release of PGE2 induced by
mechanical stimulation in osteoblasts (Thi et al., 2012). However,
the roles of pannexin channels in bone have not been investigated in
great detail. In this review, we focus on the function of
Cx43 hemichannels in releasing PGE2, and further PGE2-

regulated skeletal development and cellular signals that drive
bone anabolic and bone remodeling responses to mechanical
stimulation.

Relationship between Cx43 hemichannels
and PGE2 upon mechanical stimulation in
osteocytes

Osteocytes are a rich source of PGE2 upon mechanical
stimulation. Mechanical stress in the form of fluid flow causes a
rapid increase in COX-2 expression (Joldersma et al., 2000) and
PGE2 production in osteocytes (Ajubi et al., 1996; Ajubi et al., 1999).
Inhibition of COX-2 enzymatic activity with NS-398 inhibitor
abolishes the stimulatory effect of fluid flow on PGE2 secretion
from osteocytes (Bakker et al., 2003). During mechanical
stimulation, Cx43 hemichannels play a crucial role in the PGE2
release from osteocytes. Low-density cultures of primary osteocytes
and osteocyte-like MLO-Y4 cells with minimal cell-cell contacts,
thus void of gap junctions, release more PGE2 than cells cultured at
higher densities (Jiang and Cherian, 2003; Cherian et al., 2005).
Inhibition of Cx43 channels by chemical blocker β-glycyrrhetinic
acid (Jiang and Cherian, 2003; Cherian et al., 2005) or knocking
down Cx43 by siRNA (Genetos et al., 2007) attenuates fluid flow-
induced hemichannel activity and PGE2 production in low-density
cultured osteocytes. This experimental evidence suggests that
Cx43 hemichannels participate in PGE2 secretion during
mechanical stimulation. To further depict the relationship
between Cx43 hemichannels and PGE2 release, we develop a
polyclonal antibody, Cx43 (E2), that targets the second
extracellular loop domain of Cx43 and specifically blocks
osteocytic Cx43 hemichannels in vitro (Siller-Jackson et al., 2008;
Riquelme et al., 2013). Blocking of Cx43 hemichannels by Cx43 (E2)
inhibits the opening of hemichannels and the release of PGE2
induced by flow shear stress in osteocytes (Siller-Jackson et al.,
2008). Interestingly, PGE2 also has a negative feedback regulation on
Cx43 hemichannels in response to mechanical stimulation.
Extracellular PGE2 accumulation after the continuous opening of
hemichannels by fluid flow acts on EP2/4 receptors to close
Cx43 hemichannels (Riquelme et al., 2015). The negative
feedback is caused by the PGE2 activation of p44/42 ERK
signaling and direct Cx43 phosphorylation at S279/282 residues
thereby leading to the closure of Cx43 hemichannels. (Riquelme
et al., 2015). In addition, the released PGE2 from osteocytes by fluid
shear stress promotes Cx43 expression and further increases
Cx43 gap junctions (Jiang and Cheng, 2001; Xia et al., 2010).
Consistent with the effects of fluid shear stress, direct treatment
of the MLO-Y4 cells with PGE2 similarly increases Cx43 expression
and gap junctions. In contrast, inhibition of PGE2 signaling by
indomethacin reduced gap junction formation by fluid shear stress
(Cheng et al., 2001b).

Since the PGE2 secretion by osteocytes depends on the opening
of Cx43 hemichannels in osteocytes, it is important to understand
how Cx43 hemichannels are regulated by mechanical stimulation
(Figure 1). We find that the dendritic processes of osteocytes
transmit mechanical signals to the cell body, leading to the
opening of Cx43 hemichannels in MLO-Y4 cells and primary
osteocytes (Burra et al., 2010). Cx43 is richly present in the cell
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body, not the dendritic processes of osteocytes. The integrin αVβ3,
located at the dendrites of osteocytes, is an important component of
the glycocalyx complex that tethers osteocytes to the canalicular wall
and amplifies the magnitude of mechanical signals experienced by
osteocytes (Wang et al., 2007; Riquelme et al., 2021). Upon fluid
flow, the force generated by tethering elements is a magnitude higher
than shear stress on the cell surface. Mechanically activated integrin
αVβ3 at dendritic processes induces the activation of intracellular
PI3K signaling (Batra et al., 2012), which activates the downstream
effector AKT (Batra et al., 2014a). Activated AKT directly
phosphorylates Cx43 and integrin α5 (Batra et al., 2014a) in the
cell body to increase the interaction between these two proteins,
opening the Cx43 hemichannels. Upon mechanical loading,
activation of α5β1 through its conformational changes opens the
Cx43 hemichannels in MLO-Y4 cells. Interestingly, this action is
independent of integrin binding to its extracellular substrate,

fibronectin (Batra et al., 2012; Batra et al., 2014a). Moreover, the
scaffolding molecule 14-3-3θ assists in transporting both Cx43 and
integrin a5 from the Golgi apparatus to the plasma membrane to
form mechanosensitive Cx43 hemichannels (Batra et al., 2014b).
Silencing 14-3-3θ prevents the accumulation of Cx43 on the cell
membrane and the opening of hemichannels caused by fluid flow
(Batra et al., 2014b). Recently, we find that Piezo1 is co-localized
with Cx43 hemichannels on osteocyte cell surface. The activation of
the Piezo1 leads to an increase in intracellular Ca2+ and the opening
of Cx43 hemichannels through PI3K-AKT pathway in osteocytes
(Zeng et al., 2022). Interestingly, the release of PGE2 is upregulated
when Piezo1 is activated by either agonist or mechanical stretch (Li
et al., 2019; Yang et al., 2022). The PGE2 release by
Cx43 hemichannels is also regulated by extracellular ATP.
Mechanical stimulation-induced ATP release through
Cx43 hemichannels activates P2X receptors and promotes the

FIGURE 1
A model illustrating the role of PGE2 released from Cx43 hemichannels under mechanical loading in the regulation of the anabolic response to
mechanical stimulation in bone. Upon mechanical loading, osteocytic dendrites sense mechanical stimulation and transduce these signals through
integrins αvβ3 to activate intracellular PI3K signaling (Wang et al., 2007; Riquelme et al., 2021). In addition, Ca2+ influx through Piezo1 also activates PI3K
signaling (Zeng et al., 2022). Activated PI3K activates its downstream effector AKT through protein phosphorylation (Batra et al., 2014a). AKT, in turn,
directly phosphorylates both Cx43 and integrin alpha 5 (α5) subunit (Batra et al., 2014a), which is required for the interaction between these two proteins
(Batra et al., 2012). Additionally, the scaffolding molecule 14-3-3θ facilitates the delivery of Cx43 and integrin a5 from the Golgi apparatus to the plasma
membrane to form mechanosensitive Cx43 hemichannels (Batra et al., 2014b). Upon mechanical stimulation, integrin α5β1 is activated and triggers the
opening of hemichannels through the conformational change of the integrin (Batra et al., 2012). The opened Cx43 hemichannels mediate the export of
intracellular PGE2, whose synthesis is greatly increased by mechanical loading (Cherian et al., 2005; Siller-Jackson et al., 2008). Released PGE2 acts in an
autocrine/paracrinemanner through EP2/EP4 receptors to activate both cAMP/PKA and PI3k/Akt pathways (Xia et al., 2010). These two pathways prevent
osteocyte apoptosis and promote nuclear translocation and accumulation of β-catenin in osteocytes (Kitase et al., 2010), increasing Cx43 expression and
gap junction formation (Xia et al., 2010). In addition, increased β-catenin suppresses the sclerostin expression in osteocytes and enhances osteoblast
activity and bone formation on endosteal surfaces (Zhao et al., 2022a; Zhao et al., 2022b). Moreover, high extracellular PGE2 acts on EP2/4 receptors to
activate ERK signaling, which directly phosphorylates Cx43 to promote the closure of the Cx43 hemichannels (Riquelme et al., 2015). GJ, gap junction;
HC, hemichannel.
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Ca2+ influx to sustain the activities of Cx43 hemichannels (Zeng
et al., 2022). Blockade of P2X7 purinergic receptors prevents PGE2
release from MLO-Y4 cells. However, the activation of purinergic
receptors and the increase in the release of PGE2 appears to be
independent of hemichannel formation (Genetos et al., 2007). Thus,
the mechanism for ATP-induced PGE2 release is yet to be fully
understood in osteocytes.

PGE2, Cx43 hemichannels, and mechanical
stimulation in other bone cell types

Besides osteocytes, osteoblast is another mechano-responsive
bone cell type (Johnson et al., 1996; Romanello et al., 2001; Liu
et al., 2022). Earlier studies report that fluid flow stimulates the
release of PGE2 from primary osteoblasts and MC3T3-E1
osteoblastic cells (Duncan and Turner, 1995; Klein-Nulend
et al., 1997; Saunders et al., 2001). In contrast to osteocytes,
osteoblasts require high magnitudes of shear stress for PGE2
production (Saunders et al., 2003; Genetos et al., 2005). Lower
fluid flow levels induce greater PGE2 production in MLO-Y4
osteocyte-like cells than in 2T3 osteoblasts (Kamel et al., 2010).
Moreover, Genetos and others even show that fluid flow only
activates hemichannels in MLO-Y4, leading to the release of
PGE2, but not osteoblastic MC3T3-E1 cells (Genetos et al.,
2007). Thus, osteoblasts appear to be less mechanically
sensitive to PGE2 release than osteocytes. Furthermore,
increased PGE2 level (>10 nM) by hypergravity or
compressive pressure promotes proliferation but suppresses
differentiation of MC3T3-E1 cells (Ozawa et al., 1990; Miwa
et al., 1991).

Interestingly, Cx43 hemichannels expressed in osteoblasts
(Romanello and D’Andrea, 2001) can be regulated by mechanical
stimulation (Romanello et al., 2003). However, PGE2 release appears
not to be driven by Cx43 hemichannels in osteoblasts. Cx43-null
calvarial osteoblasts still respond to mechanical stimulation, as
evidenced by increased dye uptake and PGE2 release. In contrast,
fluid flow-induced PGE2 release is abolished in osteoblasts deficient
in pannexin1 (Thi et al., 2012). Pannexin1 is a transmembrane
channel with a similar topology as connexins that only form
hemichannels but not gap junctions (Penuela et al., 2013). These
findings suggest that hemichannels formed by pannexin1 and not
Cx43 might be responsible for fluid flow-induced PGE2 release in
osteoblasts.

Recent studies indicate that osteoclasts are responsive to
mechanical stress. Osteoclasts, after mechanical stretch,
polarized to the M2 phenotype associated with YAP activation
and nuclear translocation, which facilitates osteogenesis of bone
marrow-derived mesenchymal stem cells (BMSCs) (Dong et al.,
2021). Jiang and others find that the extracellular PGE2, acting via
EP4 receptors in osteoclasts, activates the Gαs/PI3K/AKT/MAPK
signaling pathway and mediates migration and osteoclastogenesis
during the progression of osteoarthritis (Jiang et al., 2022).
Although it is known that osteoclasts express Cx43 on the
plasma membrane and form hemichannels (Vesely et al., 1992;
Ilvesaro et al., 2000; Ilvesaro and Tuukkanen, 2003), whether
osteoclasts secret PGE2 through Cx43 hemichannels remains
elusive.

The signaling pathways activated by PGE2 in
osteocytes upon mechanical stimulation

PGE2 can activate four subtypes of G-protein-coupled receptors
(GPCRs), named EP1, EP2, EP3, and EP4 (Woodward et al., 2011).
EP2 and EP4 are the most extensively studied in bone (Furuyashiki
and Narumiya, 2011). EP2 is a mechanosensitive PGE2 receptor
whose expression can be enhanced by fluid flow in osteocytes
(Cherian et al., 2003). Inhibition of the EP2 receptor by
antagonist AH6809 suppresses the production of PGE2 and
Cx43 expression (Cherian et al., 2003). The fluid flow-induced
PGE2 release from osteocytes exerts autocrine effects on
EP2 receptors to activate the cAMP-PKA pathway in osteocytes
and increase the Cx43 gap junction formation (Cherian et al., 2003).
Further study reveals that PGE2 released from osteocytes by
mechanical stimulation could lead to activation of the PI3K/Akt
signaling pathway in addition to the cAMP/PKA pathway. The
activation of both PI3K/Akt and cAMP/PKA pathways results in the
phosphorylation and inactivation of GSK-3β (Xia et al., 2010), which
is responsible for the phosphorylation of β-catenin, resulting in its
ubiquitination and degradation by the 26S proteasome complex
(Aberle et al., 1997). Consequently, the inactivated GSK-3β causes
an increase in nuclear translocation and accumulation of β-catenin
in osteocytes (Xia et al., 2010; Lara-Castillo et al., 2015). Increased
nuclear β-catenin binds to the promoter region to promote
Cx43 expression (Xia et al., 2010). In contrast, inhibition of
PGE2 by a COX-2 inhibitor, Carprofen, blocks the activation of
β-catenin nuclear translocation in osteocytes through the PI3K/Akt
activation (Lara-Castillo et al., 2015). Canonical Wnt/β-catenin
signaling is proven to stimulate anabolic actions in osteocytes
(Osório, 2015; Tu et al., 2015). Deletion of β-catenin in
osteocytes abolishes the bone anabolic response to mechanical
loading (Javaheri et al., 2014; Kang et al., 2016). Thus, osteocytic
accumulation of β-catenin may be one mechanism of mechanical-
induced bone formation. In addition, the Wnt/β-catenin signaling is
a well-known pathway associated with cell apoptosis (Ahmed et al.,
1998). Mechanical stimulation-induced PGE2 in osteocytes blocks
glucocorticoid-induced apoptosis through activated β-catenin, a
downstream effector of the PI3K/Akt pathway (Kitase et al.,
2010). In addition, the cAMP/PKA signaling pathway is involved
in PGE2-mediated osteocyte survival during mechanical stimulation
(Kitase et al., 2010). Integrins α5β1, which requires the opening of
Cx43 hemichannels in osteocytes, participate in mechanical
stimulation-induced osteocyte survival through FAK/Src and the
ERK pathway (Plotkin et al., 2005).

The PGE2 released upon mechanical stimulation exerts a
paracrine effect on the EP2/4 receptor to suppress the sclerostin
expression through the cAMP/PKA pathway (Galea et al., 2011;
Genetos et al., 2011). Sclerostin is an antagonist of canonical Wnt-β-
catenin signaling in osteoblasts (Baron and Kneissel, 2013) through
binding to the Wnt co-receptor Lrp5/6 (Li et al., 2005) to suppress
osteogenesis (Sawakami et al., 2006). Several in vitro studies indicate
the roles of osteocyte-derived PGE2 in promoting osteoblast activity
during mechanical stimulation. Increased concentration of PGE2
released into the conditioned medium by fluid flow-loadedMLO-Y4
osteocytes promotes osteoblast differentiation (Zeng et al., 2019). In
a 3D trabecular bone explant co-culture model, dynamic
deformational loading can significantly increase the PGE2 release
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from osteocytes in their native extracellular matrix environment and
promote osteoblastic bone formation (Chan et al., 2009). PGE2
released from osteocytes regulates osteoblast recruitment and
collagen organization in the bone matrix during oscillatory fluid
flow (Matsuzaka et al., 2021). Sclerostin not only inhibits bone
formation but also promotes osteoclast formation. Osteocytes
constitute a significant source of osteoclastogenic cytokine
RANKL (Boyle et al., 2003; Xiong et al., 2011), which is also
regulated by Wnt/β-catenin signaling (Donald et al., 2005;
Nakashima et al., 2011). Sclerostin directly increases the levels of
RANKL in osteocytes to regulate osteoclast activity by inhibiting β-
catenin in osteoclasts (Wijenayaka et al., 2011). In contrast,
sclerostin deficiency is resistant to bone resorption during
mechanical unloading (Lin et al., 2009). Together, the PGE2
secreted from osteocytes upon mechanical stimulation has
paracrine effects through EP2 and EP4 receptors to increase β-
catenin and suppress sclerostin expression in osteocytes. Increased
β-catenin in osteocytes promotes Cx43 expression, gap junction
formation, mechanosensitivity, and survival of osteocytes.
Suppression of sclerostin secretion promotes osteoblast activity
and inhibits osteoblast activity.

Cx43 hemichannels in bone development
under physiological level of mechanical
stress

Previous studies using Cx43 knockout and transgenic mouse
models provide insightful information regarding the importance of
Cx43 hemichannels in bone development under physiological
mechanical conditions. Although global deleting Cx43 (Cx43−/−)
caused early postnatal death due to an obstruction of the right
ventricular outflow tract, they showed retarded intramembranous,
endochondral ossification, craniofacial abnormalities, and osteoblast
dysfunction (Lecanda et al., 2000; Thi et al., 2010; Chaible et al.,
2011; Ishikawa et al., 2016). Moreover, mice with specific deletion of
Cx43 by expressing the Cre recombinases in osteoprogenitors
(DM1-Cre;Cx43-/flx) (Watkins et al., 2011), preosteoblasts (Osx1-
Cre;Cx43flx/flx) (Hashida et al., 2014), early osteoblasts/osteocytes
(Col1α1-Cre;Cx43-/flx) (Castro et al., 2003; Chung et al., 2006),
mature osteoblasts/osteocytes (OCN-Cre;Cx43-/flx) (Bivi et al.,
2012a), and osteocytes (8-kb DMP1-Cre;Cx43flx/flx) (Bivi et al.,
2012a; Bivi et al., 2012b) all showed thinner cortical thickness,
larger marrow area, and total cross-sectional area. The change of
cortical bone structure in these cKO mice was due to both increased
periosteal osteoblastic bone formation (Watkins et al., 2011; Bivi
et al., 2012a; Watkins et al., 2012; Pacheco-Costa et al., 2015) and an
even greater unbalanced increase in endosteal osteoclastic bone
resorption (Watkins et al., 2011; Bivi et al., 2012a; Watkins et al.,
2012; Lloyd et al., 2013). In addition, Cx43 overexpressing in
osteocytes (Cx43OT) preserves osteocyte viability and bone
formation to ameliorate age-induced cortical bone loss (Davis
et al., 2018). It is worth noting that Cx43 deficiency affects the
production and release of PGE2 in osteoblasts and osteocytes. A
lower amount of PGE2 is found in the primary calvaria cells of
Cx43−/− mice than in wild-type (WT) mice (Grimston et al., 2006).
The absence of Cx43 in osteocytes by Cx43 shRNA attenuates PGE2
synthesis by COX-2 (Bivi et al., 2013). Although Cx43 knockout

during bone developmental stages from the early stage (DM1-Cre)
to the late stage (DMP1-Cre) of osteoblast differentiation shows the
similar bone structure, Cx43 deficiency abolishes both Cx43 gap
junctions and hemichannels. Thus, it is impossible to determine
whether Cx43 gap junctions or/and hemichannels are responsible
for the observed phenotypes. It is worth noting that other cell types
may play indirect roles in osteoblast differentiation after knocking
out Cx43. For example, Cx43 in osteoblasts/osteocytes indirectly
modulates skeletal muscle growth and function (Shen et al., 2015; Li
et al., 2021). In turn, skeletal muscle can also influence bone growth
by releasing osteogenic myokines (Hamrick et al., 2010). Thus, the
roles of Cx43 hemichannel in bone and other tissue crosstalk need to
be further studied.

Besides Cx43-deficient mice, several Cx43 gene mutations can
lead to a skeletal disease called oculodentodigital dysplasia (ODDD),
with phenotypic presentations of syndactyly, craniofacial
abnormalities, and long broad bones (Paznekas et al., 2003). To
date, four mouse strains (Cx43I130T/+ (Kalcheva et al., 2007),
Cx43Jrt(G60S)/+ (Flenniken et al., 2005), Cx43G138R/+ (Dobrowolski
et al., 2008) and Cx43K258Stop/- (Pacheco-Costa et al., 2015;
Moorer et al., 2017)) with missense point mutations in one allele
of the Cx43 gene are generated to mimic the phenotypes of ODDD.
The mutations alter Cx43 protein conformation, thus leading to
changed hemichannel activities (Dobrowolski et al., 2007). Increased
(Dobrowolski et al., 2008) or decreased (Kalcheva et al., 2007)
Cx43 hemichannel functions are found in these Cx43 mutants,
indicating that normal Cx43 hemichannel function is crucial in
maintaining bone structure.

Our group has generated two transgenic mouse models to
dissect the function of Cx43 gap junctions and hemichannels in
osteocytes, respectively. A 10 kb-DMP1 promoter drives the two
transgenic mouse models R76W and Δ130–136 with the
overexpression of dominant negative Cx43 mutants in osteocytes
(Xu et al., 2015). The R76W site mutant, of which Cx43 amino acid
residue arginine-76 (R) is replaced by tyrosine, inhibits gap
junctions. The Δ130–136 mutant with the deletion of seven
residues in the cytoplasmic loop of Cx43 protein at amino acids
130–136 inhibits both gap junctions and hemichannels. The bone
phenotype in R76W mice is mostly like WT mice, except for
increased endosteal osteoclast activity and bone remodeling
markers in serum. In contrast, the Δ130–136 mice exhibit
increased osteocyte apoptosis, endosteal resorption, and periosteal
bone formation, resulting in higher tissue, cortical, and marrow
cavity area of femoral midshaft at the femoral mid-diaphysis. The
bone phenotypes in Δ130–136 mice are similar, but even more
severe, than osteocyte-specific Cx43 cKOmice driven by 8-kbDMP1
promoter (Bivi et al., 2012a), indicating Cx43 deficiency in
osteocytes impairs the functions of Cx43 hemichannel in bone
development. Compared to WT and R76W, the Δ130–136 mice
show lower PGE2 levels in tibia diaphysis (Zhao et al., 2022a). As
discussed above, PGE2 released by osteocytes mediated by
Cx43 hemichannels is proven to maintain osteocyte survival and
prevent their apoptosis (Kitase et al., 2010). Consistently, both
Δ130–136 and 8-kb DMP1-Cre;Cx43 cKO mice show increased
osteocyte apoptosis in cortical bone. Impaired
Cx43 hemichannels of osteocytes are also found in osteocyte-
specific integrin a5 cKO mice driven by 10-kb DMP1 promoter,
which expresses lower serum PGE2 levels and increased osteocytes
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apoptosis and cortical thickness in tibias (Zhao et al., 2022b). Thus,
under a physiological mechanical environment, Cx43 hemichannels
and PGE2 in osteocytes likely play a predominant role in osteocyte
vitality and bone structure.

PGE2 release through osteocytic
Cx43 hemichannels promotes bone
anabolism upon mechanical loading

PGE2 stimulates bone resorption and formation (Jee and Ma,
1997; Blackwell et al., 2010). Continuous PGE2 treatment decreases
cancellous bone mass due to bone resorption exceeding bone
formation (Tian et al., 2007). Whereas moderate PGE2 treatment
by intraperitoneal injection (Jee et al., 1985; Ueno et al., 1985) and
local metaphyseal injection (Welch et al., 1993; Yang et al., 1993)
increases both trabecular and cortical bone mass in growing rats. In
addition, PGE2 prevents bone loss induced by ovariectomy (Mori
et al., 1990; Harada et al., 1995), disuse (Jee et al., 1992), and
orchidectomy (Li et al., 1995) in rats. Recent studies show that
PGE2 activates EP4 in sensory nerves to promote bone formation
and inhibit adipogenesis by inhibiting sympathetic activity through
the central nervous system (Chen et al., 2019; Hu et al., 2020). The
release of PGE2, a known direct product of bone mechanical
stimulation, has important anabolic effects on the skeleton. In
healthy women, a rapid and significant increase of PGE2 levels in
the proximal tibial metaphysis is observed using the microdialysis
technique in response to weight-bearing mechanical loading
(Thorsen et al., 1996). Inhibition of PGE2 by a COX-2 inhibitor,
NS-398, completely blocks tibial bone formation induced by four-
point bending loading in rats (Forwood, 1996; Li et al., 2002). On the
contrary, activation of the PGE2 receptor using ONO-4819 (agonist
for prostaglandin E receptor subtype EP4) has an additive effect on
bone formation in response to mechanical loading (Hagino et al.,
2005). The involvement of Cx43 in the anabolic function of
mechanical loading and PGE2 has been reported in earlier
studies. Mice with Cx43 deficiency show altered bone anabolic
response to mechanical loading. Col1α1-Cre;Cx43 cKO mice
show attenuated tibial endosteal bone formation during non-
physiological four-point (Grimston et al., 2006) or three-point
tibial bending (Grimston et al., 2008). A lower level of PGE2 is
found in the primary calvaria cells from Cx43−/− mice than in WT
mice during mechanical stretching (Grimston et al., 2006). In DM1-
Cre;Cx43 cKO mice, axial tibia loading results in a greater decrease
of endosteal bone formation compared toWTmice (Grimston et al.,
2012). However, Cx43 deficiency has a positive effect on periosteal
bone formation. Deletion of Cx43 in osteoblasts/osteocytes (DM1-
Cre;Cx43 cKO and OCN-Cre;Cx43 cKO mice) showed an enhanced
tibial periosteal response to tibial axial compression (Grimston et al.,
2012) or tibial cantilever bending (Zhang et al., 2011). Similarly,
deletion of Cx43 in osteocytes (DMP1-Cre; Cx43 cKOmice) showed
enhanced periosteal bone formation in response to ulna
compression (Bivi et al., 2013). Nevertheless, these cKO mice
have both impaired gap junctions and hemichannels, as well as
potential channel-independent roles of Cx43. Thus, the specific role
of gap junctions and hemichannels formed by Cx43 hemichannels in
response to mechanical loading in the bone cannot be resolved with
Cx43 deletion models.

Recently, our group find a close relationship between
Cx43 hemichannels and PGE2 release in skeletal response to
mechanical loading in vivo. In this study, PGE2 levels in the
diaphysis are significantly increased in WT and gap junction
impaired R76W upon tibial cyclic compression loading. Increased
PGE2 level suppresses the sclerostin expression in osteocytes and
bone formation on the endosteal surface. However, Δ130-136 mice
with impaired gap junctions and hemichannels show unchanged
PGE2 levels and sclerostin expression in osteocytes. As a result, the
increased bone mass caused by mechanical loading is not seen in
Δ130-136 mice. Attenuated bone formation and increased
resorption on the endosteal surface lead to the enlargement of
the bone marrow cavity and inhibited bone mass gain (Zhao
et al., 2022a). The data points to the role of Cx43 hemichannels
in mediating PGE2 release and the anabolic action of mechanical
loading. To further investigate whether the changed mechanical
response in Δ130-136 mice is due to Cx43 hemichannels, a specific
mouse monoclonal blocking antibody Cx43 (M1) was developed
and used to investigate the role of Cx43 hemichannels in vivo.
Administration of this particular antibody exhibits similar effects as
Δ130-136 mice, including the attenuated PGE2 level and inhibited
anabolic response to mechanical loading on the endosteal surface.
PGE2 administration, however, can rescue the attenuated endosteal
osteogenic response to mechanical loading impeded by the Cx43
(M1) antibody. PGE2 acts in a paracrine manner to suppress
sclerostin expression in vitro (Galea et al., 2011; Genetos et al.,
2011). These in vivo studies demonstrate that Cx43 hemichannels
activated by mechanical stimulation release PGE2 from osteocytes to
suppress sclerostin expression in osteocytes and enhance osteoblast
activity and bone formation on endosteal surfaces. We further
demonstrate the important role of Cx43 hemichannels and PGE2
release in bone anabolic response to mechanical loading through the
use of osteocyte-specific integrin a5 cKO mice driven by a 10-kb
DMP1 promoter (Zhao et al., 2022b). Since the interaction between
integrin α5 and Cx43 is essential for the hemichannel opening by
mechanical loading (Batra et al., 2012), integrin α5 deficiency
impedes load-induced Cx43 hemichannel opening and PGE2
release (Batra et al., 2012; Zhao et al., 2022b). Integrin α5 cKO
mice in osteocytes exhibit attenuated loading effects on catabolic
sclerostin reduction and anabolic β-catenin increase, contributing to
decreased endosteal osteoblasts and bone formation (Figure 1). Our
studies show that the anabolic effect of Cx43 hemichannel-released
PGE2 is on the endosteal surface (Zhao et al., 2022a; Zhao et al.,
2022b). Consistently, previous studies also report that the effect of
PGE2 on bone anabolic response to mechanical loading appears to
be more on the endosteal surface than the periosteal surface
(Forwood, 1996; Li et al., 2002; Hagino et al., 2005).

Interestingly, inhibited Cx43 hemichannels in Δ130-136 mice,
Cx43 (M1) group, and integrin α5 cKO mice showed an increase of
osteoclast activity on the endosteal surface during mechanical
loading. Whether this catabolic response is related to PGE2
requires further investigation. The mechanosensitivity of bone is
gradually diminished during aging (Holguin et al., 2014; Holguin
et al., 2016), accompanied by impaired mechanotransduction
(Chalil et al., 2015) and decreased Cx43 expression in osteocytes
(Kar et al., 2013). We speculate that attenuated Cx43 expression in
osteocytes is related to abolished Cx43 hemichannel activity and
PGE2 release in aged bone. Indeed, significantly reduced PGE2
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EP4 receptors in the sensory nerve of aged bone attenuate the
sensibility to changes in bone metabolism (Lv et al., 2022).

Cx43 hemichannels play a protective role
against bone loss during mechanical
unloading

Reduced or no mechanical loading, such as long bed rest
(Spector et al., 2009), and astronauts in space missions (Keyak
et al., 2009), harms skeletal health, which is associated with an
imbalanced bone turnover. Suppressed osteoblastic bone formation
and activated osteoclastic bone resorption (Bikle and Halloran,
1999; Kondo et al., 2005) increase bone loss and fracture risk.
Previous in vitro studies show that Cx43 hemichannels
participate in response to mechanical unloading. Zero-gravity by
parabolic flight decreases Cx43 expression in osteocytes (Di et al.,
2011). Simulated microgravity by a random position machine
(RPM) increases the activity of Cx43 hemichannels and the
release of PGE2 (Xu et al., 2017). Dominant negative integrin
β1 mutants driven by an OCN promoter show a lower cancellous
bonemass in the distal femoral metaphysis caused by increased bone
resorption and decreased bone formation during short-term
hindlimb unloading, a model mimicking unloading/disuse
(Iwaniec et al., 2005). Given that integrin a5β1 regulates the
opening of the Cx43 hemichannels, this study implies the vital
role of Cx43 hemichannels in bone response to unloading. High
extracellular PGE2 due to sustained opening of hemichannels during
unloading (Xu et al., 2017) resulted in osteoclast resorption and
bone loss (Coon et al., 2007; Knippenberg et al., 2007; Tian et al.,
2007). Consistently, deletion of Cx43 in osteoblast/osteocyte-specific
Cx43 cKO mice driven by the 2.3-kb Col1α1 promoter (Grimston
et al., 2011) andOCN promoter (Lloyd et al., 2012; Lloyd et al., 2013)
show protection against unloading-induced bone loss. In contrast,
our previous study shows that enhanced Cx43 hemichannels in
R76Wmice protect from osteocyte apoptosis in cortical bone during
mechanical unloading (Zhao et al., 2020). PGE2 is an inhibitor of
sclerostin expression, and both sclerostin and PGE2 inhibitors are
known to be associated with cell apoptosis (Ahmed et al., 1998). It is
assumed that PGE2 from Cx43 hemichannels has a protective role
against osteocyte apoptosis. Multifaced roles of Cx43 could cause the
difference seen between Cx43 deletion and hemichannel-impaired
models. Further studies are needed to establish the underlying
mechanisms of Cx43 hemichannels and PGE2 in response to
mechanical unloading.

Future perspectives

With research advances and the development of new transgenic
mouse models, the inter-relationship between Cx43 hemichannels
and extracellular PGE2 in mediating osteogenic response to

mechanical loading is becoming more evident. However, several
questions remain, including 1) if extracellular PGE2 released by
hemichannels upon mechanical loading has any direct action on
osteoclasts; 2) if the loading-induced bone anabolic response is
partly regulated through the influence of osteocyte-released PGE2
on the nerve system. Early studies reported that temporarily
blocking peripheral neurons by bupivacaine reduces bone
formation in compressed ulna (Sample et al., 2008). Recently,
PGE2 has been found to act on sensory neurons and affect
sympathetic nerve activity, and regulate bone homeostasis (Chen
et al., 2019; Lv et al., 2021). It is speculated that the PGE2 released
from Cx43 hemichannels in osteocytes may not only have autocrine
and paracrine effects on osteocytes and the other types of bone cells,
respectively, but may also systematically influence sensory nerves.
The interactions of bone cells and sensory neurons regulated by
PGE2 remain largely unknown. These could all be potential
directions for future research. Moreover, further research on
unveiling the mechanism of action for hemichannels and PGE2
may help in the discovery and development of potential therapeutics
that aid in treating bone loss, in particular, in the elderly population
with lost sensitivity to anabolic responses to mechanical stimulation.
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