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Introduction: Plasticity is an inherent property of the normal gastrointestinal tract
allowing for appropriate response to injury and healing. However, the aberrancy of
adaptable responses is also beginning to be recognized as a driver during cancer
development and progression. Gastric and esophageal malignancies remain leading
causes of cancer-related death globally as there are limited early disease diagnostic
tools and paucity of new effective treatments. Gastric and esophageal
adenocarcinomas share intestinal metaplasia as a key precancerous precursor lesion.

Methods: Here, we utilize an upper GI tract patient-derived tissue microarray that
encompasses the sequential development of cancer from normal tissues to
illustrate the expression of a set of metaplastic markers.

Results: We report that in contrast to gastric intestinal metaplasia, which has traits of
both incomplete and complete intestinal metaplasia, Barrett’s esophagus (i.e.,
esophageal intestinal metaplasia) demonstrates hallmarks of incomplete intestinal
metaplasia. Specifically, this prevalent incomplete intestinal metaplasia seen in
Barrett’s esophagus manifests as concurrent development and expression of both
gastric and intestinal traits. Additionally, many gastric and esophageal cancers display a
loss of or a decrease in these characteristic differentiated cell properties, demonstrating
the plasticity ofmolecular pathways associatedwith the development of these cancers.

Discussion: Further understanding of the commonalities and differences
governing the development of upper GI tract intestinal metaplasias and their
progression to cancer will lead to improved diagnostic and therapeutic avenues.
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Introduction

Cancers of the stomach and esophagus are major causes of worldwide cancer-related
morbidity and mortality with an estimated 1.7 million new cases each year resulting directly
in over 1.3 million cancer-related deaths (Sung et al., 2021). In the United States, there were
over 48,000 new cases of stomach and esophageal cancers with 27,000 deaths in 2022 (Siegel
et al., 2022). In the developed world, adenocarcinoma histologic subtypes predominate and
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carry dismal 5-year survival rates of only 20%–25% (Rubenstein and
Shaheen, 2015; Coleman et al., 2018; Thrift and El-Serag, 2020).
While new treatment paradigms are being explored (Zeng and Jin,
2022), current curative treatments remain restricted to a relatively
limited arsenal comprised of conventional chemotherapy, chemo-
radiotherapy, and surgical resection of the tumor (Bonenkamp et al.,
1999; van Hagen et al., 2012; Shapiro et al., 2015; Al-Batran et al.,
2019). Thus, patients would benefit from an improved
understanding of the pathogenesis of these disease leading to
improved early disease detection tools, and safer and more
efficacious treatments.

In general, with the exception of tumors arising in the proximal
region of the stomach (cardia), gastric and esophageal
adenocarcinomas have been considered separate entities in terms
of precursor lesions, progression to malignancy, and subsequent
clinical course of tumors (Ajani et al., 2017; Smyth et al., 2017; Saenz
and Mills, 2018; Singh et al., 2021; Souza and Spechler, 2022).
However, accumulating data indicate that gastric and esophageal
adenocarcinomas may have considerably more in common than
previously appreciated. Genomic profiling has revealed distinct
molecular subtype similarities. The ‘Singapore-Duke’ study (Lei
et al., 2013), the Asian Cancer Research Group (ACRG) study
(Cristescu et al., 2015), and The Cancer Genome Atlas (TCGA)
studies (Cancer Genome Atlas Research Network, 2014; Cancer
Genome Atlas Research Network, 2017) have provided the basis for
the molecular classification of gastroesophageal cancers (Zeng and
Jin, 2022). The predominant molecular subtype for gastric
adenocarcinomas (over 52%) and esophageal adenocarcinomas
(over 98%) is the Chromosomal Instability (CIN) subtype
(Cancer Genome Atlas Research Network, 2014; Cancer Genome
Atlas Research Network, 2017). Importantly, these CIN gastric and
esophageal adenocarcinomas arise in a background of metaplasia
and share common intestine-like features. The metaplastic
precursor lesion to esophageal adenocarcinoma (EAC) is defined
by replacement of the normal squamous epithelial lining of the
esophagus with metaplastic columnar cells in response to chronic
gastric refluxate (Spechler et al., 2010; Spechler and Souza, 2014).
Metaplasia in the body of the stomach is the precursor lesion to
gastric adenocarcinoma (GA), and arises during chronic atrophic
gastritis through epithelial reprogramming to a more distal antral-
like state (Goldenring and Mills, 2022). Such pyloric or
pseudopyloric metaplasia occurs in response to chronic damage
induced predominantly by Helicobactor pylori infection (Correa,
1992; Goldenring and Mills, 2022). In both the esophagus and
stomach, metaplasia can assume an intestine-like state. In the
esophagus, such metaplasia is called Barrett’s esophagus (BE),
and in the stomach it is known as gastric intestinal
metaplasia (GIM).

Here, we performed an immunohistologic examination to
compare metaplasia and oncogenesis in the esophagus and
stomach. We used a set of markers normally restricted to specific
regions of the gastrointestinal epithelium whose expression is
induced in metaplasia. We immunostained a microarray of
human tissue exhibiting progressive phases of oncogenesis in the
esophagus and stomach using antibodies against: trefoil peptides
(TFF2 and TFF3), mucins (MUC2, MUC5AC, and MUC6), and
transcription factors (CDX2 and SOX2). Our results indicate a
similarity between BE and incomplete GIM. By definition,

incomplete GIM manifests as the concomitant expression of both
gastric and intestinal markers, which we also observe in BE. The
mixed gastric and intestinal differentiated cell features seen in BE
and GIM are apparently decreased or lost during oncogenesis. Our
sampling of malignant cells largely showed decreased expression of
metaplasia markers, suggesting the plasticity of molecular pathways
involved in cancer development. Further elucidation of the
similarities we identify here in the processes governing the
development of metaplasia and cancer progression in the
esophagus and stomach could lead to improved diagnostic and
therapeutic avenues.

Materials and methods

Study case collection

Clinical cases included in our study were collected between
January 2011 and December 2018 at Johns Hopkins Hospitals with
patient informed consent. All tissue samples were obtained by
esophagogastroduodenoscopy (EGD) biopsy, surgical resection,
and/or endoscopic mucosal resection (EMR) procedures. Relevant
clinical and pathological information for study cases was reviewed
and included in the study. The dysplasia grade for Barrett’s
esophagus cases was determined according to the American
College of Gastroenterology (ACG) 2022 guidelines (Shaheen
et al., 2022) and the WHO classification of digestive system
tumors (Nagtegaal et al., 2020). The pathological stage of
resected carcinomas was determined according to the eighth
edition of the American Joint Committee on Cancer (AJCC)
Cancer Staging Manual (Amin et al., 2017) and the WHO
classification of digestive system tumors (Nagtegaal et al., 2020).
All pathological diagnoses were determined by pathologists certified
by the American Board of Pathology and reviewed by
gastroenterology pathologists.

The use of pathology material for the study was approved by the
Institutional Review Board of Johns Hopkins Medical Institutions.
In addition, all methods performed in the study were in accordance
with the relevant guidelines and regulations.

Construction of the tissue microarrays

The tissue microarrays (TMA) were constructed using the
above-mentioned clinical biopsy, surgical resection, and/or
endoscopic mucosal resection tissue samples. All tissues were
fixed in 10% formalin and embedded in paraffin. To verify the
original pathology reports, hematoxylin and eosin (H&E) stained
sections were re-reviewed by a pathologist certified by the American
Board of Pathology (QKL) prior to TMA construction to ensure the
accurate representation of the lesional area and matched normal
tissue. Furthermore, H&E stained slides of individual cases were
reviewed, the best representative slides were selected for each case,
and the corresponding tissue blocks were selected for TMA
inclusion. TMA cores (at a diameter of 2.0 mm for BE cases, and
1.0 mm for all other cases) were obtained from paraffin blocks and
transferred to build the TMA blocks. In our TMAs, 3-5 cores were
obtained from single tissue blocks, except in two cases of BE due to
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scant biopsy material, in which case two cores were obtained from
each block. After the construction of the TMAs, H&E stained TMA
slides were re-reviewed by a pathologist (QKL) as well as by a
pathologist specializing in esophageal and gastric oncogenesis
(JCM) to ensure the pathological diagnosis of individual cores.

Immunohistochemical staining of markers

The immunohistochemical (IHC) assays were performed by the
Oncology Tissue Services Core at The Johns Hopkins University
School of Medicine. Briefly, the TMA blocks were cut into 4 µm
unstained slides. All unstained slides were deparaffinized prior to
incubation with primary antibodies. Following dewaxing and
rehydration, epitope retrieval was performed using Ventana Ultra
CC1 buffer (catalog# 6414575001, Roche Diagnostics) at 96°C for
64 min. All IHC stains were performed on a Ventana Discovery Ultra
autostainer (Roche Diagnostics). Primary antibodies were applied at
36°C for 60 min, and then detected using an anti-mouse or anti-rabbit
HQ detection system (catalog# 7017936001 or 7017782001, Roche
Diagnostics) followed by Chromomap DAB IHC detection kit
(catalog # 5266645001, Roche Diagnostics), counterstaining with
Mayer’s H&E, dehydration, and mounting. For SOX2 and
CDX2 IHC stains, the counterstaining step was performed with
eosin only. Appropriate positive and negative controls were
included in the staining assays. The complete details of primary
antibodies are summarized in Table 1.

Evaluation and scoring of IHC staining

The strength of staining for each marker (taking into account
membranous, cytoplasmic and nuclear staining patterns) was scored
by the pathologist (QKL) using a semi-quantitative four-tier system:
score 0 (0% of cells stained, no staining), score 1 (<10% of cells
stained, weak and sparse focal staining), score 2 (10%–50% of cells
stained, medium and focal staining), or score 3 (>50% of cells
stained, strong and diffuse staining) (Ao et al., 2014; Gniadek et al.,
2017; Zhu et al., 2019; Jin et al., 2021; Li et al., 2021; Johnson et al.,
2022; Li et al., 2022). Care was taken not to interpret entrapped
macrophages or mucinous material as positive staining.

All IHC stained slides were scanned using the Concentriq
Digital Pathology Platform (Proscia) and stored as digital files.

Each core was considered as an individual data point, as more
than one core might be obtained from the same tissue block
described in detail above (Ao et al., 2014; Gniadek et al., 2017;
Zhu et al., 2019; Jin et al., 2021; Li et al., 2021; Johnson et al., 2022;
Li et al., 2022). Depending on the TMA section, not all cores
could be evaluated due to the loss of tissue during processing or
sectioning.

Data analyses and statistics

For each phenotype, the average histological score was
calculated by averaging all the core staining scores for the
corresponding diagnostic phenotype, and results were plotted
using GraphPad Prism 9.0. In addition, the relative fraction of
tissue cores with each score was analyzed by SPSS 19.0 (IBM) for
each phenotype, and results were plotted using GraphPad Prism 9.0.
The differential expression of individual markers among phenotypic
groups was analyzed by the Fisher’s exact test (Supplementary
Tables S1, S2). All tests were two-sided with a
p-value <0.05 considered statistically significant.

Results

Demographics of the TMA study cases

The tissue microarray patient demographics are summarized in
Table 2. Overall, we assessed a total of 40 cases from the esophagus
and 12 cases from the stomach. As mentioned above, multiple TMA
cores may have been taken from a single case based on the presence
or absence of specific diagnoses in the sampled region as determined
by our expert pathologists. The patients included in our study were
mostly males of the White/Caucasian race/ethnicity with an average
age of 65 years old.

In our cohort, we examined the presence of intestinal
metaplasia, dysplasia and adenocarcinoma. A total of 38 cases
of Barrett’s esophagus (15 negative for dysplasia, 13 with low-
grade dysplasia, and 10 with high-grade dysplasia) and 6 cases of
GIM were analyzed. In addition, 30 EACs and 11 GAs cases were
included. A subset of our study cases, including 15 EACs and
11 GAs were treated with curative surgical or endoscopic
mucosal resection. At time of resection, five of the EACs had

TABLE 1 Summary of primary antibodies.

Antibody Company Clone Clonality Dilution Catalog #

TFF2 Sigma-Aldrich N/A Rabbit Polyclonal 1:250 (0.1 mg/mL) HPA036705

TFF3 Sigma-Aldrich N/A Rabbit Polyclonal 1:2000 (0.1 mg/mL) HPA035464

MUC2 Leica Ccp58 Mouse Monoclonal Prediluted PA0155

MUC5AC Cell Marque MRQ-19 Mouse Monoclonal 1:2000 292M-94

MUC6 Abcam MUC6/916 Mouse Monoclonal 1:200 Ab216017

CDX2 Abcam EPR2764Y Rabbit Monoclonal 1:2000 (0.866 mg/mL) Ab76541

SOX2 Santa Cruz E-4 Mouse Monoclonal 1:100 (200 ug/mL) Sc-365823
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lymph node metastases, while five and two of the GAs had lymph
node and liver metastases, respectively. Many of these resected
cancer cases had received neoadjuvant chemoradiation or
chemotherapy prior to surgery, including 11 of 15 EACs and
5 of the 11 GAs. Our tissue microarray demonstrates an inclusive
clinical representation of normal, metaplasia, and
adenocarcinoma cases for the esophagus and stomach based
on patient demographics.

A tissue microarray that encompasses
sequential formation of esophageal and
gastric adenocarcinomas

H&E and corresponding Periodic Acid–Schiff (PAS) staining
showed the histological characteristics of normal squamous,

Barrett’s esophagus negative for dysplasia (BE-NFD), Barrett’s
esophagus with low-grade dysplasia (BE-LGD), Barrett’s
esophagus with high-grade dysplasia (BE-HGD), and EAC from
the esophageal cases (Figures 1A, B); and normal gastric corpus,
GIM, and GA from the gastric cases (Figures 1C, D). As expected,
PAS staining highlighted mucus-containing goblet cells in cores
from both BE and GIM samples. In addition, we carefully examined
full glands encompassing the top (closest to the lumen of the
esophagus or stomach) and the deeper gland areas for BE-NFD
and GIM. We did this, as molecular analyses of BE in recent years
have highlighted basal, deep glandular mucous cell features in these
lesions (Busslinger et al., 2021; Evans et al., 2022). Importantly, we
performed all immunohistologic analyses on the same cores using
serial sections to demonstrate the relationship of multiple assessed
markers on the same tissue areas. From the TMA esophageal and
stomach cases, we have also included samples of columnar-lined

TABLE 2 Demographics of the study cases.

Characteristic No.

Location Esophagusa(n = 40) Stomacha(n = 12)

Sex Female,n(%) 5(12.5) 2(16.7)

Male,n(%) 35(87.5) 10(83.3)

Race/Ethnicity Hispanic or Latino,n(%) 0(0.0) 1(8.3)

African American,n(%) 1(2.5) 1(8.3)

Asian,n(%) 0(0.0) 1(8.3)

White/Caucasian,n(%) 35(87.5) 9(75.0)

Otherb,n(%) 4(10.0) 0(0.0)

Age, years (mean [range]) 65.5[50–90] 64.5[49–76]

≥60 years,n(%) 32(80.0) 8(66.7)

<60 years,n(%) 8(20.0) 4(33.3)

Procedure Biopsy,n(%) 22(55.0) 2(16.7)

Endoscopic Mucosal Resection,n(%) 2(5.0) 0(0.0)

Surgical Resection,n(%) 16(40.0) 10(83.3)

Diagnosis Intestinal Metaplasia,n(%) N/Ac 6(50.0)

Adenocarcinoma,n(%) 30(75.0) 11(91.7)

with Lymph Node Metastasis,n(%) 5(12.5) 5(41.7)

with Liver Metastasis,n(%) 0(0.0) 2(16.7)

Barrett’s Esophagus

with Low-Grade Dysplasia,n(%) 13(32.5) N/A

with High-Grade Dysplasia,n(%) 10(25.0) N/A

Negative for Dysplasia,n(%) 15(37.5) N/A

Proton Pump Inhibitors Treatment Treatment,n(%) 23(57.5) 9(75.0)

No treatment,n(%) 17(42.5) 3(25.0)

aIn our study, three patients had both a biopsy and follow-up stomach cancer surgical resection; we considered these cases separately.
bIncluding Native American or Alaska Native, Native Hawaiian or Pacific Islander, or other.
cCases of esophageal intestinal metaplasia were classified as Barrett’s esophagus.
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mucosa of the esophagus (DeMeester and DeMeester, 2000) and
complete GIM of the stomach (Correa et al., 2010; Goldenring and
Mills, 2022) (Supplementary Figures S1, S2). Our TMAs provide a
valuable tool to compare and contrast critical features during the
development of BE and GIM and their sequential progression to
cancers in the esophagus and stomach.

TFF2 and TTF3 expression in normal
squamous-BE-EAC and normal gastric
gland-GIM-GA progression sequences

Pyloric or pseudopyloric metaplasia is a gastric repair process
in response to injury usually caused by Helicobacter pylori

FIGURE 1
Human tissuemicroarray of normal squamous-BE-EAC and normal gastric gland-GIM-GA progression sequence. (A)Morphology of representative
H&E staining from the human tissue microarray of esophageal cases, from left to right: normal squamous, BE-NFD, BE-LGD, BE-HGD, and EAC. (B)
Morphology of representative PAS staining from the human tissue microarray of esophageal cases, same sequence as in (A). (C) Morphology of
representative H&E staining from the human tissue microarray of gastric cases, from left to right: normal gastric corpus (left inset from base of the
glands, right inset from the surface of the glands), GIM, andGA. (D)Morphology of representative PAS staining from the human tissuemicroarray of gastric
cases, in the same sequence as in (C). All scale bars, 500 μm.
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infection (Goldenring et al., 2010; Goldenring and Mills, 2022).
During this process, the normal gastric glands exhibit loss of
parietal cells, and mature chief cells become metaplastic with
abnormal expression of the gastric gland neck cell lineage
marker, Trefoil Factor 2 (TFF2) (Weis et al., 2013; Saenz and
Mills, 2018; Willet et al., 2018). We note that such metaplastic
cells are called spasmolytic polypeptide-expressing metaplasia
(SPEM) because TFF2 is now the official name for spasmolytic

polypeptide. GIM and gastric cancer are thought to arise from
pyloric metaplasia (Goldenring et al., 2010; Graham et al., 2019;
Goldenring and Mills, 2022). Also, it should be noted that the
lesion “chronic atrophic gastritis” is essentially indistinguishable
from pyloric metaplasia as the loss of parietal cells and
reprogramming of chief cells are the atrophic changes that
give that lesion its name (Goldenring and Mills, 2022; Hsieh
et al., 2022).

FIGURE 2
TFF2 expression in normal squamous-BE-EAC and normal gastric gland-GIM-GA progression sequence. (A) Immunohistochemistry of TFF2 staining
in human tissue microarray esophageal cases, from left to right: normal squamous, BE-NFD, BE-LGD, BE-HGD, and EAC. (B) Immunohistochemistry of
TFF2 staining in human tissue microarray gastric cases, from left to right: normal gastric corpus (left inset from base of the glands, right inset from the
surface of the glands), GIM, and GA. All scale bars, 500 μm. (C) Analysis of the human esophageal tissuemicroarray with normal squamous, BE-NFD,
BE-LGD, BE-HGD, and EAC tissue cores stained by immunohistochemistry for TFF2. Top: the TFF2 average IHC intensity score of each esophageal
phenotype is plotted. For staining intensity, score 0 (undetectable) to 3 (most intense). Bottom: the TFF2 fraction of esophageal tissue cores with each
score is plotted. Each phenotype’s total tissue core number is provided at the bottom of each column. (D) Analysis of the human gastric tissue microarray
with normal, GIM, and GA tissue cores stained by immunohistochemistry for TFF2. Top: the TFF2 average IHC intensity score of each gastric phenotype is
plotted. For staining intensity, score 0 (undetectable) to 3 (most intense). Bottom: the TFF2 fraction of gastric tissue cores with each score is plotted. Each
phenotype’s total tissue core number is provided at the bottom of each column.
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In our study, TFF2 was expressed in intestinal metaplasia lesions
in both the esophagus and stomach (Figures 2A, B). As expected,
TFF2 was not expressed in the normal esophageal squamous
epithelium, but its expression was correlated with the development
of BE (Figure 2A). In the normal gastric corpus, TFF2 was expressed
in mucous neck cells with no expression in mature chief cells at the
gland bases (Figure 2B). We also detected TFF2 in foveolar pit cells,
which may be an inadvertent cross-reaction against TFF1 as the two
antigens are over 60% homologous, and similar pit-cell

TFF2 reactivity has been reported before (Hoffmann, 2015; Hsieh
et al., 2022). Given that TFF2 is a gastric marker, it was predictably
decreased in GIM (Figure 2B). However, TFF2 was abundantly
detected in BE with foci of expression at the surface and more
intense positivity in deep glandular cells. Interestingly,
TFF2 expression levels decreased with the development of
dysplastic BE and EAC (Figure 2C; Supplementary Table S1).
There was a similar TFF2 decreasing expression pattern with the
development of GA (Figure 2D; Supplementary Table S2).

FIGURE 3
TFF3 expression in normal squamous-BE-EAC and normal gastric gland-GIM-GA progression sequence. (A) Immunohistochemistry of TFF3 staining
in human tissue microarray esophageal cases, in the same sequence as in Figure 2A. (B) Immunohistochemistry of TFF3 staining in human tissue
microarray gastric cases, in the same sequence as in Figure 2B. All scale bars, 500 μm. (C) Top: the TFF3 average IHC intensity score of each esophageal
phenotype is plotted in the same sequence as in Figure 2C. Bottom: the TFF3 fraction of esophageal tissue cores with each score is plotted in the
same sequence as in Figure 2C. Each phenotype’s total tissue core number is provided at the bottom of each column. (D) Top: the TFF3 average IHC
intensity score of each esophageal phenotype is plotted in the same sequence as in Figure 2D. Bottom: the TFF3 fraction of esophageal tissue cores with
each score is plotted in the same sequence as in Figure 2D. Each phenotype’s total tissue core number is provided at the bottom of each column.
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Expression of another trefoil factor protein, Trefoil Factor 3
(TFF3), has been shown to be increased in BE (Lauren, 1965; Lao-
Sirieix et al., 2009; Fitzgerald et al., 2014; Lavery et al., 2014;
Fitzgerald et al., 2020) and also strongly induced during gastric
mucosal injury (Taupin et al., 2001). Accordingly, our TMA
immunohistochemistry results demonstrated that TFF3 was not
significantly expressed in the normal esophagus nor in the
normal gastric corpus, but its expression was significantly
increased with the development of intestinal metaplasia (Figures

3A–D; Supplementary Tables S1, S2). Furthermore, compared with
TFF2 expression in the IM glands, TFF3 was expressed throughout
the entire metaplastic gland in a diffuse distribution (Figures 3A, B).
We also found that the expression level of TFF3 gradually decreased
during the BE metaplasia-to-dysplasia to EAC progression (Figures
3A, C; Supplementary Table S1) and during the GIM to GA
progression (Figures 3B, D; Supplementary Table S2). In our
study, the samples of columnar-lined mucosa of the esophagus
showed dual expression of TFF2 and TFF3 (Supplementary

FIGURE 4
MUC2 expression in normal squamous-BE-EAC and normal gastric gland-GIM-GA progression sequence. (A) Immunohistochemistry of
MUC2 staining in human tissue microarray esophageal cases, in the same sequence as in Figure 2A. (B) Immunohistochemistry of MUC2 staining in
human tissue microarray gastric cases, in the same sequence as in Figure 2B. All scale bars, 500 μm. (C) Top: the MUC2 average IHC intensity score of
each esophageal phenotype is plotted in the same sequence as in Figure 2C. Bottom: the MUC2 fraction of esophageal tissue cores with each score
is plotted in the same sequence as in Figure 2C. Each phenotype’s total tissue core number is provided at the bottom of each column. (D) Top: the
MUC2 average IHC intensity score of each esophageal phenotype is plotted in the same sequence as in Figure 2D. Bottom: the MUC2 fraction of
esophageal tissue cores with each score is plotted in the same sequence as in Figure 2D. Each phenotype’s total tissue core number is provided at the
bottom of each column.
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Figure S1), while complete GIM showed predominantly singular
expression of TFF3 (Supplementary Figure S2).

In summary, we show that TFF2, which is normally present in
the stomach, becomes abundantly expressed in BE, is decreased in
expression in GIM, and its expression decreases during
gastroesophageal cancer formation. TFF3 is an intestinal marker
not expressed normally in the upper GI tract, but is strongly
expressed in both BE and GIM, and its expression also decreases
during cancer development.

MUC2, MUC5AC, and MUC6 expression in
normal squamous-BE-EAC and normal
gastric gland-GIM-GA progression
sequences

Mucins are glycosylated proteins expressed throughout the GI
tract. MUC5AC is normally expressed in the gastric foveolar pit
cells, and MUC6 in gastric mucous neck cells, while MUC2 is not
expressed in the normal gastric mucosa, but is rather an intestinal

FIGURE 5
MUC5AC expression in normal squamous-BE-EAC and normal gastric gland-GIM-GA progression sequence. (A) Immunohistochemistry of
MUC5AC staining in human tissue microarray esophageal cases, in the same sequence as in Figure 2A. (B) Immunohistochemistry of MUC5AC staining in
human tissue microarray gastric cases, in the same sequence as in Figure 2B. All scale bars, 500 μm. (C) Top: the MUC5AC average IHC intensity score of
each esophageal phenotype is plotted in the same sequence as in Figure 2C. Bottom: the MUC5AC fraction of esophageal tissue cores with each
score is plotted in the same sequence as in Figure 2C. Each phenotype’s total tissue core number is provided at the bottom of each column. (D) Top: the
MUC5AC average IHC intensity score of each esophageal phenotype is plotted in the same sequence as in Figure 2D. Bottom: the MUC5AC fraction of
esophageal tissue cores with each score is plotted in the same sequence as in Figure 2D. Each phenotype’s total tissue core number is provided at the
bottom of each column.
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mucin (Reis et al., 1999). Our TMA IHC results showed that both BE
and GIM containedMUC2-positive cells (Figures 4A, B). Compared
to normal esophageal squamous and normal gastric corpus cells,
MUC2 was highly expressed in intestine-specific goblet cells, which
were mainly distributed more towards the luminal surface rather
than deep within glands in both BE and GIM (Figures 4A, B). In
addition, MUC2 expression decreased during progression to EAC
and GA (Figures 4A–D; Supplementary Tables S1, S2).

Our IHC data demonstrated that MUC5AC was expressed by
surface foveolar pit cells in the normal gastric corpus, and

mainly distributed in the superficial glandular areas in both
BE and GIM (Figures 5A, B). Interestingly, although MUC5AC
paralleled the decreasing expression pattern of MUC2 in the BE-
NFD, BE-LGD, BE-HGD and EAC progression, MUC5AC
expression was decreased in GIM and did not further
decrease in GA in our study (Figures 5C, D; Supplementary
Tables S1, S2).

In contrast to MUC2 and MUC5AC, MUC6 was mainly
expressed in the deeper gland regions of BE and GIM (Figures
6A, B). MUC6 was not expressed in the normal squamous

FIGURE 6
MUC6 expression in normal squamous-BE-EAC and normal gastric gland-GIM-GA progression sequence. (A) Immunohistochemistry of
MUC6 staining in human tissue microarray esophageal cases, in the same sequence as in Figure 2A. (B) Immunohistochemistry of MUC6 staining in
human tissue microarray gastric cases, in the same sequence as in Figure 2B. All scale bars, 500 μm. (C) Top: the MUC6 average IHC intensity score of
each esophageal phenotype is plotted in the same sequence as in Figure 2C. Bottom: the MUC6 fraction of esophageal tissue cores with each score
is plotted in the same sequence as in Figure 2C. Each phenotype’s total tissue core number is provided at the bottom of each column. (D) Top: the
MUC6 average IHC intensity score of each esophageal phenotype is plotted in the same sequence as in Figure 2D. Bottom: the MUC6 fraction of
esophageal tissue cores with each score is plotted in the same sequence as in Figure 2D. Each phenotype’s total tissue core number is provided at the
bottom of each column.
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epithelium of the esophagus but was expressed in the mucus neck
cells of the gastric corpus (Figures 6A, B). Akin to MUC5AC,
MUC6 expression decreased with cancer formation in the
esophagus but not in the stomach (Figures 6C, D; Supplementary
Tables S1, S2). In addition, samples of columnar-lined mucosa of the
esophagus showed focal expression of MUC5AC and diffuse
expression of MUC6 (Supplementary Figure S1). Complete GIM
showed a predominantly singular expression of MUC2
(Supplementary Figure S2).

Here, we show that MUC2, an intestinal marker not expressed in
the esophagus or stomach, is strongly expressed in both BE and
GIM, and its expression decreases during cancer development.
MUC5AC and MUC6, which are normal mucins expressed in
the stomach, become aberrantly expressed in the esophagus in
nearly all BE lesions. MUC5AC and MUC6 expression is
decreased in GIM indicating that many of these lesions
(i.e., complete GIM) may lose gastric characteristics. MUC5AC
and MUC6 expression decreases during esophageal

FIGURE 7
CDX2 expression in normal squamous-BE-EAC and normal gastric gland-GIM-GA progression sequence. (A) Immunohistochemistry of
CDX2 staining in human tissuemicroarray esophageal cases, in the same sequence as in Figure 2A. (B) Immunohistochemistry of CDX2 staining in human
tissue microarray gastric cases, in the same sequence as in Figure 2B. All scale bars, 500 μm. (C) Top: the CDX2 average IHC intensity score of each
esophageal phenotype is plotted in the same sequence as in Figure 2C. Bottom: the CDX2 fraction of esophageal tissue cores with each score is
plotted in the same sequence as in Figure 2C. Each phenotype’s total tissue core number is provided at the bottom of each column. (D) Top: the
CDX2 average IHC intensity score of each esophageal phenotype is plotted in the same sequence as in Figure 2D. Bottom: the CDX2 fraction of
esophageal tissue cores with each score is plotted in the same sequence as in Figure 2D. Each phenotype’s total tissue core number is provided at the
bottom of each column.
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adenocarcinoma formation, but not gastric adenocarcinoma
progression.

CDX2 and SOX2 expression in normal
squamous-BE-EAC and normal gastric
gland-GIM-GA progression sequences

CDX2 and SOX2 are key transcription factors involved in gut
development (McGrath and Wells, 2015; Miao et al., 2020; Ma et al.,

2022) with SOX2 involved in foregut development (Que et al., 2007)
and CDX2 functioning in intestinal development (Silberg et al.,
2000). In our study, CDX2, as expected, had no expression in the
normal esophageal squamous epithelium or the normal gastric
corpus (Figures 7A, B). However, CDX2 became dramatically
expressed in BE, and its expression was increased with the
development of dysplasia; CDX2 expression was downregulated
but still maintained at high levels in EAC (Figures 7A–C;
Supplementary Table S1). Similar to the esophagus, nuclear
CDX2 expression was significantly increased in GIM cells, while

FIGURE 8
SOX2 expression in normal squamous-BE-EAC and normal gastric gland-GIM-GA progression sequence. (A) Immunohistochemistry of
SOX2 staining in human tissue microarray esophageal cases, in the same sequence as in Figure 2A. (B) Immunohistochemistry of SOX2 staining in human
tissue microarray gastric cases, in the same sequence as in Figure 2B. All scale bars, 500 μm. (C) Top: the SOX2 average IHC intensity score of each
esophageal phenotype is plotted in the same sequence as in Figure 2C. Bottom: the SOX2 fraction of esophageal tissue cores with each score is
plotted in the same sequence as in Figure 2C. Each phenotype’s total tissue core number is provided at the bottom of each column. (D) Top: the
SOX2 average IHC intensity score of each esophageal phenotype is plotted in the same sequence as in Figure 2D. Bottom: the SOX2 fraction of
esophageal tissue cores with each score is plotted in the same sequence as in Figure 2D. Each phenotype’s total tissue core number is provided at the
bottom of each column.
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downregulated and kept at high levels in GA (Figures 7B, D;
Supplementary Table S2).

In the esophagus, SOX2 expression levels were gradually
downregulated during normal esophageal squamous, BE
metaplasia, dysplasia to EAC progression sequences (Figures 8A,
C; Supplementary Table S1). In the stomach, SOX2 was expressed in
the normal gastric glands in a predominantly chief cell distribution
and decreased in GIM and GA (Figures 8B, D; Supplementary Table
S2). The CDX2 and SOX2 expression demonstrated a converse
pattern in the metaplasia-dysplasia-adenocarcinoma progression
sequence in both esophageal and gastric cases. Interestingly, the
samples of columnar-lined mucosa of the esophagus showed
aberrant expression of CDX2 and decreased SOX2 despite the
absence of intestinal goblet cells (Supplementary Figure S1), and
complete GIM showed expression of CDX2with no detectable SOX2
(Supplementary Figure S2). Our findings show an increase in
CDX2 expression and a decrease in SOX2 expression in both
normal squamous-BE-EAC and normal gastric gland-GIM-GA
progression sequences.

Taken together, our TMA IHC observations hint that BE and
pure incomplete GIM are similar and consist of both gastric and
intestinal features. But randomly sampled GIM lesions show a
mixture between complete and incomplete types as exhibited by
a decrease in gastric markers including TFF2, MUC5AC, MUC6,
and SOX2. In addition, during esophageal adenocarcinoma
progression there is an apparent de-differentiation with loss of
both gastric and intestinal characteristics. However, during
gastric cancer formation, there is a preferential loss of intestinal
markers with maintained expression of gastric markers.

Discussion

Despite the molecular similarities between EAC and GA (Cancer
Genome Atlas Research Network, 2014; Cancer Genome Atlas
Research Network, 2017; Zeng and Jin, 2022), there have been
few immunohistological studies that have compared these
diseases or their precursor metaplastic lesions. The few previous
studies directly comparing metaplasias in the stomach and
esophagus have focused on the differences between these lesions
(El-Zimaity and Graham, 2001; Glickman et al., 2001; Piazuelo et al.,
2004) rather than the similarities (Spechler et al., 2017). A key
strength of our study has been the focus on similarities and
differences between BE and GIM by recognizing and highlighting
complete and incomplete intestinal metaplasia. In addition, we have
also broadened our analysis to include dysplastic and neoplastic
lesions of the stomach and esophagus.

To this end, we have analyzed the similarities and differences
involved in the formation of EAC and GA using a unique patient
tissue microarray of the upper GI tract and a panel of histologic
markers including trefoil peptides (TFF2 and TFF3), mucins
(MUC2, MUC5AC, and MUC6), and transcription factors
(CDX2 and SOX2). Several key findings have emerged from our
study. First, we found that most cases of BE in our case series
resemble incomplete GIM (Correa et al., 2010; Goldenring and
Mills, 2022). Specifically, BE manifests as co-expression of the trefoil
factors TTF2 and TTF3, as well as co-expression of MUC2,
MUC5AC, and MUC6 (Figures 2–6). In BE, there is also gain of

the intestinal transcription factor, CDX2, with concomitant loss of
the foregut transcription factor, SOX2 (Figures 7, 8). In contrast,
complete GIM is characterized by TFF3 and MUC2 expression
without co-expression of TTF2, MUC5AC, or MUC6
(Supplementary Figure S1).

The fact that intestinal metaplasia is heterogenous has been
established in the stomach (Correa et al., 2010; Goldenring and
Mills, 2022). Using morphology and mucin expression patterns,
GIM can be further divided into three distinct types (Filipe et al.,
1994). Complete or type I GIM expresses intestinal goblet cell
sialomucins reflecting a “pure” intestinal metaplasia
(Supplementary Figure S1). Incomplete or type III GIM expresses
sulfomucins, and type II (also termed incomplete) expresses both
types of mucins reflecting lesions with mixed gastric and intestinal
traits (Figure 1D). While these same intestinal metaplasia
classifications have not been applied to the esophagus, there has
been emerging recognition that BE harbors mixed gastric
(specifically more pyloric gland characteristics) and intestinal
traits. The mechanism by which this occurs is still unclear;
studies have suggested a transdifferentiation process originating
from the native squamous epithelium (Huo et al., 2010;
Minacapelli et al., 2017), the submucosal glands (Leedham et al.,
2008; Owen et al., 2018), or the gastric cardia (Quante et al., 2012;
Nowicki-Osuch et al., 2021). We argue that the incomplete intestinal
metaplasia seen in BE hints towards the potential origin of these
glands initially as normal, oxyntic gastric-type mucosa that
undergoes sequential reprogramming events to take on first
pyloric, then intestinal characteristics (Goldenring et al., 2010; Jin
and Mills, 2018; Goldenring and Mills, 2022).

The clinical implications of these findings are important.
Pathologists in the United States diagnose BE largely on the
presence of intestinal goblet cells (Naini et al., 2016; Shaheen
et al., 2022). However, more “intestinalized” BE lesions have an
unclear higher risk of cancer progression (Bhat et al., 2011;
Srivastava et al., 2015; Shaheen et al., 2022). In addition, despite
a similar risk of cancer development compared to BE (de Vries et al.,
2008; Hvid-Jensen et al., 2011; Song et al., 2015), GIM lacks
endoscopic cancer screening guidelines in the United States
(Gawron et al., 2020; Gupta et al., 2020). Importantly, the risk of
gastric cancer development differs between complete and
incomplete GIM with incomplete GIM possessing a significantly
higher risk of cancer progression (Gonzalez et al., 2016; Gawron
et al., 2020). In accordance, emerging clinical practice guidelines
have suggested the adoption of surveillance for incomplete GIM
(Gawron et al., 2020; Gupta et al., 2020). Thus, the presence of both
gastric and intestinal features (i.e., lineage plasticity), may be a driver
of cancer progression in the esophagus and stomach. As such, the
ability to differentiate intestinal phenotypic differences shown in our
study through differential PAS staining patterns, TFF2/
TFF3 expression patterns, and MUC2/MUC5AC/MUC6 staining
distribution in BE and GIM will be an important clinical
management consideration in the future to determine cancer risk.

In our study, we demonstrate a loss of gastric and intestinal
markers with the development of EAC and GA. Interestingly, we
find that “differentiated” cell features found in the normal stomach
and intestines, and in BE and GIM, are often decreased or lost after
cancer development. Specifically, during normal esophageal
squamous, BE metaplasia, dysplasia, and EAC progression there
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is a progressive increase in TFF2, TFF3, MUC2, MUC5AC, MUC6,
CDX2 with the development of intestinal metaplasia. Then upon
further progression to dysplasia and EAC, there is a subsequent
decrease in these markers (Figures 2–7). In contrast, during normal
gastric gland to GIM progression, there is an increase in intestinal
metaplasia markers, TFF3, MUC2, and CDX2, with a decrease in
markers normally expressed in gastric cell lineages, TFF2,
MUC5AC, and MUC6 (Figures 2–7). With progression from
GIM to GA, there is a decrease in TFF2, TFF3, MUC2, and
CDX2 with maintained expression of MUC5AC, MUC6, and
SOX2 (Figures 2–7).

This retained gastric marker expression in gastric cancer is
consistent with certain GAs maintaining a “gastric”
differentiation phenotype (Wakatsuki et al., 2008; Boltin and Niv,
2013). While our methods of characterizing EAC and GA have
become more sophisticated through the large scale “omics” studies
(Cancer Genome Atlas Research Network, 2014; Cancer Genome
Atlas Research Network, 2017; Zeng and Jin, 2022), the significance
of this differentiation state flux and plasticity has largely been
ignored for solid tumors both as a means to develop cancer and
a mechanism for cancer treatment resistance (Saenz andMills, 2018;
Jin and Mills, 2019; Zeng and Jin, 2022). In fact, the most persistent,
informal histological description of CIN-type tumors in the stomach
is misleadingly “intestinal”. While most of these tumors do exhibit
intestinal characteristics not normally seen in the stomach, this
should not mislead scientists and clinicians into ignoring that the
tumors are highly heterogeneous with both intestinal and gastric
characteristics that vary from region to region and from patient to
patient. Leveraging such plasticity inherent in cancer cells may be an
efficacious and safe means to treat cancers in the future (de The,
2018; Enane et al., 2018).

In summary, our study demonstrates the important
similarities and differences that occur during the development
of intestinal metaplasia and its progression to cancer in the upper
GI tract. We show the plasticity that exists during this process as a
mix of gastric and intestinal differentiation traits. Our findings
also have potential clinical impact for the understanding the
molecular bases of EAC and GA. Continued study, especially
multi-omic unbiased analyses of the mechanisms underlying the
plasticity of the upper GI tract will lead to improved early cancer
risk stratification, safer more efficacious oncologic treatments,
and perhaps methods to prevent or reverse the development of
these metaplasias and dysplasias.
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SUPPLEMENTARY FIGURE S1
Immunohistochemical analysis of columnar-linedmucosa of the esophagus.
(A) H&E and (B) PAS staining showing morphology of columnar-lined
mucosa of the esophagus. Immunohistochemistry showing (C) TFF2, (D)
TFF3, (E) MUC2, (F) MUC5AC, (G) MUC6, (H) CDX2, and (I) SOX2 staining of
columnar-lined mucosa of the esophagus. All scale bars, 500 μm.

SUPPLEMENTARY FIGURE S2
Immunohistochemical analysis of complete gastric intestinal metaplasia. (A)
H&E and (B) PAS staining showingmorphology of complete gastric intestinal
metaplasia. Immunohistochemistry showing (C) TFF2, (D) TFF3, (E) MUC2,
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(F) MUC5AC, (G) MUC6, (H) CDX2, and (I) SOX2 staining of complete gastric
intestinal metaplasia. All scale bars, 500 μm.

SUPPLEMENTARY TABLE S1
The Fisher’s exact test p-values of IHC marker expression for esophageal cases.
P-values were calculated by testing for the difference in the mean IHC scores of
the indicated markers. Fisher’s exact test was used. P < 0.05 is considered
statistically significant. Comparisons were between normal and lesion phenotype
groups, or 2 lesion phenotype groups (BE-NFD: Barrett’s esophagus negative for
dysplasia, BE-LGD: Barrett’s esophagus with low-grade dysplasia, BE-HDG:

Barrett’s esophagus with high-grade dysplasia, EAC: esophageal adenocarcinoma).

SUPPLEMENTARY TABLE S2
The Fisher’s exact test p-values of IHC marker expression for gastric
cases. P-values were calculated by testing for the difference in the
mean IHC scores of the indicated markers. Fisher’s exact test was
used. P < 0.05 is considered statistically significant. Comparisons were
between normal and lesion phenotype groups, or 2 lesion phenotype
groups (GIM: gastric intestinal metaplasia, GA: gastric
adenocarcinoma).
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