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The in situ post-translational modification (PTM) crosstalk refers to the
interactions between different types of PTMs that occur on the same residue
site of a protein. The crosstalk sites generally have different characteristics from
those with the single PTM type. Studies targeting the latter’s features have been
widely conducted, while studies on the former’s characteristics are rare. For
example, the characteristics of serine phosphorylation (pS) and serine ADP-
ribosylation (SADPr) have been investigated, whereas those of their in situ
crosstalks (pSADPr) are unknown. In this study, we collected 3,250 human
pSADPr, 7,520 SADPr, 151,227 pS and 80,096 unmodified serine sites and
explored the features of the pSADPr sites. We found that the characteristics of
pSADPr sites are more similar to those of SADPr compared to pS or unmodified
serine sites. Moreover, the crosstalk sites are likely to be phosphorylated by some
kinase families (e.g., AGC, CAMK, STE and TKL) rather than others (e.g., CK1 and
CMGC). Additionally, we constructed three classifiers to predict pSADPr sites from
the pS dataset, the SADPr dataset and the protein sequences separately. We built
and evaluated five deep-learning classifiers in ten-fold cross-validation and
independent test datasets. We also used the classifiers as base classifiers to
develop a few stacking-based ensemble classifiers to improve performance.
The best classifiers had the AUC values of 0.700, 0.914 and 0.954 for
recognizing pSADPr sites from the SADPr, pS and unmodified serine sites,
respectively. The lowest prediction accuracy was achieved by separating
pSADPr and SADPr sites, which is consistent with the observation that
pSADPr’s characteristics are more similar to those of SADPr than the rest.
Finally, we developed an online tool for extensively predicting human pSADPr
sites based on the CNNOH classifier, dubbed EdeepSADPr. It is freely available
through http://edeepsadpr.bioinfogo.org/. We expect our investigation will
promote a comprehensive understanding of crosstalks.
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1 Introduction

The in situ post-translational modification (PTM) crosstalk
refers to the interactions between different types of PTMs that
occur on the same residue site of a protein. Different PTM types
on the same site have different effects on the activity, stability,
localization, and interactions of the modified protein (Yang and
Gregoire, 2006; Hunter, 2007; Swaney et al., 2013; Xu et al., 2018).
The crosstalk sites generally have different characteristics from those
with the single PTM type; Nevertheless, the former is rarely
investigated compared to the latter. This study focused on the
crosstalk between serine phosphorylation (pS) and ADP-
ribosylation (SADPr). Serine phosphorylation, catalyzed by
hundreds of kinases, plays a regulatory role in the cell cycle,
growth, apoptosis, and signal transduction (Zolnierowicz and
Bollen, 2000). Serine ADP-ribosylation, catalyzed by over twenty
ADP-ribosyltransferases (Luscher et al., 2018), regulates many
cellular processes, including chromatin organization, epigenetic
transcription regulation, cell differentiation and cytoplasm stress
response (Nowak et al., 2020; Brustel et al., 2022). Both serine
modifications can co-occur on the same residue on a competitive
basis as the in situ PTM crosstalk (dubbed pSADPr). This crosstalk
represents a significantly high degree of overlap, similar to the site-
specific crosstalk between lysine acetylation and ubiquitylation
(Larsen et al., 2018). Identification of PTM crosstalk sites has
emerged to be an intriguing topic and attracted much attention,
relevant works of which have been ongoing before our study (Peng
et al., 2014; Venne et al., 2014; Xu et al., 2021). For example, the
classifier mUSP was developed to predict in situ crosstalk sites of
ubiquitylation and SUMOylation (Xu et al., 2021). Nevertheless, the
in situ crosstalk of serine phosphorylation and ADP-ribosylation has
not been investigated. Although a few in silico classifiers have been
developed for predicting pS and SADPr sites (Luo et al., 2019; Sha
et al., 2021), the classifier for predicting pSADPr sites is unavailable.

Figure 1 showed the overview map of this study. This study
collected 3,250 human pSADPr, 151,227 pS, 7,520 SADPr and
80,096 unmodified serine sites. Accordingly, we investigated the
characteristics of pSADPr and constructed classifiers to predict
pSADPr sites. We found that pSADPr’s characteristics are more
similar to those of SADPr than pS and unmodified serine sites. We
also found that pSADPr sites were preferred to be phosphorylated by
four subfamilies of serine kinases (i.e., AGC, CAMK, STE and TKL).
Moreover, we built and evaluated five deep-learning classifiers in

ten-fold cross-validation and independent test datasets. We also
developed a few advanced stacking-based ensemble classifiers. The
best classifiers had the AUC values of 0.700, 0.914 and 0.954 for
recognizing pSADPr sites from the SADPr, pS and unmodified
serine sites. Finally, we developed an online tool for extensively
predicting human pSADPr sites, dubbed EdeepSADPr. It is freely
available through http://edeepsadpr.bioinfogo.org/. We anticipate
that accurate prediction by EdeepSADPr will facilitate the discovery
of new pSADPr sites and promote the understanding of their
functional characteristics.

2 Materials and methods

2.1 Data collection and preprocessing

Figure 2 shows the procedure of dataset construction and
preprocessing. 7,520 human SADPr sites with high confidence
(i.e., ADPr peptides with Andromeda scores >40 and localization
probability >0.75) were collected from the literature (Larsen et al.,
2018; Hendriks et al., 2019; Buch-Larsen et al., 2020; Nowak et al.,
2020) (Figure 2A). 151,227 human pS sites were obtained from the
database PhosphositePlus (Hornbeck et al., 2012) and the literature
(Luo et al., 2019) (Figure 2A).We compared both datasets and found
3,250 pSADPr peptides, 147,977 pS peptides, and 4,270 SADPr
peptides. We also collected 80,096 unmodified serine (UM) sites
after removing modified serine sites (i.e., pSADPr, SADPr and pS)
from the reported dataset (Luo et al., 2019).

Each serine site of the above datasets was represented by a 41-
residue-long sequence segment with the serine at the center (Sha
et al., 2021). CD-HIT (Li and GodzikCd-hit, 2006; Huang et al.,
2010) was applied to eliminate the homologous peptides by setting
the threshold to 60% sequence identity, which is valuable for
avoiding overestimation. Specifically, we combined the pSADPr
peptides with SADPr peptides, pS peptides, and UM peptides,
respectively, and clustered them using CD-HIT. Accordingly, we
obtained 4,959 clusters, 30,106 clusters and 66,526 clusters. We
selected one sequence randomly from each cluster according to the
criterion: One pSADPr peptide was selected if it was included in the
cluster; otherwise, one of the other peptides was selected. After that,
2,378 pSADPr, 2,581 SADPr, 27,728 pS and 64,148 UM peptides
were collected (Figures 2B–D). Furthermore, each of the three
datasets was divided into 11 groups, where ten groups were used

FIGURE 1
Flowchart of the model construction.
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as a cross-validation dataset, and the rest group was considered an
independent test dataset (Figures 2B–D). It should be noted that if
the central serine residue is located near the N or C terminus of the
protein sequence, the complement symbol “_” was added to the
input sequences at the affected terminus to ensure the length was
maintained. All these data are available at http://edeepsadpr.
bioinfogo.org/.

2.2 Feature encoding schemes

We selected five encoding features representing the input
peptides for the model construction. They included the One-Hot
encoding (OH) (Wang D. et al., 2020), the Enhanced Amino Acid
Composition Encoding (EAAC) (Chen et al., 2018), the Enhanced
Grouped Amino Acids Content encoding (EGAAC) (Chen et al.,
2018), the ZSCALE Encoding (ZSCALE) and the Word
Embedding (WE).

2.2.1 One-hot (OH) encoding
In the One-hot coding, the 20 amino acids and complement

symbol “_” are encoded into a 21-dimensional binary vector. In the
vector corresponding to an amino acid, the element related to the
amino acid is marked as 1 and others are marked as 0. For example,
“A” is represented by “100000000000000000000” and “V” is
represented by “0100000000000000000000.”

2.2.2 ZSCALE encoding
In ZSCALE encoding, every amino acid type is characterized by

five physicochemical descriptor variables (Chen et al., 2012; Zhang
et al., 2020). Therefore, each input sequence is represented as a
vector of 205 (=41 × 5) dimensions. The filling character “_” is
encoded as a 5-dimensional zero vector.

2.2.3 Word embedding (WE) encoding
Word embedding (Ge and Moh, 2018) relies on the numerical

encoding approach (Lyu et al., 2020), which maps each type of amino
acid residue to an integer. After the NUM encoding, each integer is
mapped to a predefined five-dimension word vector. Therefore, each
sequence is encoded as a vector of 205 (= 41 × 5) items.

2.2.4 Enhanced amino acid composition (EAAC)
encoding

In EAAC encoding, the frequency of each amino acid from the
N-terminal to the C-terminal within a fixed sliding window size (the
default length being 5) is calculated (Lyu et al., 2020). Therefore, each
peptide sequence is encoded as a vector of 740 = ((41–5 + 1) × 20) items.

2.2.5 Enhanced grouped amino acids content
(EGAAC) encoding

The EGAAC encoding is developed based on grouped amino
acid content (GAAC) characteristics (Wei et al., 2021). In the GAAC
encoding, the 20 amino acid types are divided into five groups

FIGURE 2
Schematic diagram of data collection and preprocessing for human pSADPr datasets. Construction of the pSADPr, pS and SADPr datasets (A). The
construction and preprocessing of the pSADPr-SADPr dataset (B), the pSADPr-pS dataset (C) and the pSADPr-UM dataset (D). UM stands for unmodified
serine.
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according to their physical and chemical properties (G1: GAVLMI,
FYW, G3: KRH, G4: DE, and G5: STCPNQ). In the EGAAC
encoding, the GAAC value is calculated from N-terminal to
C-terminal within a fixed sliding window (the default length
being 5).

2.3 The architecture of deep-learning
classifiers

We constructed five classifiers based on Convolutional Neural
Network (CNN). They included the model combined with the One-
Hot Encoding (CNNOH), the model with the Word Embedding
Encoding (CNNWE), the model with the ZSCALE Encoding
(CNNZSCALE), the model with the EAAC encoding (CNNEAAC)
and the model with the EGAAC encoding (CNNEGAAC). We
took the CNN Model with the One-Hot encoding (CNNOH) as
an example to demonstrate the architecture (Figure 3).

(1) Input layer. Each sequence is converted into a feature vector
with One-Hot encoding.

(2) The convolution layer. It contains two convolution sublayers
followed by two sequentially connected blocks. Each block
includes a convolution sublayer and a max pooling sublayer.
There are 128 convolution kernels with the sizes of 1 and 3 for
the first and second convolution sublayers, respectively. A
dropout layer with a rate of 0.7 follows each convolution
kernel to prevent potential overfitting. In these two blocks,
there were 128 convolution kernels with a size of 9 and
10 for these two convolution sublayers of two blocks,
respectively; the parameter pool_size of the max-pooling

sublayer was set as 2; the dropout rate was set to 0.5. The
rectified linear unit (ReLU) is considered the activation
function.

(3) Fully connected layer. It contains a dense sublayer with
128 neurons without flattening and a global average pooling
sublayer to calculate and output an average value.

(4) Output layer: This layer contains a single neuron, activated by a
sigmoid function, to output the probability score (within the
range from 0 to 1), indicating the likelihood of the crosstalk. If
the probability score of an input sequence is greater than a
specified threshold, the central serine in the sequence is
predicted as a crosstalk site.

2.4 Performance evaluation

Several statistical measures were used to evaluate prediction
performance, including sensitivity (SN), specificity (SP), overall
accuracy (ACC), Matthew correlation coefficient (MCC) and the
area under the receiver operating characteristic (ROC) curve
(AUC). The definitions of SN, SP, ACC, and MCC are given as
follows:

SN � TP

TP + FN

SP � TN

TN + FP

ACC � TP + TN

TP + FP + TN + FN

MCC � TP × TN − TN × FP
��������������������������������������������
TP + FN( ) × TN + FP( ) × TP + FP( ) × TN + FN( )√

FIGURE 3
The architecture of a one-dimensional convolutional neural network with the One-Hot encoding approach (i.e., CNNOH).
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In the above formulas, TP, TN, FP, and FN are the number of
true positives, true negatives, false positives, and true negatives,
respectively.

3 Results and discussion

3.1 Construction and functional
investigation of the pSADPr datasets

We created three datasets for constructing classifiers to predict
pSADPr sites (Figure 2). The first dataset was the pSADPr-SADPr
dataset, containing pSADPr and SADPr peptides. The related model
was used to recognize pSADPr sites from known SADPr sites
(Figure 2B). The second was the pSADPr-pS dataset, including
pSADPr and pS peptides (Figure 2C). The third was the
pSADPr-UM dataset, containing pSADPr and UM peptides
(Figure 2D). Because the vast majority of serine residues are
unmodified in the human proteome, the model based on the
third dataset was expected to recognize pSADPr sites from the
human proteome (Figure 2D). Each of the three datasets contained

two parts: cross-validation and independent test datasets
(Figures 2B–D).

We explored the characteristics of the pSADPr crosstalks by
comparing pSADPr-containing and other peptides in the three
datasets through the Two-Sample-Logo program (Vacic et al.,
2006). For the pSADPr-SADPr dataset, the amino acid R was
significantly enriched at positions −2 and −3 (i.e., P-2 and P-3),
whereas K was depleted at P-1 (Figure 4A). For the rest datasets, the
pSADPr crosstalks showed similar characteristics (Figures 4B, C).
Specifically, K was enriched entirely except P+1 and G was enriched
at P1 and P2; D and E were depleted at P-3 to P+5 and L was
depleted entirely. The maximum enriched/depleted value (29.3%)
for the pSADPr-pS dataset was similar to that (32.0%) for the
pSADPr-UM dataset, and both were more than twice as large as
that (13.2%) for the pSADPr-SADPr dataset (Figure 4). It indicates
that the differences between pSADPr and SADPr sites are smaller
than those between pSADPr and pS/UM sites. In other words, it is
easy to distinguish pSADPr sites from pS/UM sites, compared to
recognizing pSADPr sites from SADPr sites.

The human serine kinase family contains a few subfamilies, each
with its characteristics. We explored which subfamilies preferred

FIGURE 4
Sequence pattern surrounding the pSADPr sites. Enriched and depleted residues flanking the central pSADPr sites were shown for the pSADPr-
SADPr dataset (A), the pSADPr-pS dataset (B), and the pSADPr-UM dataset (C) (p < 0.05, t-test with Bonferroni correction). The patterns were generated
using the Two-Sample-Logo program (Vacic et al., 2006).
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phosphorylating the pSADPr sites. To perform this analysis, we used
the human pS sites as the background and the pSADPr sites as the
test dataset. We employed the GPS program (Wang C. et al., 2020) to
predict pS sites for each subfamily from both datasets (Figure 5). We
found that four subfamilies (i.e., AGC, CAMK, STE and TKL)
tended to phosphorylate pSADPr sites (p < 5.0 × 10−26,
hyper-geometric test). In comparison, two subfamilies
(i.e., CK1 and CMGC) prefer not to phosphorylate pSADPr sites
(p < 5.1 × 10−29, hyper-geometric test). For example, 68% of pSADPr
sites could be phosphorylated by the AGC subfamily, whereas only
44% of pS sites are modified by this subfamily (p = 2.3 × 10−174,

hyper-geometric test). This observation suggests that the pSADPr
sites may be related to specific subfamilies of serine kinases.

In the three datasets, the pSADPr-pS and pSADPr-UM datasets
were imbalanced because the numbers of pS and UM peptides were
far more than the number of pSADPr peptides (Figures 2C, D). To
explore the effect of the imbalanced dataset on the predictor’s
performance, we built the related balanced cross-validation
dataset where the number (2,162) of randomly selected pS or
UM peptides was the same as that of pSADPr peptides. We
constructed the CNNOH models related to the imbalanced and
balanced datasets and evaluated their prediction performances in

FIGURE 5
Enrichment analysis of human pSADPr sites as the substrates of serine kinase subfamilies predicted by GPS (Wang C. et al., 2020). Human pS sites
were used as the background. p-value was calculated using the hyper-geometric test.

FIGURE 6
Performance comparisons between the CNNOH models based on balanced and imbalanced datasets in the independent test dataset. The models
were developed for the pSADPr-pS dataset (A) and the pSADPr-UM dataset (B).
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terms of the independent test. The CNNOH model based on the
imbalanced dataset had better performance than the counterpart
constructed using the balanced dataset (p = 0.002 for both pSADPr-
pS and pSADPr-UM datasets, Wilcoxon rank sum test; Figure 6).
Therefore, we chose the imbalanced dataset for model construction.

3.2 Construction and evaluation of CNN-
based classifiers

We constructed five CNN classifiers (i.e., CNNOH, CNNWE,
CNNEAAC, CNNEGAAC and CNNZSCALE) to recognize pSADPr sites
from the three datasets and compared their prediction

performances. Here, we used the pSADPr-SADPr dataset to
demonstrate the process. Three out of the five classifiers
(i.e., CNNOH, CNNWE and CNNZSCALE) showed similar
performances and superiority over the rest two (i.e., CNNEAAC

and CNNEGAAC) in ten-fold cross-validation and independent
test (Table 1; Figure 7 and Supplementary Figure S1). For
instance, the CNNOH model had an AUC value of 0.712, larger
than that (0.659) of the CNNEAAC model in the cross-validation. We
repeated this analysis for the pSADPr-pS and pSADPr-UM datasets
and made similar observations that the three classifiers had the best
performances (Supplementary Tables S1, S2; Supplementary Figures
S1–S5). Furthermore, we compared the classifiers’ performances for
the three datasets. We found that the AUC values (0.921 and 0.953)

TABLE 1 Prediction performances of CNN-based classifiers for the pSADPr-SADPr dataseta.

Classifier SN SP ACC MCC AUC

Ten-fold Cross-validation

CNNOH 0.599 ± 0.031 0.694 ± 0.001 0.649 ± 0.016 0.294 ± 0.031 0.712 ± 0.020

CNNZSCALE 0.598 ± 0.059 0.694 ± 0.001 0.649 ± 0.025 0.293 ± 0.058 0.705 ± 0.030

CNNWE 0.591 ± 0.089 0.694 ± 0.001 0.644 ± 0.044 0.285 ± 0.088 0.696 ± 0.043

CNNEAAC 0.523 ± 0.040 0.694 ± 0.001 0.611 ± 0.021 0.219 ± 0.040 0.659 ± 0.016

CNNEGAAC 0.488 ± 0.034 0.694 ± 0.001 0.595 ± 0.018 0.185 ± 0.034 0.621 ± 0.029

Independent test

CNNOH 0.608 ± 0.034 0.694 ± 0.000 0.653 ± 0.016 0.303 ± 0.033 0.700 ± 0.010

CNNZSCALE 0.583 ± 0.037 0.694 ± 0.000 0.641 ± 0.018 0.278 ± 0.036 0.692 ± 0.017

CNNWE 0.557 ± 0.058 0.694 ± 0.000 0.628 ± 0.028 0.253 ± 0.057 0.682 ± 0.022

CNNEAAC 0.500 ± 0.016 0.694 ± 0.000 0.601 ± 0.008 0.197 ± 0.016 0.637 ± 0.008

CNNEGAAC 0.488 ± 0.044 0.694 ± 0.000 0.595 ± 0.021 0.185 ± 0.043 0.621 ± 0.016

aTen models were constructed and evaluated in ten-fold cross-validation. Their average performance and standard deviation were separately calculated for the cross-validation and the

independent test datasets.

FIGURE 7
Performance comparison of CNN-based classifiers built for the pSADPr-SADPr dataset in ten-fold cross-validation (A) and independent test (B).
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of the CNNOH classifiers for pSADPr-pS and pSADPr-UM datasets
were significantly larger than that (0.712) for the pSADPr-SADPr
dataset. These results were consistent with our observation that the
differences between pSADPr and SADPr sites are smaller than those
between pSADPr and pS/UM sites (Figure 4). Since the One-Hot
feature is the simplest compared to the WE and ZSCALE features,
we chose the CNN classifier with the One-Hot scheme as the
representative of the three classifiers.

3.3 Construction and evaluation of stacking
ensemble learning classifiers

A stacking-based ensemble learning architecture is one of the
ensemble techniques in which multiple learning models are
integrated to produce one optimal predictive model, which
performs better than the base models taken alone. In the stacking
ensemble architecture, a meta-learner is trained to output a
prediction based on the different base learner’s predictions. The
stacking ensemble architecture has been used to improve the
prediction performance in various bioinformatics applications
(e.g., lysine acetylation site prediction) (Mishra et al., 2019;
Zhang et al., 2021; Basith et al., 2022). Here, we introduced the
two-stage stacking ensemble approach to improve the performance
of the pSADPr site prediction (Figure 8). In the first stage, different
CNN algorithms (e.g., CNNOH, CNNWE and CNNZSCALE) were
selected to construct base classifiers. Specifically, ten base classifiers
for each CNN algorithm were built and validated using the ten-fold
cross-validation dataset. The base classifiers were then used for
prediction in the independent test dataset, and their prediction
results were averaged. Therefore, each CNN algorithm corresponds
to the validation result and the averaged result for the independent
test dataset. In the second stage, the validation and the averaged
results were merged as a meta cross-validation dataset and a meta-

independent test dataset, respectively (Figure 8). The former dataset
was used to train and validate a meta-classifier, whereas the latter
was employed to evaluate the meta-classifier’s performance. Here,
we constructed the meta-classifier using the random forest
algorithm (RF), which was optimized using the GridSearchCV
package. The optimized parameters included max_depth as 8,
max_features as “sqrt,” min_samples_leaf as 20, min_samples_
split as 300 and n_estimators as 100.

According to the above analysis, the three classifiers
(i.e., CNNOH, CNNWE and CNNZSCALE) had better performances
than two other classifiers (i.e., CNNEAAC and CNNEGAAC) for all
three datasets. Based on the observation, we fused them as base
classifiers to build the two-stage stacking ensemble approach with a
good performance. We started with the fusion of the three best
classifiers until we fused all the classifiers. The related stacking
models included StackingO+Z+W, StackingO+Z+W+E and
StackingO+Z+W+E+EG, where O stands for OH, Z for ZSCALE, W
for WE, E for EAAC and, EG for EGAAC. For the pSADPr-SADPr
dataset, the three stacking models showed similar performances in
meta ten-fold cross-validation and independent test (Table 2;
Figure 9 and Supplementary Figure S6). For instance, their
average AUC/MCC values were around 0.719/0.313 in cross-
validation (Table 2). The stacking models for the two other
datasets (pSADPr-pS and pSADPr-UM) also performed similarly
(Supplementary Figures S7–S10).

3.4 Comparison of CNN-based models and
stacking ensemble models

We compared the performances of the CNN-based models and
the stacking ensemble models for each of the three datasets. We
found no statistical difference between the CNNOH model and these
stacking ensemble models for each dataset (Figure 9 and

FIGURE 8
The architecture of the two-stage stacking ensemble classifier.
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Supplementary Figures S9, S10). The observation that the meta-
classifiers perform similarly to the base classifier is consistent with
the previous report for predicting bacterial Type IV secreted
effectors, in which the meta-classifier and base classifier
performed similarly (Xiong et al., 2018). It suggests that the base
classifiers may have sufficient predictive ability, and the stacking
ensemble architecture does not constantly improve prediction
accuracy.

3.5 Construction of the online EdeepSADPr
predictor

We developed an online prediction tool for predicting human
pSADPr sites extensively from different conditions, dubbed
EdeepSADPr. This tool consists of three models, each corresponding
to the prediction from the SADPr dataset, the serine phosphorylation

dataset or the human proteome. As the CNNOH classifier had no less
predictive performance than othermethods, we selected this classifier to
construct EdeepSADPr. The usage of this tool was described as follows.
After the model selection, the input sequence with the fasta format
would be uploaded. The prediction results were output in tabular form
with five columns: sequence header, position, sequence, prediction
score, and prediction category. The predicted results can also be
downloaded as a data file. EdeepSADPr is accessible via http://
edeepsadpr.bioinfogo.org/.

4 Conclusion

The main goal of this study is the development of a model to
predict pSADPr sites based on protein sequence information and the
investigation of pSADPr’s characteristics. We developed different
deep-learning classifiers and used them as base classifiers to

TABLE 2 Prediction performances of stacking ensemble classifiers for the pSADPr-SADPr dataset.

Classifier SN SP ACC MCC AUC

Cross-validation

CNNO+Z+W 0.618 ± 0.029 0.694 ± 0.001 0.657 ± 0.014 0.313 ± 0.029 0.719 ± 0.021

CNNO+Z+W+E 0.621 ± 0.030 0.694 ± 0.001 0.658 ± 0.015 0.315 ± 0.030 0.719 ± 0.019

CNNO+Z+W+E+EG 0.617 ± 0.039 0.694 ± 0.001 0.657 ± 0.019 0.311 ± 0.039 0.718 ± 0.022

Independent test

CNNO+Z+W 0.578 ± 0.009 0.694 ± 0.000 0.638 ± 0.004 0.274 ± 0.009 0.704 ± 0.003

CNNO+Z+W+E 0.584 ± 0.012 0.694 ± 0.000 0.641 ± 0.006 0.279 ± 0.012 0.703 ± 0.002

CNNO+Z+W+E+EG 0.597 ± 0.022 0.694 ± 0.000 0.647 ± 0.011 0.292 ± 0.021 0.703 ± 0.002

FIGURE 9
Performance comparison betweenCNN-based classifiers and the stacking-based ensemble classifiers for the pSADPr-SADPr dataset in the ten-fold
cross-validation (A) and independent test (B). p values were calculated using the two-sided Mann–Whitney U test.
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construct a few stacking-based ensemble models. We found that the
base classifiers and the ensemble models had similar performances.
The reason why the performance of the ensemble model was not
improved is that there may not be much difference between the
features used for model construction or the base models may not
comprehensively cover the pSADPr’s characteristics. In the near
future, we may integrate sequential information, structural
information and evolutionary information to improve model
performance (Xu et al., 2021). Additionally, the performance may
be boosted by increasing the data amount and optimizing the model
architecture (Zhu et al., 2022). Moreover, we found the
characteristics of pSADPr sites, which may boost the
understanding of this crosstalk. In summary, we developed the
first classifier to predict human pSADPr sites and expect accurate
prediction facilitate the discovery of new pSADPr sites. This
architecture is applicable to the model construction for predicting
other types of in situ crosstalks.
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