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Autophagy is an evolutionarily conserved mechanism of cell adaptation to
metabolic and environmental stress. It mediates the disposal of protein
aggregates and dysfunctional organelles, although non-conventional features
have recently emerged to broadly extend the pathophysiological relevance of
autophagy. In baseline conditions, basal autophagy critically regulates cardiac
homeostasis to preserve structural and functional integrity and protect against cell
damage and genomic instability occurring with aging. Moreover, autophagy is
stimulated bymultiple cardiac injuries and contributes tomechanisms of response
and remodeling following ischemia, pressure overload, and metabolic stress.
Besides cardiac cells, autophagy orchestrates the maturation of neutrophils
and other immune cells, influencing their function. In this review, we will
discuss the evidence supporting the role of autophagy in cardiac homeostasis,
aging, and cardioimmunological response to cardiac injury. Finally, we highlight
possible translational perspectives of modulating autophagy for therapeutic
purposes to improve the care of patients with acute and chronic cardiac disease.
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1 Introduction

Adaptation to stress is an arduous challenge for eukaryotic cells. It involves the
orchestrated action of multiple pathways to coordinate metabolic activities with nutrient
availability, regulate cell cycle and proliferation, and dispose of dysfunctional intracellular
elements. These multifaceted programs ultimately direct cell fate toward survival or death,
with pathophysiological implications for health and disease (Mizushima and Levine, 2020).
Among the major mechanisms involved, autophagy is primarily a catabolic process aimed at
recycling intracellular components to maintain nutrient homeostasis, favor metabolic
adaptation, prevent damage by dysfunctional organelles, and preserve genomic stability
(Levine and Kroemer, 2019; Mizushima and Levine, 2020). While originally considered a
non-selective recycling system, we now appreciate autophagy as a complex machine capable
of selective target recognition and involved in intracellular and extracellular trafficking of
diverse molecules and organelles (Gatica et al., 2018; Kaushik and Cuervo, 2018; Levine and
Kroemer, 2019). As such, autophagy has attracted notable scientific interest, as confirmed
by > 74,000 related articles and the Nobel prize awarded to Yoshinori Ohsumi in 2016 for the
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discovery of genes involved in its mechanisms. In parallel,
translational research has focused on exploiting autophagy
modulation as a potential therapeutic strategy in clinical medicine.

Autophagy is rapidly activated upon stress exposure acting
downstream of crucial signaling networks coordinating cell
biology with environmental conditions, such as the mTOR,
AMPK, GSK-3β, and Hippo pathways (Zhai et al., 2011; Saxton
and Sabatini, 2017; Maejima et al., 2022). Multiple cardiovascular-
relevant stimuli (e.g., shear stress, hypoxia, ischemia, danger-
associated molecular patterns, redox stress, mitochondrial
damage) induce autophagy in cell types involved in
cardiovascular function (Nakai et al., 2007; Kroemer et al., 2010;
Henderson et al., 2021). Hence, it is unsurprising that functional
autophagy machinery is required for cardiac function and limits
disease development in response to cardiac injuries (e.g., mediating
mitochondrial turnover upon hemodynamic overload) (Shirakabe
et al., 2016; Miyamoto, 2019). Consistently, suppression of
autophagy is a common feature in heart failure, aging, and upon
exposure to cardiotoxic drugs (e.g., doxorubicin) (Fernandez et al.,
2018; Hahn et al., 2021; Wang et al., 2021). However, excessive
activation of autophagy may occur early upon pressure overload or
in ischemia/reperfusion injury and might contribute to pathological
processes (Matsui et al., 2007; Zhu et al., 2007; Zhang et al., 2021;
Nah et al., 2022), thus highlighting the importance of an “activity
window” of activation of autophagy. Moreover, autophagy is a
ubiquitous process and, besides its biological role in the
cardiovascular system, contributes to the maturation and
functionality of immune cells (e.g., neutrophils and monocytes)
which are crucially involved in response to cardiac injury
(Bhattacharya et al., 2015; Germic et al., 2019; Deretic, 2021). In
this Review, we will discuss the contribution of autophagy to cardiac
pathophysiology, highlighting emerging functional paradigms and
their involvement in cells and mechanisms dictating cardiac healing.
Finally, we will highlight the opportunity of modulating autophagy
for therapeutic purposes in cardiac diseases.

2 Autophagy: molecular mechanisms

As its name (Greek for “self-eating”) implies, autophagy is
mainly a catabolic process to dispose off intracellular
components, typically dysfunctional/senescent organelles or
protein aggregates, by proteolytic degradation into lysosomes.
Different mechanisms of lysosomal cargo sequestration
distinguish three types of autophagy: (i) chaperone-mediated
autophagy (CMA), (ii) microautophagy, and (iii)
macroautophagy. In CMA, the protein LAMP2A (lysosome-
associate membrane protein 2A) recruits into lysosomes the
chaperone HSC70 which selectively recognizes cargoes via
KFERQ-like motifs (Kaushik and Cuervo, 2018). On the other
hand, microautophagy engulfs cytosolic elements in vesicles
formed by the invagination of lysosomal membranes (Wang
et al., 2022). Finally, macroautophagy involves multistep
intracellular membrane rearrangement to seal cargoes into
double-membraned vesicles (i.e., autophagosomes) which
eventually fuse with lysosomes (Dikic and Elazar, 2018; Levine
and Kroemer, 2019). While recent evidence suggests the
involvement of CMA in the cardiovascular system (Pedrozo

et al., 2013; Qiao et al., 2021; Subramani et al., 2021; Ghosh
et al., 2022), the wide core of research has studied the crucial
contribution of macroautophagy (commonly referred to as
“autophagy”) in mechanisms of cardiac function. Hence, this
Review will refer to macroautophagy as “autophagy”, which
commonly occurs in literature.

Autophagy involves the coordinated activity of a set of
evolutionarily conserved AuTophagy-related Genes (ATGs)
(Figure 1) (Yamamoto et al., 2023). It is initiated by the ULK1
(Unc-51-like kinase 1) complex, downstream of multiple signaling
pathways involved in nutrient sensing and metabolism (Ganley
et al., 2009; Saxton and Sabatini, 2017). Once activated,
ULK1 binds to and phosphorylates ATG14, VPS34, and
BECLIN1, which translocate to specific sites of the endoplasmic
reticulum (named “omegasomes”) and activate the class III PI3K
(PI3KC3) complex I (Nishimura et al., 2017). The consequent local
production of phosphatidylinositol-3-phosphate (PI3P) starts the
nucleation of phagophores, which are precursors of
autophagosomes (Hamasaki et al., 2013; Karanasios et al.,
2013). Multiple organelles (e.g., mitochondria, Golgi,
endosomes) supply membranes for phagophore elongation
which are marked by ATG9, the only transmembrane ATG
(Orsi et al., 2012). The elongation depends on the ATG8 family
members (i.e., LC3 and GABARAP) which are first cleaved by
ATG4, then activated by ATG7, and finally anchored to
phagophore membranes through conjugation to
phosphatidylethanolamine operated by ATG3 (Hamasaki et al.,
2013). An efficient ATG8 conjugation requires the activation of
ATG3 by the ATG5-ATG12-ATG16L1 complex, which localizes in
early phagophores and shapes membrane curvature to facilitate
elongation (Jensen et al., 2022). ATG8 conjugation is not
permanent and can be reverted by ATG4, resulting in its
release from the membrane to limit phagophore elongation
(Scherz-Shouval et al., 2007). Indeed, ATG8 promotes
elongation upon conjugation, although its requirement has been
questioned (Weidberg et al., 2011; Nguyen et al., 2016). The sealing
of the phagophore to produce an autophagosome also involves
ATG8 and features the contribution of the small GTPase Rab5 and
other components of the endosomal sorting complexes required
for transport (ESCRT) (Weidberg et al., 2011; Takahashi et al.,
2018; Zhou et al., 2019). After being produced, the autophagosome
undergoes maturation by removal of ATGs from the outer
membrane and recruiting the molecular machinery required for
its fusion with lysosomes. This includes the homotypic fusion and
protein sorting (HOPS) complex, which mediates membrane
tethering (Jiang et al., 2014), and the SNARE receptors
STX17 and SNAP29, which bind to ATG14 and are primed for
interactions with VAMP8 localized on the lysosomal membrane
(Diao et al., 2015). The autophagosome-lysosome fusion
encompasses the trafficking of multiple additional proteins (e.g.,
small GTPases such as Rab7) (Langemeyer et al., 2018) and results
in the release of various lysosomal enzymes into the lumen to
hydrolyze the cargoes and liberate their molecular building blocks
(e.g., amino acids), which are relocated to the cytoplasm for reuse
(Yang et al., 2006; Diao et al., 2015). Conversely, the membranes of
the autophagosomes are selectively sorted out by an SNX4-SNX5-
SNX17 complex licensing their recycling in the intracellular
membrane pool (Zhou et al., 2022).
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The knowledge of mechanisms of cargo engulfment in
phagophore/autophagosomes has sensibly evolved in the last
decade. While autophagy was originally branded as a bulk
recycling process, the discovery of CMA and its selectivity in
target recognition somehow prompted the investigation of
mechanisms of selection (Kaushik and Cuervo, 2018). Nowadays,
all types of autophagy are recognized as capable of selectivity which
is conferred by the binding of ATG8 proteins (e.g., LC3) to cargo
receptors, such as proteins SQSTM1 (also known as p62), NBR1,
and NIX (also known as BNIP3L) (Gatica et al., 2018). The spatial
proximity of these components to the targets allows phagophore
elongation around the cargo and its inclusion into nascent
autophagosomes. The cargo receptors interact with conjugated
LC3 (i.e., LC3-II) through a distinctive and evolutionary
conserved WXXL motif named LC3-interacting region (LIR)
(Ichimura et al., 2008; Gatica et al., 2018). These receptors
mediate biophysical cargo interaction with the phagophore
during elongation by recognizing specific “eat me” signals,
dependent or independent of ubiquitination (Gatica et al., 2018).
Mitophagy is one of the most widely studied forms of selective
autophagy to remove dysfunctional mitochondria. Through
exposing PINK1 on the outer membrane, damaged mitochondria
recruit the E3-ligase PARK2 (also known as Parkin) to
ubiquitinylate multiple proteins which are recognized by the
cargo receptors optineurin, NDP52, and SQSTM1 (Geisler et al.,
2010; Trempe et al., 2013; Lazarou et al., 2015). However,
recognition of dysfunctional mitochondria may also occur with
ubiquitin-independent pathways via LIRs contained in the
proteins NIX, FUNDC1, and BNIP3 (Liu et al., 2012; Ni et al.,

2015). Additional examples of selective autophagy include
reticulophagy (endoplasmic reticulum), lysophagy (damaged
lysosomes), nucleophagy (nucleus), lipophagy (lipid droplets),
pexophagy (peroxisomes), aggrephagy (misfolded proteins)
(Gatica et al., 2018; Ma et al., 2022). Finally, while organelles and
proteins are usually considered, autophagy also targets RNAs either
by affecting RNA-binding proteins or by direct interaction of
LC3 with RNAs (Gibbings et al., 2012; Liao et al., 2018;
Santovito et al., 2020; Hwang et al., 2022; Ma et al., 2022).

Besides their original role of mediating intracellular catabolism,
ATGs and autophagy machinery in eukaryotes engage in many
other nonconventional functions (Yang et al., 2006; Levine and
Kroemer, 2019). Some functions are similar to degradative
autophagy, as in the case of LC3-associated phagocytosis which
targets extracellular components by engulfing them into single-
membraned vesicles marked by LC3 (requiring the ATG8-
conjugation machinery) which are directed toward lysosomes
(Heckmann and Green, 2019). Yet, the autophagy machinery
may direct autophagosomes toward the plasma membrane and
promote cargo release (i.e., secretory autophagy), rather than
degradation in autophagolysosomes. While molecular
mechanisms are still not fully understood, secretory autophagy
contributes to the extracellular release of IL-1β, IL-18, and
HMGB1 from macrophages (Dupont et al., 2011), to the ejection
of dysfunctional mitochondria from cardiomyocytes for their uptake
and disposal by cardiac macrophages (Nicolas-Avila et al., 2020;
Zhang et al., 2023), and to mechanisms of protein sorting and
loading into extracellular vesicles (e.g., exosomes) (Leidal et al.,
2020). Besides degradative and secretory functions, autophagy has

FIGURE 1
General mechanisms of macroautophagy. Stress signals activate intracellular metabolic pathways (e.g., mTORC-1, GSK-3β, AMPK) that culminate in
the regulation of the ULK1 complex. This complex triggers the initiation of autophagy by promoting phagophore nucleation through the activation of the
PI3KC3 complex 1 via the phosphorylation of multiple protein, such as BECLIN1, VPS34, and ATG14. After nucleation, the coordinated activity of multiple
ATGs mediates phagophore elongation through the conjugation of proteins of the ATG8-family (e.g., LC3). The phagophore engulfs intracellular
cargoes (e.g., protein aggregates and dysfunctional organelles) before membrane sealing to produce a double-layered vesicle named autophagosome,
the hallmark of macroautophagy. The autophagosome eventually fuses with a lysosome for the degradation of autophagic cargoes, while membraned
are recycled and become available for the elongation of other phagophores (see text for more details).
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been implicated in the trafficking and function of RNAs. In
particular, autophagy participates in intracellular and extracellular
trafficking of RNA-binding proteins (e.g., HNRNPK. SAFB,
MEX3A) and drives RNA sorting (particularly small non-coding
RNAs, e.g., microRNAs) for nuclear enrichment or loading into
extracellular vesicles (Leidal et al., 2020; Santovito et al., 2020).
Notably, autophagy strongly influences microRNAs by affecting
maturation through selective degradation of DICER and AGO2
(Gibbings et al., 2012; Liao et al., 2018), mediating intracellular and
extracellular trafficking (Leidal et al., 2020; Santovito et al., 2020),
ruling conventional and nonconventional functionality (Gibbings
et al., 2012; Santovito et al., 2020; Santovito and Weber, 2022), and
promoting their decay (Lan et al., 2014; Liao et al., 2018). Finally,
ATGs are endowed with functions beyond membrane trafficking
and contribute to signaling pathways independent of their role in
autophagy, for example, by regulating p53-dependent apoptosis
(ATG7) or the cGAS-STING pathway (BECLIN1, ATG9) with
implications for cell cycle and innate immunity (Saitoh et al.,
2009; Lee et al., 2012; Liang et al., 2014).

3 Autophagy in cardiac homeostasis
and aging

Given the elevated energy demand (6 Kg ATP/day), it is not
surprising that adequate mitochondrial function is crucial for
cardiac activity and implies an essential role of autophagy as a
mediator of mitochondrial quality control (Lopez-Crisosto et al.,
2017). The first autophagosome detection by electron microscopy in
fetal cardiomyocytes dates to the 1970s (Sybers et al., 1976). Since
then, mechanistic studies in zebrafish and mice revealed that
autophagy occurs during heart development during
embryogenesis (assessed by the presence of LC3-GFP puncta)
and that impairment of autophagy by constitutive deletion of
ATGs (e.g., Atg5) determined aberrant expression of the cardiac
patterning gene Tbx2 with abnormalities of chamber septation and
valve development (Lee et al., 2014). Consistently, Atg5-dependent
autophagy is required for direct cardiac reprogramming that
converts fibroblasts into contractile cardiomyocytes, and the
fibroblast growth factor (FGF) signaling axis suppresses
cardiomyocyte differentiation from mesodermal cells by
inhibiting autophagy (Zhang et al., 2012; Wang et al., 2020).
Surprisingly, Beclin1 (the mammalian Atg6 orthologue, an
autophagy activator) suppresses cardiomyocyte differentiation via
an autophagy-independent mechanism (Wang et al., 2020). As a
form of autophagy selective for dysfunctional mitochondria,
mitophagy is mandatory for perinatal cardiac development, and
Park2 deletion to inhibit mitophagy results in lethal cardiomyopathy
due to impaired disposal of fetal mitochondria, which must be
replaced by adult ones after birth to switch substrate predilection
from carbohydrates to fatty acids (Gong et al., 2015). Notably,
disrupting the insulin/IGF1 signaling pathway (cardiomyocyte-
specific Irs1 and Irs2 deletion) in neonatal mice resulted in
unrestrained autophagy that paradoxically precipitated
mitochondrial dysfunction and cardiomyocyte loss (Riehle et al.,
2013). These findings unveil the complexity of autophagic signaling
pathways and the importance of noncanonical functions of ATGs in
cardiomyocyte differentiation and perinatal cardiac physiology.

Besides cardiac development, autophagy is crucial for the
homeostasis of the adult heart. Conditional disruption of
autophagy in cardiomyocytes (in MerCreMer,Atg5fl/fl mice) leads to
the accumulation of ubiquitinated elements, affecting sarcomere
structure andmitochondrial alignment, favoring the development of
contractile dysfunction and left ventricular dilatation (Nakai et al.,
2007). Similarly, the genetic deletion of Drp1, which is required for
mitophagy in cardiomyocytes, suppressed the autophagic flux with
consequent left ventricular dysfunction and hypertrophy, eventually
culminating in death within 13 weeks (Ikeda et al., 2015). Finally, the
deletion of Lamp2 in mice and humans (i.e., Danon disease)
determines defective autophagic flux and affects CMA resulting
in a vacuolar myopathy of cardiac and skeletal muscle with
progressive cardiomyopathy which predominantly manifests a
hypertrophic phenotype (Nishino et al., 2000; Tanaka et al., 2000;
Maron et al., 2009). Together, these observations support the
constitutive homeostatic role of autophagy and mitophagy in
preserving cardiac structure and function.

With the increase in life expectancy, the attention to
mechanisms of cardiac aging has substantially risen. Adult
cardiomyocytes are terminally differentiated cells with limited
proliferative capability, thus maintenance of their functional
homeostasis is crucial for the aging heart. Autophagy declines
with aging enhancing susceptibility to aging-associated cardiac
dysfunction, and cardiac-specific disruption of autophagy
(i.e., Myh6Cre+;Atg5fl/fl) determined age-related cardiomyopathy
(Taneike et al., 2010). Multiple mechanisms underlie the aging-
related reduction of autophagic activity and involve signaling
pathways implicated in longevity. In particular, aging is
associated with lower AMPK activity and hyperactivation of the
Akt and mTOR pathways, all able to dampen autophagy through
inhibiting the ULK1 complex and deactivating (by phosphorylation)
transcription factors involved in the transcription of ATGs, such as
TFEB or Forkhead box O (FoxO) (Turdi et al., 2010; Kim et al., 2011;
Martina et al., 2012; Roczniak-Ferguson et al., 2012; Saxton and
Sabatini, 2017; Audesse et al., 2019). Moreover, the age-dependent
decrease of nicotinamide adenine dinucleotide (NAD+) reduces
SIRT1 activity and increases the acetylation of FoxO, ATG5,
ATG7, and ATG8, thereby inhibiting their function to restrain
autophagy (Lee et al., 2008; Khalil et al., 2016; Ren et al., 2017;
Audesse et al., 2019). Aging also determines epigenetic changes to
repress ATGs such as Dnmt2-dependent hypermethylation of Atg5
and Lc3b promoters (Khalil et al., 2016). Besides dysregulation of
signaling pathways, excessive accumulation of reactive oxygen
species (ROS) and damaged mitochondria occurs with age and
may reduce effective autophagy because of exhaustion of the
autophagic machinery, oxidization and inactivation of ATGs
(e.g., ATG3 and ATG7), and lipofuscin accumulation in
lysosomes to impair their function (Brunk and Terman, 2002;
Lee et al., 2008; Frudd et al., 2018). Furthermore, aging is
associated with higher myocardial expression of inositol 1,4,5-
trisphosphate receptors (IP3Rs) which are involved in the
suppression of autophagy by assembling an inhibitory IP3R/
BECLIN1 complex (Gorza et al., 1997; Decuypere et al., 2011;
Wong et al., 2013). Finally, NLRP3 inflammasome activity is
increased in aged hearts and preliminary evidence supports its
possible contribution to cardiac aging via regulating autophagy
(Miyamoto, 2019).
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Aside from the evidence of reduced autophagy occurring in
aging, mechanistic studies proved the opportunity of
manipulating autophagy to improve age-induced cardiac
dysfunction. Ubiquitous overexpression of Atg5 in transgenic
mice results in the activation of autophagy and significantly
extends lifespan (Pyo et al., 2013). Moreover, transgenic
expression of a mutated form of Beclin1 unable to interact
with BCL2 in mice increased basal autophagy in the heart
(and several other organs) and increased lifespan with reduced
age-induced cardiac remodeling and lower spontaneous
tumorigenesis (Fernandez et al., 2018). In line with the anti-
aging effect of mitophagy, the genetic deficiency of Parkin in mice
is associated with age-dependent accumulation of dysfunctional
mitochondria in the heart (Kubli et al., 2013), whereas transgenic
overexpression of Parkin reduced aging-induced cardiac damage
and preserved cardiac function by reducing the accumulation of
dysfunctional mitochondria, ROS generation, and inflammaging
biomarkers (e.g., senescence-associated β-galactosidase)
(Hoshino et al., 2013). Finally, autophagy is instrumental in
cardioprotective and anti-aging effects of oral administration
of spermidine as well as in the improved myocardial
bioenergetics and age-related dysfunction upon IGF1R
inhibition in aged mice (Eisenberg et al., 2016; Abdellatif
et al., 2022). Altogether, strong evidence supports the role of
basal autophagy in maintaining cardiac homeostasis and
highlights the potential benefit of its manipulation to revert
age-induced cardiac dysfunction.

4 Autophagy in cardiomyocyte
ischemic response

Both ischemia and reperfusion trigger autophagy in the
myocardium, although the causative role of autophagy in
ischemia-reperfusion (I/R) injury is still not entirely understood.
A reason for this is that some conflicting results exist in the
literature, as described in the following. During myocardial
ischemia in mice, nutrient deprivation leads to the autophagy
activation, which is accompanied by activation of AMPK and
inhibited by dominant negative AMPK (Matsui et al., 2007).
Likewise, glucose deprivation in cultured cardiac myocytes
induces AMPK activation and autophagy, while inactivating
mTOR. This can be considered an adaptive mechanism for
maintaining ATP production by generating free fatty acids
(FFAs) and amino acids (Kanamori et al., 2011). Furthermore,
the disposal of damaged mitochondria helps preventing
cardiomyocyte damage and apoptosis (Yan et al., 2005). In
support of this, disruption of dynamin-related protein 1 (Drp1),
a GTPase that mediates mitochondrial fission, inhibited
mitochondrial autophagy, and resulted in mitochondrial
dysfunction, thereby promoting cardiac dysfunction and
increased susceptibility to I/R (Ikeda et al., 2015). An alternative
pathway for mitophagy utilizes the serine/threonine protein kinase
Unc-51-like kinase 1 (Ulk1) and the small GTPase Rab9 to clear
damaged mitochondria independently of conventional autophagy
proteins. Ulk1 phosphorylation of Rab9 at serine 179 is critical for
alternative mitophagy and cardioprotection during ischemia (Saito
et al., 2019).

Furthermore, the small GTP-binding protein Rheb activates the
complex 1 of the mechanistic target of rapamycin (mTORC1) and
has been identified as a critical regulator of autophagy during cardiac
ischemia, in the setting of metabolic disease (Sciarretta et al., 2012).
Mice subjected to a high fat diet had a disturbed, uncontrolled
activation of the Rheb/mTORC1 pathway which leads to autophagy
inhibition and a reduction of myocardial tolerance to ischemia.
Another key factor involved in cardiomyocyte autophagy induction
is NADPH oxidase (Nox) 4, an enzyme that generates ROS during
energy stress in the heart, thereby preserving cellular energy and
limiting cell death in energy-deprived cardiomyocytes (Sciarretta
et al., 2013).

Autophagy during the reperfusion phase is also triggered by
oxidative stress, but linked to an upregulation of Beclin 1 and
considered detrimental in this condition according to some
studies (Valentim et al., 2006; Matsui et al., 2007; Hariharan
et al., 2011). In rat cardiomyocytes, the knockdown of Beclin
1 expression by RNA interference inhibited autophagy, while
enhancing cell survival (Valentim et al., 2006). Beclin 1 plays a
key role at the interface between autophagy and apoptosis, which are
tightly connected cellular processes (Kang et al., 2011). The
proapoptotic kinase mammalian Ste20-like kinase-1 (Mst-1) acts
as a molecular switch that selectively drives autophagy or apoptosis
by preferentially altering the formation of Bcl-2–Beclin 1 complexes
(Maejima et al., 2013). In various transgenic mouse models
subjected to permanent left anterior descending (LAD) ligation,
Mst1 promoted cardiac dysfunction by inhibiting autophagy,
associated with increased levels of Thr108-phosphorylated Beclin1.
Mechanistically, activation of Mst-1 in energy-deprived
cardiomyocytes resulted in Beclin1 phosphorylation, which
enhanced the interaction between Beclin1 and Bcl-2 and Bcl-xL.

Impaired autophagic flux during reperfusion may represent a
pathological mechanism contributing to cardiomyocyte death. In
support of this, reoxygenation of rat neonatal cardiomyocytes after
hypoxia increased cell death compared with hypoxia alone, which
was accompanied by markedly increased autophagosomes but not
autolysosomes, and impaired clearance of polyglutamine aggregates,
indicating a disturbed autophagic flux (Ma et al., 2012). This defect
was linked to a reduced expression of LAMP2, a critical determinant
of autophagosome-lysosome fusion. The resulting autophagosome
accumulation was associated with increased ROS and ROS-induced
BECLIN1 upregulation, mitochondrial permeabilization, and
cardiomyocyte death. Phosphorylation of the mitochondrial
serine/threonine kinase beta isoform-specific glycogen synthase
kinase-3 (GSK-3) is a central downstream event of multiple
cardioprotective pathways. Inhibition of GSK-3β stimulated
mTOR signaling and inhibited autophagy through a rapamycin-
sensitive (mTOR dependent) mechanism (Zhai et al., 2011). Using
gain- and loss-off-function transgenic mouse models, GSK-3β
signaling was shown to exert distinct effects on cardiac injury
caused by either 2 hours of non-reperfused ischemia or I/R,
indicating that isoform-specific inhibition of GSK-3β exacerbates
ischemic injury but protects against I/R injury bymodulatingmTOR
and autophagy.

As opposed to the above-described evidence for impaired
autophagy or detrimental effects of autophagy in I/R injury,
other studies reported cardioprotective effects of autophagy
induction in this condition. Autophagy induction with rapamycin
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dampened I/R injury in a mechanism involving JAK2-STAT3
signaling in cardiomyocytes (Das et al., 2012). Likewise,
treatment with FDA-approved HDAC inhibitors for cancer
treatment was shown to limit myocardial I/R damage through
autophagy and mitochondrial biogenesis, thereby preserving
mitochondrial homeostasis in cardiomyocytes (Xie et al., 2014;
Yang et al., 2019). Furthermore, recent findings have shown that
atrial natriuretic peptide (NPPA) mediates cardioprotection against
I/R injury by activating autophagy in cardiomyocytes through
NPR1/type A natriuretic peptide receptor and PRKG/protein
kinase G signaling (Forte et al., 2022). Interestingly, NPPA
produced by cardiomyocytes is secreted in response to energy
deprivation or hypoxia, thereby providing an autocrine/paracrine
stimulus for autophagy induction. This may provide a mechanistic
explanation for the well-established cardioprotective and anti-
hypertrophic effects of NPPA in cardiac stress conditions.

In summary, the precise cellular survival or cell death pathways
in cardiomyocytes seem highly context-dependent. Autophagy
during myocardial I/R injury appears as a double-edged sword,
which may initially represent a cellular quality control and
prosurvival mechanism, but eventually turns into a detrimental
process. This might be linked to disturbed autophagosome
degradation. The precise mechanisms and conditions that may
turn into a detrimental outcome deserve further investigation, in
view of potential therapeutic strategies to improve cardioprotective
autophagic flux in the acute phase post-MI. Some preclinical data
have indeed shown the beneficial effects of autophagy induction by
limiting adverse remodeling in permanent LAD ligationmodels, e.g.,
by treatment with trehalose (Sciarretta et al., 2018). Moreover,
targeting particular long noncoding RNAs to modulate
autophagy has been suggested as a therapeutic strategy in the
context of myocardial infarction and heart failure (Wang et al.,
2015; Liu et al., 2018; Liang et al., 2020).

5 Autophagy orchestrates immune cell
function and response to cardiac injury
and ischemia

While the previous section focused on the role of autophagy in
cardiomyocytes during cardiac ischemic stress and reperfusion
injury, it is also important to consider the role of innate immune
cells in this context. Here, we will focus on mechanisms that are
relevant for maintaining cardiac homeostasis in steady-state
conditions, as well as in post-myocardial infarction inflammation
and subsequent repair processes.

To maintain the high cardiac energy demand required for
contraction and relaxation, cardiomyocytes contain a large
number of mitochondria. The maintenance of a pool of healthy
mitochondria is essential for sustaining normal cardiac
performance. Therefore, mitochondrial recycling and quality
control are tightly controlled via mitophagy. However, given that
cardiomyocytes are subjected to intense mechanical stress and
metabolic demands, the question arises of how these postmitotic
cells with virtually no turnover are able to preserve cellular
homeostasis. In a recent study, Nicolas-Avila et al. (2020)
describe a new mechanism of autophagic-driven mitochondria
release from cardiomyocytes to MerTK+ macrophages. Advanced

imaging techniques including light sheet microscopy and confocal
microscopy revealed that cardiomyocytes are surrounded by on
average five cardiac macrophages and form direct interactions.
Cardiomyocytes thereby eject dysfunctional mitochondria and
other cargo through an autophagosomal process into particles
called exosphers. The uptake of these exosphers by the
surrounding macrophages is mediated by Mertk and prevents
extracellular waste accumulation and inflammasome activation,
which is crucial for cardiac homeostasis. Ischemic cardiac stress
by permanent LAD ligation increased mitochondrial ejection via
exosphers.

Another important study highlighted the contribution of
autophagy in the maturation and function of neutrophils
(Riffelmacher et al., 2017). Neutrophils play a critical role as one
of the first lines of innate immune response to protect the host from
exogenous pathogens and to repair the damaged tissue. Due to their
short lifespan, neutrophils are constantly produced in the bone
marrow from hematopoietic progenitors in a process named
granulopoiesis and released as mature neutrophils into the blood
stream (Soehnlein et al., 2017). Riffelmacher et al. (2017) found that
the generation of FFAs via autophagy is essential for neutrophil
differentiation. The highest levels of autophagic flux were observed
in the early stages of differentiation, as compared to reduced
autophagic flux observed at the final maturation stage. Targeted
deletion of Atg7 in neutrophil progenitors resulted in an
accumulation of immature neutrophils in the bone marrow.
More detailed metabolic analyses further revealed that neutrophil
differentiation was accompanied by a shift towards mitochondrial
respiration with the downregulation of glycolysis, which was blunted
in autophagy-deficient neutrophils. Adding exogenous FFAs to
Atg7-deficient neutrophil precursors restored their differentiation,
suggesting that the oxidation of FFAs produced by autophagy
provides the necessary ATP for neutrophil differentiation. A
different study demonstrated that autophagy is also required for
neutrophil degranulation and NADPH-oxidase-mediated reactive
oxygen species production (Bhattacharya et al., 2015). Myeloid-
specific deletion of Atg7 reduced the inflammatory activity of
neutrophils in vitro and in a murine model of experimental
autoimmune encephalomyelitis. Given the important role of
neutrophils in acute myocardial I/R injury, chronic ischemia, and
remodeling (Horckmans et al., 2017; Puhl and Steffens, 2019), it is
likely that neutrophil autophagic flux may also be a critical regulator
of cardiac injury and remodeling. In particular, the relevance of
neutrophil-secreted factors (including neutrophil gelatinase-
associated lipocalin, NGAL) in the regulation of macrophage
polarization during the post-ischemic myocardial healing phase
was demonstrated in an experimental model of permanent
infarction (Horckmans et al., 2017). A more recent study
highlighted the relevance for endothelial autophagy in regulating
neutrophil infiltration to sites of inflammation (Reglero-Real et al.,
2021). Inflamed venular endothelial cells upregulated autophagy
selectively at endothelial cell junctions, which was temporally
aligned with the peak of neutrophil trafficking. Endothelial cell
Atg5 deficiency resulted in excessive neutrophil transendothelial
migration and uncontrolled leukocyte migration in murine
inflammatory models, while pharmacological induction of
autophagy suppressed neutrophil infiltration into tissues.
However, the precise mechanisms of neutrophil extravasation in
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the ischemic myocardium have not been studied as imaging of
leukocyte trafficking in the beating heart remains very challenging
(Steffens et al., 2022). Hence, we may only speculate that the
molecular mechanisms determining neutrophil diapedesis in
remote areas of the infarcted heart or reperfused infarct zone are
comparable to the processes studied in venules of other
inflammatory sites.

In addition, there is evidence that autophagy is relevant for
monocyte differentiation into macrophages (Jacquel et al., 2012), a
process orchestrated by colony-stimulating factor-1 (Pittet et al.,
2014). While the healthy heart contains a heterogeneous population
of tissue-resident macrophages with distinct origins and functions,
the macrophage repertoire becomes even more diverse in response
to cardiac injury, as blood-borne monocytes migrate into the
myocardium and differentiate into macrophages to remove dying
tissue, scavenge pathogens and promote healing (Swirski and
Nahrendorf, 2018; Zaman and Epelman, 2022). Hence, it can be
speculated that monocyte autophagic flux is an important process in
the immune response to cardiac injury. However, an experimental
study focusing on macrophage lysosomal function in post-
myocardial infarction adverse remodeling found that ATG-
dependent autophagy was dispensable, at least in this particular
experimental model (Javaheri et al., 2019). Inducible macrophage-
specific overexpression of transcription factor EB (TFEB), a master
regulator of lysosome biogenesis, attenuated post-I/R cardiac
remodeling and decreased the abundance of pro-inflammatory
macrophages. Surprisingly, all these effects were independent of
myeloid ATG5 expression. However, given that this study only
focused on a single time point after 4 weeks of I/R injury, a more in-
depth investigation is warranted to clarify the role of monocyte-
macrophage autophagy in cardiac injury responses.

In summary, it will be interesting to investigate how myocardial
infarction and I/R injury affect endothelial, neutrophil and
monocyte autophagic flux, which may have crucial implications
on emergency granulopoiesis, cardiac neutrophil infiltration,
degranulation, ROS production, and cardiac macrophage
phenotypes. Consequently, pharmacological targeting of
autophagy in this condition could represent a possible
therapeutic strategy to limit MI-induced cardiac damage, adverse
remodeling and heart failure.

6 Autophagy adaptor protein in cardiac
aging and ischemia

Evidence on the contribution of selective autophagy in cardiac
pathophysiology is accumulating and extends beyond mitophagy
(Kirkin et al., 2009). A crucial role in selectivity is exerted by adaptor
proteins that bind specific cargoes and interact with conjugated
LC3 via conserved LIR domains. The proteins SQSTM1 (also known
as p62) and Neighbor of BRCA1 gene 1 (NBR1) are among the best-
characterized examples (Gatica et al., 2018; Rasmussen et al., 2022).
Structurally, they own an LIR motif, homo- or hetero-
oligomerization domains, and a C-terminal ubiquitin-binding
(UBA) domain binding ubiquitinated cargos. In clearing
misfolded proteins, polyubiquitination of the cargo is essential so
that they can bind to SQSTM1, be included in autophagosomes, and
then be sent for lysosomal degradation (Gatica et al., 2018). The

UBA domain interacts with ubiquitin chains attached to the cargo,
while the LIR motif interacts with ATG8 family proteins (e.g., LC3-
II) attached to the inner membrane surface of a growing
phagophore, which then closes to become an autophagosome
(Lamark et al., 2017). SQSTM1 tends to cluster in p62 bodies
when its levels are increased. In human cells, p62 bodies are
often observed as discrete punctae. The formation of p62 bodies
depends on the N-terminal Phox/Bem1p (PB1) domain-mediated
polymerization of SQSTM1 and is mediated by NBR1 (Lamark and
Johansen, 2021). NBR1 serves as a chain terminator of
SQSTM1 filaments (Jakobi et al., 2020). Since shorter
SQSTM1 filaments form p62 bodies more easily, NBR1 plays a
key role in promoting their assembly by regulating p62 filament
length. Furthermore, NBR1 contains multiple domains involved in
cargo recruitment, and the interaction between the SQSTM1 and
NBR1 allows for more efficient cargo recognition. Given the strong
cooperative activities of NBR1 and SQSTM1, it is often difficult to
distinguish the specific effects of each protein. A reduction in
SQSTM1 levels, autophagosomes, and p62 bodies correlates with
the progression of the autophagic flux toward its late steps. Their
amount is inversely related to cellular autophagy levels, decreasing
when lysosomal degradation has occurred successfully (Katsuragi
et al., 2015).

Notably, upregulation of SQSTM1 has been observed in most
human failing hearts due to ischemic and non-ischemic heart
disease (Weekes et al., 2003; Sanbe et al., 2005), implying that
the accumulation of misfolded/damaged proteins (i.e., increased
proteotoxic stress) due to blockage of selective autophagy is likely a
common pathogenic feature for the progression of a large subset of
heart disease to congestive heart failure. In the example, desmin-
related cardiomyopathy is determined by the accumulation of
desmin-misfolded aggregates and is characterized by higher
expression of SQSTM1 at mRNA and protein levels and
SQSTM1 silencing impaired autophagosomal formation,
exacerbated cell injury, thus increasing cardiomyocyte death
(Zheng et al., 2011). Aging is also characterized by the
accumulation of protein aggregates. Analysis of human
specimens from young (10 years old) and aged individuals
(65 years old) revealed a significantly higher accumulation of
SQSTM1 in aged hearts with a direct correlation with age (Li C.
et al., 2020). Loss of SQSTM1 has been associated with accelerated
aging, while overexpression of the SQSTM1 and NBR1 inDrosophila
and C. Elegans increases lifespan suggesting their possible protective
role during aging (Aparicio et al., 2019; Kumsta et al., 2019). In line
with a protective role against proteotoxic stress, SQSTM1 is required
to increase the autophagic flux in cardiomyocytes with dysfunctional
proteasomal degradation of ubiquitinylated proteins, and its genetic
deletion aggravated diastolic dysfunction upon pharmacological
inhibition of the proteasome (Pan et al., 2020). On the other
hand, in the context of ischemia-reperfusion, SQSTM1 forms a
complex with the necrosome proteins RIP1 and RIP3, and its
silencing in vivo protects the aged hearts from necrosis (Li C.
et al., 2020). Similarly, SQSTM1 may scaffold other proteins
involved in cell death mechanisms, such as caspases, and is
instrumental to the homocysteine-induced apoptosis and autosis
(an autophagy-dependent cell death) of cardiomyocytes (Yin et al.,
2022). These findings further highlight the complexity of autophagy
and its mechanisms in cardiac biology.
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In conclusion, selective autophagy uses SQSTM1 as critical
receptors for cargo selection in cooperation with NBR1 and other
adaptors. Disruptions in their ability to deliver specific cargo for
degradation may lead to disruption of cell signaling homeostasis
with important implications for several cardiovascular diseases.

7 Targeting autophagy in non-ischemic
cardiac diseases

Under normal conditions, the myocardium has low levels of
basal autophagy. Stress conditions can increase its levels to enhance
cell survival, with constitutive autophagy maintaining normal
cardiac structure and function, and upregulated autophagy
occurring during cardiac disease (Rothermel and Hill, 2008;
Gustafsson and Gottlieb, 2009). However, in several cardiac
diseases, autophagy can be downregulated or hyperactivated,
therefore becoming detrimental. Patients with congestive heart
failure (Takemura et al., 2006), coronary artery disease (Yan
et al., 2005), arterial hypertension, hypertrophy and aortic
valvular disease (Nakai et al., 2007), diabetic cardiomyopathy,
and cardiac senescence display increased autophagosomal
accumulation in myocardial biopsies (Terman and Brunk, 2005;

Shinmura et al., 2011). In cardiac hypertrophy (Hill and Olson,
2008), autophagy plays a role in the progression of structural
remodeling toward heart failure (Hein et al., 2003; Zhu et al.,
2007). In heart failure, increased autophagy can cause cardiac
dysfunction, with autophagy-induced degeneration leading to
cardiac cell death (Akazawa et al., 2004; Schiattarella and Hill,
2016). Several treatments have been shown to regulate (either
inducing or inhibiting) cardiac autophagy, including drugs for
the treatment of cardiovascular diseases (e.g., verapamil,
amiodarone, metoprolol), diabetes (e.g., metformin), and anti-
neoplastic drugs (e.g., doxorubicin) (Table 1). There are scant
data on the downregulation of autophagy in anthracycline-
induced cardiotoxicity (Ma et al., 2017; Li M. et al., 2020; Wang
et al., 2021), while no data are available on autophagy and tyrosine
kinase inhibitors (TKI)-induced cardiotoxicity. The activating or
inhibiting effects of TKI on autophagy largely depend on the cell
type (Hirschbuhl et al., 2021). We were the first to demonstrate that
ponatinib, the most cardiotoxic agent amongst all FDA-approved
TKIs in the treatment of chronic myeloid leukemia, decreased
autophagosome formation as well as LC3-II and p62 expression
in cardiomyocytes, indicating a blockage of autophagic flux
(Madonna et al. Eur Heart J Suppl abstract in Frontiers in
CardioVascular Biomedicine 2022). Taken together, these data

TABLE 1 Autophagy-inducing or inhibiting drugs in cardiovascular disease.

Drug Current use Autophagy References

Amiodarone Arrythmia Activates Balgi et al. (2009)

Bortezomib Myeloma, lymphoma Activates Wu et al. (2020)

Clonidine Hypertension Activates Williams et al. (2008)

Digoxin Arrythmia Activates Skubnik et al. (2021)

Doxorubicin Solid cancer Activates (early phase), inhibits (late
phase)

Wang et al. (2021)

Dronedarone Arrythmia Activates Piccoli et al. (2011)

Isoprotenerol,
norepinephrine

Bradycardia, hypotension Activates Lu et al. (2016)

Ivabradine Arrythmia Activates Dai et al. (2021)

Metformin Diabetes Activates Meley et al. (2006)

Metoprolol, propanolol Arrythmia, hypertension Activates Sveshnikov et al. (2011)

Nifedipine Hypertension Activates Pushparaj et al. (2015)

Olmesartan Hypertension Activates Sukumaran et al. (2011)

Paclitaxel Stent restenosis Inhibits Hayashi et al. (2009)

Ranolazine Stable angina, arrhytmia Activates Guerra et al. (2017)

Rapamycin Preventing cardiac transplantation rejection, stent
restenosis

Activates Soderlund and Radegran (2015)

iSGLT2 Diabetes, heart failure Activates or inhibits Packer (2020); Madonna et al.
(2023)

Statins Cholesterol lowering Activates Andres et al. (2014)

Tamoxifen Breast cancer Activates Kocaturk et al. (2019)

Verapamil Hypertension, unstable angina, arrythmia Activates Zhang et al. (2007)

Legend: iSGLT2, Sodium-glucose cotransporter 2 inhibitor.
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suggest that autophagy may represent a valuable target for limiting
damage in non-ischemic cardiac diseases. However, despite the
existence of an intimate connection between autophagy and the
heart, only a few selective autophagy activator candidates have been
recognized so far, depending on the context of cardiac homeostasis
and disease.

Under stress conditions, such as starvation, autophagy is
increased in the heart, and FYVE And Coiled-Coil Domain
Autophagy Adaptor 1 (FYCO1) has been linked to autophagy.
FYCO1 is highly expressed in the heart and its role has recently
been investigated in vitro and in vivo under basal and stress
conditions (Kuhn et al., 2021). FYCO1 directly interacts with
LC3, Rab7, and phosphatidylinositol-3-phosphate (PI3K), key
players in autophagy (Pankiv et al., 2010). Although
FYCO1 knockdown reduces autophagy in isolated rat
cardiomyocytes, overexpression of FYCO1 leads to increased
autophagic flux in vitro. Since overexpression of FYCO1 prevents
cardiac dysfunction in response to biomechanical stress, enhancing
autophagic flux by overexpressing FYCO1 could be a promising
therapeutic strategy to treat or prevent heart failure (Kuhn et al.,
2021).

In adult mice, cardiac-specific deletion of Atg5 leads to
contractile dysfunction, hypertrophy and cardiomyopathy,
consistent with the notion that basal autophagy levels in
cardiomyocytes are required for cellular proteostasis (Nakai et al.,
2007). In vitro studies with cardiomyocytes harvested from Atg5-
deficient mice revealed that deficiency of the autophagic gene could
cause the accumulation of unwanted proteins and contribute to

myocardial disease (Pattison and Robbins, 2011). In line with these
findings, Lamp2-deficient mice displayed increased autophagic
vacuole accumulation and could not degrade proteins, thereby
promoting cardiomyopathy (Nishino et al., 2000; Tanaka et al.,
2000; Maron et al., 2009).

In the failing heart, autophagy can cause myocardial cell damage
via PARP1 (Poly ADP ribose polymerase), which promotes
autophagy in cardiomyocytes by modulating FoxO3a (a member
of the FoxO family of transcription factors) (Schiattarella and Hill,
2016). Changes in cardiac autophagy during sepsis have not been
clearly defined. BECLIN1, an early effector of autophagy in
mammals, is ubiquitously expressed (Liang et al., 1998; Liang
et al., 1999). Autophagy changes in response to sepsis severity,
and Beclin 1 plays a key role in the autophagic response of the septic
heart in a mouse model of LPS-induced sepsis (Sun et al., 2018).
Previous preclinical studies evaluating autophagy as a therapeutic
approach for sepsis were mainly focused on the mTOR inhibitor
rapamycin (Hsieh et al., 2011). Because mTOR is involved in the
regulation of a variety of pathways, rapamycin may cause unwanted
toxicity. In this regard, Sun et al. (2018) showed that forced
overexpression of Beclin 1 in the heart promotes autophagy and
mitophagy, protects mitochondria, and improves cardiac function,
suggesting Beclin 1 as a better therapeutic approach to modulate
autophagy. In Beclin 1 haploinsufficient mice, load-induced
increases in autophagy activity were blunted, and pathological
remodeling of the left ventricle was moderately diminished. In
contrast, in mice engineered for forced overexpression of Beclin
1 in cardiomyocytes (MHC-beclin-1), pressure overload triggered

FIGURE 2
Functional relevance of autophagy for cardiac pathophysiology. Constitutive autophagy of cardiomyocytes under basal conditions is a homeostatic
mechanism for normal cardiac structure and function. Autophagic activity is reduced during aging or following exposure to stressors such as
chemotherapy drugs owning cardiotoxicity. However, in hearts exposed to hemodynamic overload or ischemia-reperfusion injury, autophagic activity is
upregulated at supraphysiological levels, suggesting a contribution to the maladaptive response of the heart that may lead to heart failure.
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an amplified autophagic response and pathological remodeling of
the heart was more severe (Sun et al., 2018). In 2009, researchers
identified Rubicon as a protein that suppresses autophagy by
interacting with the Beclin 1 complex (Matsunaga et al., 2009;
Zhong et al., 2009). Cardiomyocyte-specific conditional knockout
of Rubicon restores autophagic flux and reduces the rate of autotic
cell death rate injury in the heart during the late phase of ischemia/
reperfusion injury in the heart (Nah et al., 2020). In mouse models,
Rubicon deficiency enhances autophagic flux in the heart during
LPS-induced sepsis, thereby maintaining cardiac stroke volume but
without affecting myocardial inflammatory responses (Zi et al.,
2015). Thus, targeting Rubicon may be a promising modality of
autophagy modulation in various cardiac conditions.

Kanamori et al. (2015) examined possible differences in the
autophagy process in animal models of type 1 and type 2 diabetes.
While cardiac autophagic activity is enhanced in type 1, it is
suppressed in type 2 diabetes. Lysosomes and autophagosomes
accumulate within cardiomyocytes of type 1 diabetic mice,
whereas abundant lipid droplets and immature autophagosomes
were observed in the heart of type 2 diabetic mice (Kanamori et al.,
2015). Here, resveratrol, an autophagy enhancer, mitigated diastolic
dysfunction in the heart of type 2 diabetic mice, whereas it had
opposite effects in the hearts of type 1 diabetic mice, suggesting that
resveratrol may be a useful therapeutic target in diabetic
cardiomyopathy, depending on the diabetic context (Kanamori
et al., 2015). Similarly, resveratrol had beneficial effects in
ischemic heart failure through autophagic activation (Kanamori
et al., 2013). Consistent with the notion that insulin exerts an
inhibitory effect on autophagy, our research group recently
demonstrated hyperactivation of autophagy associated with left
ventricular dysfunction, remodeling, fibrosis, and myocyte
apoptosis in a murine model of insulin-deficient diabetic
cardiomyopathy (Madonna et al., 2023). Here, empagliflozin
preserved cardiac dysfunction and remodeling at least in part,
through the inhibition of autophagy. This process was mediated
by inactivating the autophagy inducer GSK3β, which resulted in
increased serum response factor (SRF) interaction with serum
response element (SRE) and subsequent upregulation of cardiac
actin expression. Our results describe a novel paradigm in which
empagliflozin inhibits the hyperactivation of autophagy through the
GSK-3β signaling pathway in the context of diabetes.

Taken together, these data provide evidence for the maladaptive
role of autophagy in cardiovascular disease, suggesting that there is an
optimal zone of cardiomyocyte autophagy that may be beneficial and
that treatments resulting in levels of autophagy outside (higher or lower)
this therapeutic window are likely to be deleterious (Figure 2).

8 Conclusion

Compelling evidence revealed the crucial role of autophagy in
preserving cardiac health by ruling cardiac homeostasis under
baseline conditions and participating in the mechanisms of
response to pathological injuries. While enhancing autophagy
activation has shown beneficial outcomes in aging and longevity
in animal models, the identification of a proper therapeutic window
in diseased conditions and well-tolerated pro-autophagic drugs is an

active research area. Meeting these medical needs will provide novel
therapeutics and ultimately improve the outcome of patients with
heart disease.
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