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Damage to the nervous system can lead to functional impairment, including
sensory and motor functions. Importantly, neuropathic pain (NPP) can be induced
after nerve injury, which seriously affects the quality of life of patients. Therefore,
the repair of nerve damage and the treatment of pain are particularly important.
However, the current treatment of NPP is very weak, which promotes researchers
to find new methods and directions for treatment. Recently, cell transplantation
technology has received great attention and has become a hot spot for the
treatment of nerve injury and pain. Olfactory ensheathing cells (OECs) are a kind of
glial cells with the characteristics of lifelong survival in the nervous system and
continuous division and renewal. They also secrete a variety of neurotrophic
factors, bridge the fibers at both ends of the injured nerve, change the local injury
microenvironment, and promote axon regeneration and other biological
functions. Different studies have revealed that the transplantation of OECs can
repair damaged nerves and exert analgesic effect. Some progress has been made
in the effect of OECs transplantation in inhibiting NPP. Therefore, in this paper, we
provided a comprehensive overview of the biology of OECs, described the
possible pathogenesis of NPP. Moreover, we discussed on the therapeutic
effect of OECs transplantation on central nervous system injury and NPP, and
prospected some possible problems of OECs transplantation as pain treatment.
To provide some valuable information for the treatment of pain by OECs
transplantation in the future.
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1 Introduction

Nervous system encounters noxious stimuli (such as inflammation, trauma, mechanical
and immune), which can lead to different degrees of nerve damage and induce neuropathic
pain (Sato et al., 2014; Philpott et al., 2017; Lovaglio et al., 2019). NPP is a kind of chronic
pain, which can persist with a variety of diseases. It has the same manifestation with other
types of chronic pain (cancer pain and inflammatory pain), mainly expressed as abnormal
pain, hyperalgesia and spontaneous pain (Gierthmühlen and Baron, 2016; Finnerup et al.,
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2021). Although these pains can exist individually or
simultaneously, there are certain differences in the expression
and degree of pain due to individual differences. So, the
diagnosis and treatment of NPP lack a unified standard, which
brings great difficulties in treatment. The injury of central spinal
cord and peripheral nerve is the key to induce pain. In addition,
some other diseases, such as ischemic injury (Lin et al., 2018), tumor
(Gül et al., 2020), inflammatory stimulation (Li et al., 2021a), can
stimulate or damage nerves and induce pain in different degrees
(Cohen and Mao, 2014). In view of this, it is particularly important
to find treatments for pain relief. Currently, great progress has been
made in the treatment of NPP, such as drug therapy (Lee et al.,
2018a) and physiotherapy (Finnerup et al., 2015), but the effect is
still not ideal, especially in drug therapy, which is not only short-
term, but also has certain dependence and side effects. Therefore,
exploring new and promising treatment methods is on the agenda.

In recent years, with the continuous research and exploration of
nerve injury and pain treatment, the concept of cell transplantation
has been introduced (Sullivan et al., 2016). Researchers have tried to
transplant some special types of cells or intravenously into the host
(such as spinal cord injury, sciatic nerve injury, and trigeminal nerve
injury) to relieve pain and have achieved good progress (Chen et al.,
2013; Ito et al., 2020). Indeed, cell transplantation technology has
achieved remarkable results in the treatment of nerve injury. Such as
neural stem/progenitor cells (Lee et al., 2021a), olfactory
ensheathing cells (Guerout et al., 2014), adipose stem cells (Li
et al., 2018), mesenchymal cells (Cofano et al., 2019) and
Schwann cells (Li et al., 2020a) in the central nervous system
(CNS) and peripheral nervous system (PNS) have
neurorestorative effects (Assinck et al., 2017; Kubiak et al., 2020).
For example, transplantation of mesenchymal stem cell (MSCs)-
derived exosomes into locally injured nerve tissue can effectively
reduce inflammation and oxidation, and significantly restore injured
nerves (Li et al., 2020b). Accordingly, these cells with functional
properties are gradually being used in the treatment of pain,
including inflammation-induced pain and cancer-induced pain
(Wei et al., 2019; Zhang et al., 2020a). These cells can
continuously secrete neuroactive nutritional factors for analgesia
(such as neurotrophin Y, brain-derived neurofactor, b-endorphin,
enkephalin and vascular growth factor). It has a good effect on long-
term analgesia (Chen et al., 2013). Indeed, these living cells
transplanted into the body can play a role in alleviating
hyperalgesia or lowering pain threshold in the host (Lindvall,
2015; He et al., 2019).

OECs are glial cells that have been studied more in recent years.
They can exist for life in the central and peripheral nervous system,
constantly renew and survive, secrete a variety of neurotrophic
factors, reduce local inflammatory response (such as the release
of TNF-a, IL-1β, and IL-18), change the local surrounding
microenvironment, repair damaged nerves and reduce
inflammatory reaction (Reshamwala et al., 2019; Gilmour et al.,
2020). It is worth mentioning that in the treatment of other diseases
[such as retinopathy (Yu et al., 2022), dorsal root injury (Minkelyte
et al., 2021) and Parkinson’s disease (Weng et al., 2020)], OECs also
have a good effect. Correspondingly, OECs have also achieved
certain recognition and achievements in the treatment of NPP.
Indeed, OECs transplantation contributes to pain-relieving effects
(Zheng et al., 2017). Studies have shown that OECs transplantation

significantly increases NF200 expression, reduces GFAP expression,
improves sensory function after spinal cord injury, reduces P2X4R
overexpression, and relieves NPP (Zheng et al., 2017). These
findings identify an important contribution of OECs
transplantation in the treatment of nerve injury and pain.
Therefore, in this paper, we explored the efficacy of OECs on
nerve injury repair and the treatment of NPP, and OECs are
expected to become a new method and technology for the
treatment of pain in the future.

2 Biological characteristics of OECs

Regeneration and repair of nervous system injury is a complex
process involving multiple steps and factors. On the one hand, the
key to nerve injury repair lies in the survival and function of
neurons. On the other hand, damaged axons have the function of
bridging the damaged site or broken end (Jessen and Mirsky, 2016;
Min et al., 2021). Importantly, axonal regeneration requires
remyelination and reconstitution of functional synapses, delivery
of neurotrophic factors, improved inflammation, and modulation of
immune responses, which are critical for nerve injury repair and
regeneration (Otto, 2021). Different studies have found that
transplanted cells, such as neural stem cells, have functional
properties to accomplish these processes (Hu et al., 2019; Shao
et al., 2019). Recently, a large number of studies have revealed a kind
of glial cells-OECs, which can promote axonal regeneration and
nerve tissue reconstruction, improve functional characteristics, and
have received extensive attention in the field of tissue engineering
and injury repair (Wright et al., 2018; Collins et al., 2019).

The role of OECs in nerve injury repair and regeneration has
been confirmed by more and more studies. The biological
characteristics and mechanisms of OECs in repairing damaged
nerves and inhibiting pain have been recognized and affirmed,
mainly in the following aspects (Table 1):

a OECs can survive and renew for life in the central nervous
system, ensuring the number and vitality (Roet and Verhaagen,
2014; Li et al., 2021b).
b Abundant sources of OECs: In animal model studies, OECs are
derived from the olfactory bulb tissue and olfactory mucosa (the
most superficial layer and the lamina propria), which belong to
the central nervous system and peripheral nervous system
respectively (Guerout et al., 2014). The in vitro culture
survival rate and purity are as high as 95% or more, which is
also the key factor for experimental and clinical in vitro culture of
OECs (Dombrowski et al., 2006; Delaviz et al., 2008; Radtke et al.,
2009; Roet and Verhaagen, 2014).
c Heterogeneity of OECs: Primary OECs are easier to obtain from
embryonic animals and early postnatal animals, but it is more
difficult to obtain purified OECs due to the abundance of non-
OECs in the embryonic and early postnatal olfactory bulbs and
olfactory mucosa. Conversely, OECs can be readily purified and
cultured from adult olfactory bulbs and olfactory mucosa.
Moreover, OECs are obtained from different parts, and there
are also certain differences in their effects on nerve damage
repair. An important factor is that in vitro culturing of OECs (e.g.,
culture conditions and media) can affect OECs (Paviot et al.,
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2011; Honoré et al., 2012). In addition, OECs derived from the
olfactory mucosa are closely related to neurons and
fibroblasts, while OECs derived from the olfactory bulb
are closely related to fibroblasts and astrocytes (Lakatos
et al., 2000; Jani and Raisman, 2004; Windus et al., 2010).
Compared with olfactory bulb-derived OECs, olfactory
mucosa-derived OECs can promote nerve regeneration
more (Li et al., 2020c). This means that OECs from
different sources may have completely different ability to
promote nerve regeneration and the efficacy after
transplantation. Therefore, there is a certain heterogeneity
in OECs from different sources.
d OECs have the function of secreting various neurotrophic
factors, such as neurotrophin Y, brain-derived neurotrophic
factor and VEGF: Transplantation of OECs has a strong
potential to provide an adaptive microenvironment for
damaged nerves, one of which is characterized by the
secretion of trophic factors and cellular matrix, improving the
microenvironment for axon regeneration and extension
(Nazareth et al., 2020). Indeed, OECs can secrete platelet-
derived growth factor, neuropeptide Y, glial-derived connexin,
S100, ciliary neurotrophic factor (CNTF), these nutrients provide
a nutritional basis for nerve regeneration and repair (Ye and
Houle, 1997; Ahuja et al., 2020). Importantly, OECs can produce
NT-3, and BDNF which effectively promote neuronal survival
and axonal sprouting, even extending longer distances within
areas of CNS injury (Ma et al., 2010; Gu et al., 2017).
e OECs secrete cell adhesion molecules: In addition to the
production of trophic factors, another important feature of
OECs is that OECs can produce a series of extracellular
matrix proteins, which have been confirmed by different
studies to promote neuronal survival, axon regeneration and
extension, especially the function of axon guidance (Liu et al.,
2010). Indeed, an important mechanism for OECs to promote
nerve injury repair is through the secretion of adhesionmolecules
[such as L1-neural cell adhesion molecule (L1-NCAM) and
neural cell adhesion molecule 1 (NCAM1)] (Witheford et al.,
2013; Tang et al., 2017; Guo et al., 2020).

f OECs promote axon regeneration and inhibit glial scarring and
cavitation (DeLucia et al., 2003; Khankan et al., 2015): Studies
have shown that the transplantation of OECs into the injured
part of the T8 spinal cord in rats can increase the axonal growth
of the neurospinal tract, the blue pulp and the corticospinal tract
at the stump of the spinal cord. The expression of GFAP and
NG2 is down-regulated in the spinal cord segments around the
injury, suggesting that there is a more suitable environment for
axon regeneration (López-Vales et al., 2006). OECs treatment can
increase the number of regenerated neurons, improve the
morphology of nerve fibers, increase the number of
myelinated nerve fibers, nerve fiber diameter and myelin
sheath thickness (Gu et al., 2019).
g Another interesting feature is the phagocytic activity of OECs
(Nazareth et al., 2021): In the past, it was thought that OECs and
astrocytes had some similar characteristics, but later it was
further found that OECs and microglia also had common
characteristics, which means that OECs have the function of
phagocytosis of bacteria (Vincent et al., 2007; Panni et al., 2013;
Nazareth et al., 2015). OECs or Schwann cells (SCs) are thought
to aid regeneration by removing necrotic cells (necrotic bodies,
NBS) as well as myelin debris. Interesting finding is that OECs
have higher phagocytosis and transport capacity than stem cells
(Nazareth et al., 2020). OECs degrade neurocalcitonin, an
inhibitor of axonal regeneration, by secreting matrix
metalloproteinase-2, which promotes nerve regeneration (Yui
et al., 2014). Effective removal of neurodegenerative and
apoptotic nerve tissue fragments and cell products are
essential for creating an environment that allows damaged
neurons to regenerate. The phagocytic activity of OECs can
make a substantial contribution to the growth of neurons in
this harsh environment, which depends on the phenotypic
changes of OECs (enhanced activation and phagocytosis), and
this enhanced phagocytic activity greatly promotes the growth of
neurons under hostile culture conditions (Hao et al., 2017).
h OECs have the function of “bridge” and remyelination
formation ability (Franklin, 2003): Purified OECs express
PSA-E-NCAM (polysialo neural cell adhesion molecule) and

TABLE 1 Biological characteristics of olfactory ensheathing cells (OECs).

C Lifelong survival and renewal within the nervous system

C Abundant sources of OECs

a. Olfactory bulb tissue

b. Olfactory mucosa (superficial and lamina propria)

C Heterogeneity of OECs: Different sources of OECs have differences in repairing damaged nerves

C Secretes various neurotrophic factors: Provide a good basic microenvironment for nerve regeneration

C Secreted cell adhesion molecule

C Inhibits glial scarring and void formation

C Phagocytic activity: Removal of necrotic cells (including neurons) and myelin debris

C Has a “bridge” effect, promoting axonal regeneration and remyelination

C Reduce neuroinflammatory response

C Migration ability
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tenascin, which promote axonal elongation and remyelination
ability (Higginson and Barnett, 2011).
i OECs can reduce the local inflammatory response of nerve
injury (inhibit the pro-inflammatory effect of astrocytes), reduce
the release of inflammatory factors (such as TNF-a), improve the
microenvironment around local inflammation, and have a better
role in repairing damaged nerves (Su et al., 2009; Chuah et al.,
2011). The study found that OECs secreted αB-crystallin
(CryAB), an anti-inflammatory protein that coordinated the
immune response between cells, and also inhibited the
production of neurotoxins by astrocytes, created an
environment for nerve growth (Saglam et al., 2021).
j Migration ability of OECs (Santos-Silva et al., 2019): The lipid
rafts of OECs are rich in cholesterol, sphingomyelin,
phosphatidylcholine, caveolin-1, Flotillin-1, ganglioside
Gm1 and gangliosides recognized by 9murine O-acetyl GD3,
A2B5-recognized gangliosides, CNPase, α-Actinin and β-1-
integrin (Campos et al., 2021). Analysis of the OECs actin
cytoskeleton reveals stress fibers, membrane spinous processes,
folded membranes and lamellar fat deposits during cell migration
and the distribution of α-Actinin in membrane projections
(Campos et al., 2021). For the first time, α-actin and Flotillin-
1 were found in OECs lipid rafts, suggesting that membrane lipid
rafts together with β-1-integrin and gangliosides play a role in the
migration of OECs (Campos et al., 2021). OECs have migratory
roles in both physiological and pathological conditions of the
nervous system, such as inflammation, hypoxia, aging,
neurodegenerative diseases, head trauma, brain tumors, and
infections (Grassi et al., 2020).

3 The role of OECs in treatment of
nerve injury

It is understood that OECs are present in the olfactory bulb and
olfactory mucosa, and exist and renew for life in the central and
peripheral nervous system. Therefore, the role of OECs in the repair

of central injury and peripheral nerve injury has been widely studied
and recognized (Duan and Lu, 2015; Khankan et al., 2016). Indeed,
OECs transplantation exerts its biological characteristics to improve
the microenvironment at the injured nerve site and promote nerve
repair. Nerve damage can lead to permanent loss of motor and
sensory function, yet current treatments are limited and some are
ineffective, inspiring researchers to explore new and promising
treatment methods. Fortunately, OECs transplantation has
emerged as a possible therapy for CNS or PNS injury or other
neurological disorders in animal models (Goulart et al., 2016; Wang
et al., 2021a; Lee et al., 2021b). This is because transplanting OECs
into the damaged site of the damaged nerve can create better survival
conditions for the damaged neurons.

Spinal cord injury is a common site in the central nervous
system, and can lead to sensory and motor dysfunction after
(Muniswami and Tharion, 2018; Voronova et al., 2018). OECs
transplantation can promote axonal regeneration and myelination
in spinal cord injury, and can restore part of sensory and motor
functions, which all lie in the biological function of OECs
(Reshamwala et al., 2019) (Figure 1). The transplantation of
OECs to the injured spinal cord can limit the activation and
penetration of immune cells, protect axons and neurons, reduce
the secretion of inhibitory molecules in the lesion core, and exert
neuroprotective and immunomodulatory effects (Khankan et al.,
2016). It is worth mentioning that the transplantation of OECs has
the effect of promoting the regeneration of the injured site of the
blood vessels (Beiersdorfer et al., 2019; Beiersdorfer et al., 2020;
Wang et al., 2022). For example, OECs can promote the increase of
vascular endothelial growth factor-A and platelet-derived growth
factor-AA, effectively promoting the proliferation, migration and
formation of vascular-like structures of vascular endothelial cells
(Wang et al., 2022).

Another important role is that OECs can inhibit the activation of
microglial and reduce neuroinflammation (Zhang et al., 2019a; Guo
et al., 2020). After OECs transplantation, the expression of
interleukin-1 receptor antagonist (IL-1ra) was up-regulated, and
the expression of many chemokines, including proinflammatory

FIGURE 1
Procedure for OECs transplantation of the treatment for spinal cord injury. Step 1: Take olfactory bulb tissue or olfactory mucosa from animals or
humans; Step 2: Pay attention to aseptic operation throughout the process, and in vitro primary culture OECs; Step 3: Purify and identify the cultured
OECs to obtain stable OECs; Step 4: Transplant the stably cultured OECs into the host; Step 5: Check the host’s sensory and functional recovery after
OECs transplantation.
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chemokine IL-1α and IL-1β was down-regulated, which inhibited
the activation of microglia (Zhang et al., 2021). Other studies found
that the combination of OECs and minocycline reduced cavitation
and astrogliosis, further reduced levels of IL-1β, TNF-α, caspase-3
and oxidative stress (Pourkhodadad et al., 2019).

Moreover, scarring caused by astrocytes at the edge of spinal
cord injury can hinder axonal regeneration (Deng et al., 2011; Hara
et al., 2017; Okada et al., 2018). OECs can integrate and migrate with
astrocytes at the site of spinal cord injury, providing a bridge for
axons to penetrate scars and grow to the lesion core (Witheford
et al., 2013; Khankan et al., 2015). Studies have been found that the
combined transplantation of OECs and spinal cord decellularized
scaffolds can better promote axonal regeneration, improve the
proliferation and distribution of astrocytes at the injury site, and
restore some functions (Yu et al., 2021). Another important finding
is that OECs can associate with other cells (such as adipose stem
cells, neural stem cells and mesenchymal stem cells) (Wang et al.,
2010; Yazdani et al., 2012; Gomes et al., 2018), biomaterials (such as
albumin scaffolds and spinal cord cell scaffolds) (Ferrero-Gutierrez
et al., 2013; Yu et al., 2021) and physical therapy methods (such as
exercise training and stimulation) (Thornton et al., 2018; Prager
et al., 2021) play a better role in promoting the repair of spinal cord
injury. It has been found that the combined transplantation of nerve
stem cells (NSCs) and OECs has a synergistic effect on spinal cord
injury and promotes nerve regeneration and functional
reconstruction (Ao et al., 2007). They also found that OECs
could bridge between nerve injuries while performing axon
elongation and promoting myelination (Ao et al., 2007). Other
studies have further found that co-transplantation of OECs and
NSCs can promote the proliferation and differentiation of neural
stem cells in vitro. Interestingly, OECs can improve the survival rate
of NSCs in vivo and inhibit the programmed necrosis of NSCs after
co-transplantation, thus enhancing the therapeutic effect of spinal
cord injury (Wang et al., 2021b).

Successful results in animal models show that OECs
transplantation is safe and reliable for the treatment of spinal
cord injury. Correspondingly, some clinical trials of OECs
transplantation for the treatment of spinal cord injury have also
been carried out, and certain results have been achieved (Tabakow
et al., 2014; Gomes et al., 2016; Gómez et al., 2018). Researchers
transplanted human fetal OECs into the upper and lower ends of
spinal cord injuries in 300 patients by intraspinal injection, it was
found that 300 patients with complete SCI (ASIA grade A) and
incomplete SCI (ASIA grade D), rapidly improved some
neurological functions (Huang et al., 2006). Wu et al used fetal
OECs in a clinical trial in patients with spinal cord injury and tested
the safety of six patients with chest injuries and the efficacy of five
patients with neck injuries. They found that OECs showed a good
safety, with improvements in sensation and spasticity, but the
treatment effect was suboptimal (Wu et al., 2012). Although the
OECs obtained from the fetus have a certain effect in the treatment
of spinal cord injury, some researchers believe that whether the cells
obtained from the fetus are pure OECs is still controversial
(Hummel et al., 2007). The investigators transplanted autologous
OECs into the site of six patients with complete thoracic paralysis
and followed up for up to 3 years. They did not find any tumorigenic
cells, syringomyelia or other adverse radiological phenomena
(Mackay-Sim et al., 2008). Strangely, most patients showed no

significant functional changes, but in one patient, both tactile and
acupuncture sensitivity were found to improve (Mackay-Sim et al.,
2008). They believe that it is feasible and safe to transplant
autologous OECs into the injured spinal cord.

Taken together, OECs show a good repair effect in basic
experiments, although OECs transplantation also show a certain
therapeutic effect in clinical trials, but the results of these clinical
trials are not satisfactory. Whether OECs are effective in promoting
neural repair after spinal cord injury remains unknown. Therefore,
more research data are needed to support the application of OECs in
clinical treatment. At present, there are some obstacles to the use of
OECs in clinical trials, such as difficulties in obtaining autologous
cells, adverse reactions, correct transplantation methods, cell usage
and sources, identification and purification of human OECs, etc.
Therefore, the use of OECs for the treatment of clinical patients in
the future requires a large number of experiments to provide a solid
foundation.

4 Pathological mechanism of
neuropathic pain

NPP is a symptom caused by direct or indirect damage to the
nervous system, resulting in dysfunction or transient disturbance
(Bouhassira, 2019). It is worth noting that pain can still exist or
persist even after the elimination of nociceptive stimulation, which
may be related to the transmission of neurological function and
sensory information and the degree of nerve repair, as well as
individual differences and psychological influences. Most of the
pain is spontaneous pain and hyperalgesia (Meacham et al., 2017;
Macone and Otis, 2018). Although the pathological mechanism of
NPP is complex, which involves the participation of many factors.
However, with the research on the pathological mechanism of NPP,
some widespread recognitions have been obtained, which are
reflected in the following aspects (Table 2):

a. Nociceptor sensitization and nociceptive fiber afferents (Sun
et al., 2018; Simonetti and Kuner, 2020): Nerve damage can
lead to decreased nerve fibers and demyelination of axons in the
damaged area. It was found that the intracellular calcium and
hyperexcitability of sensory neurons increased in the area of
nerve injury, and the synaptic plasticity between afferent C fibers
and dorsal horn neurons increased (Liu et al., 2015; Yang et al.,
2017).

b. Microglia activation: Microglia are resident immune cells in the
nervous system, widely distributed in the central nervous system,
and are essential for maintaining the stability of the immune
microenvironment of the nervous system (Voet et al., 2019).
Although, under physiological conditions, microglia are in a
quiescent state and lack immune and phagocytic functions.
However, they still have a certain ability to migrate and play a
certain protective role in the maintenance of the
microenvironment in the brain and the stability of the
nervous system function (Rajendran and Paolicelli, 2018).
Indeed, microglia can migrate to the injury site and promptly
remove cell metabolites and apoptotic cell debris, which is very
important to ensure the relative stability of the brain
environment and maintain the normal function of the central

Frontiers in Cell and Developmental Biology frontiersin.org05

Liu et al. 10.3389/fcell.2023.1147242

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1147242


nervous system (Stadelmann et al., 2019; Abe et al., 2020).
Moreover, activation of microglia also facilitates myelin
formation and axonal regeneration after nerve injury (Pinto
et al., 2021). Other studies reveal that efficient remyelination
requires mediation of pro-inflammatory microglial death from
proliferative to pro-regenerative states (Lloyd et al., 2019). This
study implies that microglial cell death or impaired regeneration
may underlie dysregulated microglial activation in neurological
diseases. Additionally, microglial activation can induce pain by
increasing neuroinflammatory responses. While inhibiting the
activation of microglia prevents persistent stimulation of
neuroinflammation and reduces pain (Inoue and Tsuda, 2018;

Yi et al., 2021a; Navia-Pelaez et al., 2021). Studies have shown
that 17β-estradiol inhibits the activation of microglia and
astrocyte, reduces the expression of IL-1β, IL-6, iNOS and
COX-2, and alleviates NPP caused by spinal cord injury (Lee
et al., 2018b). Importantly, microglia can communicate with
other glial cells and neurons, enhance the transmission of
nociceptive information and increase pain perception (Jin
et al., 2019; Zhou et al., 2019; Yi et al., 2021b) (Figure 2).

c. Abnormal neuronal activity (St John Smith, 2018; Vilela et al.,
2021; Wercberger et al., 2021): Neurons stimulated by noxious
factors can lead to abnormal discharge and enhanced synaptic
plasticity, enhancing sensory information afferents (Terayama

TABLE 2 Potential mechanisms of neuropathic pain (NPP).

C Nociceptor sensitization and nociceptive fiber afferents

C Microglia activation

a. Immune function

b. Pro-inflammatory effects

c. Communication with neurons

C Abnormal neuronal activity: Abnormal discharge and enhanced synaptic plasticity

Ion channel inactivation

C Neurotransmitter release: Primary sensory afferent fibers release neurotransmitters in the dorsal root ganglion and dorsal horn of the spinal cord, activate microglia, promote
inflammatory release, and amplify the hypersensitivity of secondary neurons

C Immune cell infiltration (macrophages): Expansion and proliferation

C Pro-inflammatory factor release

FIGURE 2
Activation of microglial is involved in the development of NPP. Activation of microglia increases the neuroinflammatory response around nerve
injury by releasing a variety of cytotoxic factors (such as TNF-a, IL-1β, etc.). In addition, microglia activation transmits nociceptive information to neurons,
enhances neuronal synaptic plasticity, enhances sensory information transmission, and stimulated neurons upload sensory information to the spinal cord
center. Subsequently, the spinal cord center integrates sensory information to the higher center (brain) through the ascending conduction tract, and
then the brain sends out instructions after receiving the information, and passes through the spinal cord through the descending conduction tract to the
peripheral receptors (skin and muscle spindles), resulting in pain.
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et al., 2015; Yang et al., 2021). In animal models of NPP,
parabrachial neurons exhibit enhanced spontaneous and
evoked activity and significantly increase afterdischarge
responses (Raver et al., 2020). It is worth mentioning that the
mutual communication between microglia and dorsal horn
neurons also promotes the progression of pain. Indeed,
activated microglia help spinal dorsal horn neurons to
aggregate nociceptive input to induce NPP (Yamamoto et al.,
2015; Terayama et al., 2018). Studies have shown that nerve
injury is involved in P2Y12 receptor-dependent GTP-RhoA/
ROCK2 signaling, increases the activation of microglia, and
increases excitatory synaptic transmission in dorsal horn
neurons (Yu et al., 2019), suggest that crosstalk between
microglia and neurons is ultimately involved in the
performance of nociceptive hyperalgesia. In addition, recent
studies have found that ion channels, such as calcium
channels, on nociceptor neurons help regulate nociceptive
synaptic transmission (Chen et al., 2009; Ritter et al., 2015).
For example, rapidly inactivating Kv3.4 potassium current
dysfunction in neurons of dorsal root ganglion (DRG) is
associated with persistent pain. (Zemel et al., 2017).

d. Neurotransmitter release (eg GABA) (Fan et al., 2022):
Kv3.4 channel is a regulator of nerve cell excitability, which
can change presynaptic membrane potential, affect
glutamatergic fiber transmission, and generate pain
afferents (Muqeem et al., 2018). For example,
O-desmethyltramadol (M1) inhibits the quantum release of
L-glutamate from nerve terminals by activating μ-opioid
receptors, but not norepinephrine and serotonin receptors,
inhibiting nociceptive information transmission (Koga et al.,
2019). These primary afferents activate inhibitory
interneurons of the spinal cord, which release (e.g., GABA
and enkephalin) as transmitters to regulate pain inputs
(Otsuka and Yanagisawa, 1990). Nociceptive receptor
neurons release neuropeptides and neurotransmitters from
nerve endings and regulate vascular, congenital and adaptive
immune cell responses. These afferent fibers release
neurotransmitters in the dorsal root ganglion and dorsal
horn of the spinal cord and activate microglia as local
immune cells. Activated microglia produce pro-
inflammatory cytokines, chemokines and neuropeptides,
which interact with secondary neurons to amplify the
hypersensitivity of secondary neurons and trigger central
sensitization (Vergne-Salle and Bertin, 2021).

e. Immune cell infiltration (such as macrophages, and T
lymphocytes) (Durante et al., 2021; Micheli et al., 2021):
Marked expansion and proliferation of macrophages around
injured sensory neurons, involved in pain progression.
Depletion of DRG macrophages reduces nerve injury-induced
mechanical hypersensitivity and DRG macrophage expansion,
prevents nerve injury-induced activation and proliferation of
microglia, and reduces hyperalgesia (Yu et al., 2020).
Agtr2 macrophages are the main immune cells that invade the
site of nerve injury. Interestingly, neuropathic mechanical and
cold hyperalgesia are mitigated by peripheral macrophage
depletion (Shepherd et al., 2018a). Other studies show that
angiotensin II triggers peripheral macrophage-sensory neuron
redox crosstalk to trigger pain (Shepherd et al., 2018b).

Taken together, the pathological mechanisms of NPP have
received some consistent recognition, involving sensory neuron
activity, microglia activation, inflammatory cell infiltration and
pro-inflammatory factor release, enhanced neurotransmission,
and central sensitization. This also means that inhibiting the
activation of microglia, reducing the infiltration of inflammatory
cells, protecting neurons, and improving the microenvironment of
the nerve injury area may be potential mechanisms for the treatment
of NPP. However, given that the pathological mechanism of NPP is
complex and involves many factors, it is necessary to continuously
explore and study the detailed mechanism of NPP.

5 The application of OECs in the
treatment of NPP

The treatment of NPP is still a difficult problem to overcome at
present. Usually, drugs are used to suppress pain or some physical
rehabilitation therapy is used to relieve pain, but the effect is still not
ideal, which also brings new challenges to researchers. Therefore, it is
increasingly important to explore and find new treatments. Fortunately,
in recent years, cell transplantation technology has entered people’s field
of vision, and it has been well applied in the repair of nerve damage, and
has also achieved satisfactory results. Although the effect in clinical trials
is not very satisfactory, the exact role of cell transplantation in repairing
damaged nerves and restoring function has been confirmed by different
studies. Indeed, transplanting functional cells (such as neural stem cells
and Schwann cells) into nerve injury has a good effect of suppressing
pain (Zhang et al., 2018a; Du et al., 2019; Wang et al., 2021c). For
example, Sertoli cells transplantation significantly improved the
recovery of motor function and pain relief, which was related to the
decrease of cavity, the expression level of TRPC6 and Caspase3 and the
number of activated microglia after transplantation (Rahimi et al.,
2022). In view of the unique biological characteristics of OECs, they
have become candidate cells for the treatment of nerve injury.
Correspondingly, it also exerts a better analgesic effect in pain
treatment (Nakhjavan-Shahraki et al., 2018). Transplantation of
OECs into spinal cord injury of rat found that the expression of
NF200 was significantly increased, the expression of GFAP was
decreased, and the sensory nerve function was improved (Zheng
et al., 2017).

OECs play a role in pain relief by mediating the expression of
some pain-related molecules. P2X purine receptors belong to ATP-
dependent ion channel receptor, which is abundantly expressed in
nervous system. For example, P2X2/3 receptor is expressed in
sensory neurons, P2X4 receptor is expressed in microglia, while
P2X7 receptor is expressed in neurons and microglia, and expressed
in immune cells (Zhang, 2021). These purine receptors are highly
expressed in pain and are closely related to the development of pain.
An important mechanism of cell therapy is to exert the
pharmacological characteristics of analgesia by reducing the
expression of these P2X purine receptors. Transplantation of
Schwann cells into sciatic nerve injury reduced the expression
level of P2X2/3 receptor in the dorsal root ganglia and
suppressed pain (Zhang et al., 2018b). OECs transplantation can
relieve pain by down-regulating the expression of P2X purine
receptors, which is also a well-studied pathological mechanism.
OECs transplantation increased the expression of NF200,
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decreased the expression of GFAP, and inhibited the overexpression
of P2X4 receptor, which plays an important role in NPP induced by
spinal cord injury (Zheng et al., 2017). Our previous studies also
found that OECs transplantation could significantly reduce the
expression of P2X4 receptor in spinal cord and P2X2/3 receptor
in dorsal root ganglion, and relieve NPP in rats (Zhao et al., 2015;
Zhang et al., 2019b). Trigeminal neuralgia (TN) is a common facial
nerve pain. OECs was transplanted into the ligation of infraorbital
nerve in rats, the facial mechanical pain threshold increased
significantly, which was related to the decreased expression of
P2X7 receptor in trigeminal ganglion (Lu et al., 2022). In view of
the fact that allogeneic cell transplantation will cause immune
rejection, and OECs transplantation is likely to lead to the attack
of inflammatory factors, resulting in a decrease in the survival rate of
cells transplanted into the host, and the effect of pain relief is
reduced. Therefore, later, we used the microencapsulation
technology. Microcapsule is a lipid translucent membrane with
good immune isolation, macromolecular substances are not easy
to pass through, and it has the function of protecting transplanted
cells (Olabisi, 2015; Mao et al., 2019; Santos et al., 2021). We
transplanted microencapsulated OECs to the site of sciatic nerve
injury and found significantly decreased the expression of
P2X7 receptor in spinal cord and relieved neuropathic pain in
rats. Interestingly, the effect of microencapsulated OECs on
down-regulating the expression of P2X7 receptor and relieving
pain was stronger than that of OECs alone (Zhang et al., 2019c).
This also means that protecting the host OECs and reducing
immune rejection may have a better biological function of pain
relief, and a new model of cell therapy is proposed.

Under physiological conditions, the expression of NGF in
primary sensory neurons was very low, but its expression level
increased significantly after nerve injury. The study confirmed that
NGF induced the transfer of TRPV1 to the membrane of neurons
(Lawrence et al., 2021). However, these neurotrophic activities lead
to axonal terminal budding and help to increase local pain sensitivity
(Ro et al., 1999). In spinal cord injury, the transplanted neural stem
cells restored the sensory function of rats with spinal cord injury,
while OECs caused hyperalgesia. However, co-transplantation could
promote the survival of neural stem cells and reverse the
hyperalgesia induced by OECs. The mechanism may be related
to the down-regulation of NGF (Luo et al., 2013). Brain-derived
neurotrophic factor (BDNF) is an important member of the NGF
family, and its high expression is involved in pain (such as
neuropathic pain and trigeminal neuralgia). Studies have shown
that transplantation of OECs into the hemi-transected spinal cord
can lead to hyperalgesia, possibly due to upregulation of brain-
derived neurotrophic factor (BDNF) (Lang et al., 2013). There are
differences in the possible causes of different contradictions, the
parts and causes of inducing pain, the dose and time of OECs
transplantation, and the transplantation methods. In addition, an
important point may be related to the regulation of the expression of
pain-related molecules by OECs transplantation.

Another characteristic of OECs in nerve injury and pain relief is
that activated OECs can effectively promote the proliferation and
migration of vascular endothelial cells and the formation of
vascular-like structures (Wang et al., 2022). After transplantation
of OECs after photochemical injury of spinal cord in rats, the BBB
score, motor and somatosensory evoked potential amplitudes were

significantly increased, the expression of COX-2 and VEGF of
astrocytes in spinal cord tissue increased, and the vascular
density increased at the site of spinal cord injury (López-Vales
et al., 2004).

The beneficial effect of OECs on pain is attributed to the ability
of OECs to cross the boundary of PNS-CNS. The growth factors, cell
adhesion molecules and extracellular matrix proteins they produce
promote and guide axonal growth, and their ability to remyelinate
axons. OECs are thought to help axon regeneration by removing
necrotic cells (necrotic bodies) and myelin fragments (Wu et al.,
2011). It was found that Schwann cells could produce a small
amount of pro-inflammatory cytokine TNF-α, while OECs did
not produce detectable TNF-α and engulfed myelin fragments.
This also means that OECs have higher phagocytosis and
transport capacity than Schwann cells, produce a lower number
of pro-inflammatory cytokines, and play a better role in the repair of
injured nerves (Nazareth et al., 2020). All these create the basic
conditions for the reconstruction of nerve function and pain relief.
Other studies have found that 1 week after C7 and C8 dorsal root
injury, transplantation of OECs into the dorsal horn effectively
alleviated the neuropathological disorders associated with dorsal
root injury, including spontaneous pain behavior, tactile
hypersensitivity and thermal hyperalgesia (Wu et al., 2011).
However, interestingly, delayed OECs transplantation did not
improve the sensory control of complex, goal-oriented skillful
stretching and ladder walking, and no significant effect of
transplanted OECs on injury-induced central recombination and
afferent sprouting was found (Wu et al., 2011). This phenomenon
may be explained by the antinociceptive effect mediated by OECs
transplantation by altering other mechanisms such as inflammation
and astrocyte proliferation.

In view of the feasibility of OECs transplantation in the
treatment of pain. Later, researchers co-transplanted OECs with
other functional cells (such as neural stem cells) or bioscaffolds to
relieve pain (Luo et al., 2013; Zhang et al., 2020b). OECs combined
with neural stem cells were transplanted into spinal cord injury of
rats. It was found that the BBB score of rats increased significantly.
And the BBB score increased rapidly at 2 weeks, while the BBB score
increased slightly at 6 weeks. The recovery of limb function was
better than that of single cell transplantation, and the neat
arrangement of spinal cord cells was close to normal (Guo et al.,
2015). Moreover, they also found that OECs combined with NSCs
can better induce neural stem cells to differentiate into neurons
(Guo et al., 2015). The study showed that compared with SCs
transplantation, the axonal regeneration of sciatic nerve stump
after OECs transplantation was 25% less, but the axonal
regeneration of sciatic nerve stump after SCs/OECs combined
transplantation was 28% more, which significantly restored the
motor and sensory function of rats (You et al., 2011). We later
combined OECs with chitosan biomaterials and found that the
combined transplantation was more effective in relieving pain than
single-cell transplantation (Zhang et al., 2020c).

OECs have made some achievements in the treatment of nerve
injury in clinical patients, and their contribution to repairing
damaged nerves and restoring some functions is also affirmed.
However, there are few reports on the use of OECs in the
treatment of patients with NPP clinical. Transplantation of fetal
OECs into 17 patients with intractable chronic pain with spinal cord
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injury aged 6-309 months (mean 102.2 months). The degree of pain
before and after 0.5-88 months was compared with the International
Society of Neurorepair Spinal Cord injury rating scale
(IANRSCIFRS). 0 represents extremely uncontrollable pain, one
point represents severe pain that needs and responds to anesthetics,
two points represents mild pain that responds to common
painkillers, and three points represents no pain. The results
showed that pain improved by an average of 1.2 points after
OECs transplantation (Chen et al., 2020). Another report is: a
72-year-old stroke patient with right limb sensory and functional
impairment and pain for 8 years, 4-month fetal-derived OECs were
transplanted into the patient’s brain (cell volume 1x1010/L-1). The
results showed that the patient had no adverse reactions such as
fever, abnormal platelets and other complications after OECs
transplantation (Liu et al., 2008). The pain of the right limb was
reduced by 70% on the first day after the operation, 80% on the
second day after the operation, and 90% on the third day after the
operation. The muscle tension was reduced, and the function of the
right limb recovered. The neurological function score increased
significantly, and the patient was discharged from the hospital
after 3 weeks (Lang et al., 2013). Although there are few reports
in clinical trials, but OECs transplantation has a certain effect on
pain relief and promotes functional recovery.

Although some data obtained from basic research support the
feasibility of OECs for the treatment of pain, this is not enough to
support extensive clinical development, which may require
overcoming some difficulties. For example, there is still a lack of
basic research data to support clinical development, the source and
purity of OECs, the selection of cell transplantation time, the
transplantation method and the control of the number of
transplanted cells, immune rejection and the survival rate of cell
transplantation, etc. Therefore, it is limited in clinical trials.
However, the therapeutic effect of OECs transplantation on pain
and nerve injury has been affirmed, so many problems need to be
overcome in the future clinical treatment of OECs. Non-etheless,
OECs hold promise as a promising new technology and method for
promoting functional repair and pain relief.

6 Conclusion

Nerve injury is accompanied by sensory and functional
disorders, leading to pain, which is a common symptom of most
diseases. However, the treatment strategies for NPP are limited.
Therefore, it is particularly important to find new treatment

methods. Fortunately, the role of OECs in nerve injury repair has
been affirmed and recognized by a large number of studies.
Transplantation of OECs can promote regeneration of injured
nerves and restore some body functions. Indeed, OECs
transplantation can relieve pain, and exert analgesic effect for
a longer period of time. The mechanism by which OECs exert
their analgesic effect lies in their unique biological
characteristics. Therefore, OECs are expected to be a
promising method for the treatment of NPP and bringing new
hope to patients in the future.
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