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Aging is a major risk factor for cancer development. As dysfunction in protein
homeostasis, or proteostasis, is a universal hallmark of both the aging process and
cancer, a comprehensive understanding of the proteostasis system and its roles in
aging and cancer will shed new light on how we can improve health and quality of
life for older individuals. In this review, we summarize the regulatory mechanisms
of proteostasis and discuss the relationship between proteostasis and aging and
age-related diseases, including cancer. Furthermore, we highlight the clinical
application value of proteostasis maintenance in delaying the aging process
and promoting long-term health.
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Introduction

Aging is a complex biological process characterized by gradual and progressive cellular
and functional decline. Aging thus remains the greatest risk factor for most chronic
disorders, including cardiovascular disease, neurodegenerative disease, and cancer.
Protein homeostasis (proteostasis) is essential for preserving normal cellular metabolism
and safeguarding physiological function through the proper biosynthesis, folding,
trafficking, and degradation of proteins (Morimoto and Cuervo, 2014; Li et al., 2018).
Growing evidence indicates that a progressive decline in the capacity tomaintain a stable and
functional proteome occurs with organismal aging (Vilchez et al., 2014; Kaushik and Cuervo,
2015). Consequently, increased intracellular accumulation of abnormal proteins (e.g.,
damaged, misfolded, or aggregated proteins) is regarded as an almost universal hallmark
of aging, with chronic expression of abnormal proteins resulting in disruption of various
biological processes that drive multiple age-related diseases (e.g., Alzheimer’s disease (AD))
(López-Otín et al., 2013). Therefore, ensuring proteostasis is tightly associated with elderly
health.

To achieve protein homeostasis, cells have evolved sophisticated quality control
mechanisms, primarily consisting of molecular chaperones, ubiquitin-proteasome system,
and autophagy-lysosomal system, to promote successful protein folding and eliminate
abnormal or misfolded proteins, and thereby adapt to dynamic stress conditions
(Kaushik and Cuervo, 2015). Typically, these systems can restore basal homeostasis by
rapidly sensing and rectifying the disturbances in proteome; however, long-term chronic
stress (e.g., oxidative stress) makes cells difficult to maintain protein homeostasis and
proteotoxicity can develop (Figure 1). Various studies have identified functional decline in
protein quality control (PQC), including impaired function of the cellular proteolytic
mechanisms (i.e., ubiquitin-proteasome and autophagy-lysosome), during aging in
different mammals (e.g., human and rat) (reviewed in ref. (Vilchez et al., 2014)). For
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example, age-related accumulation of intralysosomal lipofuscin (age
pigment), likely due to iron-catalyzed oxidative processes, can
reduce the degradative function of lysosomes (Brunk and
Terman, 2002; Jung et al., 2007). In turn, evidence has also
shown that an increase in autophagy-lysosome and/or
proteasome activity can extend longevity in diverse organisms,
including humans (Chondrogianni et al., 2000; Pérez et al., 2009;
Xiao et al., 2018).

Importantly, cancer is considered a disease of aging, but involves
an integrated functional network of biological processes related to
the regulation of protein homeostasis that dynamically responds to
the needs of cancer cells. Cancer cells must adapt to a wide variety of
chronic stresses, especially high misfolded protein burdens due to
genomic aberrations, and therefore require sustained PQC for
survival and proliferation (Chen et al., 2017; Bastola et al., 2018).
Thus, modulation of the protein homeostasis network can promote
longevity, but at the potential cost of cancer progression. In this
review, we summarize the intracellular PQC system and discuss how
protein homeostasis functions as a double-edged sword in aging and
tumorigenesis. We also highlight the potential of targeting protein
homeostasis as a therapeutic strategy for age-related pathologies,
including cancer.

Intracellular regulation mechanisms of
protein homeostasis

Molecular chaperones

Molecular chaperones are structurally diverse and highly
conserved ubiquitous proteins that function to maintain protein
homeostasis in cells (Arslan et al., 2006). Molecular chaperones, also

known as heat shock proteins (HSPs), account for 5%–10% of total
proteins in most normal cells (Pockley, 2003). They can specifically
and non-covalently bind to the surfaces of interactive proteins and
are usually classified according to their functional properties and
molecular weight, including major HSP families such as HSP40
(J-proteins), HSP60 (chaperonins), HSP70 (68–78 kDa), HSP90
(85–96 kDa), HSP100 (Clp proteins), and small HSPs (sHSPs,
10–30 kDa) (Hartl et al., 2011). These proteins play important
roles in de novo protein folding and refolding, protein-complex
assembly and disassembly, protein transport across membranes, and
protein degradation (Kim et al., 2013; Brandvold and Morimoto,
2015; Shemesh et al., 2021). For example, as an abundant molecular
chaperone, HSP90 participates in the folding of a variety of proteins
(viz. so-called “clients”) involved in protein trafficking, signal
transduction, transcriptional regulation, and immunity, utilizing
energy generated by adenosine triphosphate (ATP) binding and
hydrolysis and interacting with various co-chaperones (Frydman,
2001; Brown et al., 2007; Taipale et al., 2010); moreover, HSP90 can
also enhance protein degradation (e.g., oxidized proteins) through
the proteasome (Whittier et al., 2004). Likewise, HSP70 also
participates in the maintenance of protein homeostasis by
interacting with many proteins to facilitate the prevention of
protein misfolding or the degradation of damaged proteins (Seo
et al., 2016; Garbuz et al., 2019). Taken together, HSPs play
important roles in responding to various stresses (e.g., high
temperature) and facilitating cellular survival during life.

Ubiquitin-proteasome system

The ubiquitin-proteasome system is a key player in intracellular
protein degradation and turnover, and thus plays an essential role in

FIGURE 1
Overview of regulatory mechanisms of protein homeostasis. Long-term chronic stress (e.g., oxidative stress) is an important cause for the loss of
protein homeostasis, however, the increase in the function of proteolytic system (i.e., ubiquitin-proteasome system and autophagy-lysosomal system)
and repair system (i.e., molecular chaperones) can promote the maintenance of protein homeostasis.
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cellular protein homeostasis (Glickman and Ciechanover, 2002;
Raaben et al., 2010; Gong et al., 2016). Approximately 80% of
cellular proteins can be degraded by the ubiquitin-proteasome
system (Meyer-Schwesinger, 2019). These proteins are associated
with many biological processes, including cell cycle progression,
apoptosis, gene transcription and translation, cell survival, and
antigen presentation (Raaben et al., 2010; Park et al., 2020). This
degradation system requires the conjugation of ubiquitin (small,
highly conserved protein of 76 amino acids) to target proteins by the
sequential action of three enzymes: ubiquitin-activating enzyme
(E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase
enzyme (E3) (Shu and Yang, 2017). Briefly, this degradation
process is initiated by the formation of E1-ubiquitin thioester
bonds between the active Cys residue site of E1 and C-terminal
Gly carboxyl group of ubiquitin through ATP-dependent reactions.
Thioester-linked ubiquitin is then transferred to the catalytic Cys in
E2, resulting in the formation of an E2-ubiquitin thioester-linked
conjugate. After this, E3 promotes the transfer of ubiquitin from the
E2-ubiquitin conjugate to the Lys residues within the different
substrate proteins by recognizing their specific motifs. Finally, the
targeted proteins with polyubiquitin chains are recognized and
degraded by the proteasome (Haas et al., 1982; Gong et al., 2016;
Shu and Yang, 2017). During this progress, ubiquitin is the “signal”
for protease cleavage of the protein, with various chains of ubiquitin
molecules labeling different abnormal proteins. Furthermore,
ubiquitylation is a reversible process, catalyzed by a series of
deubiquitylating enzymes, in which ubiquitin molecules removed
from protein substrates can be released and recycled (Finley, 2009;
Qiu et al., 2022).

Autophagy-lysosomal system

The autophagy-lysosomal system is another important
mechanism in cellular homeostasis for the degradation and
recycling of cytoplasmic components, such as defective proteins
and organelles (Mariño et al., 2011; Li et al., 2018). This system
participates in the regulation of multiple biological processes,
including cell growth, differentiation, remodeling, and senescence
(Schuck, 2020). Depending on how excess or damaged cytoplasmic
material is delivered to the lysosomes, autophagy can be classified as
macroautophagy, microautophagy, or chaperone-mediated
autophagy (CMA) (Mariño et al., 2011). Macroautophagy is a
dominant form of autophagy (Miller and Thorburn, 2021; Griffey
and Yamamoto, 2022), whereby superfluous and damaged proteins/
organelles as sequestered in nascent double-membrane
autophagosomes that fuse with lysosomes for degradation (Feng
et al., 2014). The degradation products are released from the
lysosomes into the cytosol, with the macromolecular constituents
recycled into metabolic and biosynthetic pathways to maintain cell
viability under unfavorable conditions and to protect the cell during
stress (Feng et al., 2014; White et al., 2015). Unlike macroautophagy,
microautophagy involves the direct engulfment of material by
lysosomes through invaginations or protrusions of the lysosomal
membrane (Schuck, 2020). Microautophagy is responsible for the
maintenance of organelle size, membrane composition, cell survival
under nitrogen restriction, and transition from starvation-induced
growth arrest to the logarithmic growth phase (Roberts et al., 2003).

CMA is a form of selective autophagy responsible for the
degradation of 30% of cytosolic proteins under prolonged
nutrient deprivation (Dice, 2007; Bourdenx et al., 2021). CMA is
distinct from other types of autophagy in that the substrate protein is
directly translocated across the lysosomal membrane for
degradation (Schneider et al., 2015). In CMA, substrate proteins
are selectively targeted to lysosomes and translocated into the
lysosomal lumen through the coordinated action of chaperones
located on both sides of the membrane and the dedicated protein
translocation complex lysosomal-associated membrane protein 2A
(LAMP2A) (Cuervo and Wong, 2014; Bourdenx et al., 2021).

Protein homeostasis in aging and
longevity

Impaired protein homeostasis, characterized by the
accumulation of protein aggregates, is a crucial hallmark of aging
and age-related diseases, including neurodegeneration (López-Otín
et al., 2013; Hipp et al., 2019). Various internal and external stresses
that persist throughout life can disrupt protein homeostasis in
organisms. Here, we mainly discuss oxidative stress, generated by
redox imbalance between the production of reactive oxygen and
nitrogen species (ROS and RNS, respectively) and antioxidant
defenses, given its importance as a driver of oxidized protein
accumulation in senescent cells and aged organisms (Squier,
2001). Multiple studies have observed increases in oxidized
proteins in different tissues (e.g., brain and heart) of aged
animals, including humans (Granold et al., 2015). Oxidative
modification of proteins leads to changes in protein structure,
including oligomerization, protein misfolding, and protein
backbone fragmentation (Zavadskiy et al., 2022). In turn,
oxidative damage to proteins plays a crucial role in accelerating
aging (Nyström, 2005; Kim et al., 2012). For example, oxidized low-
density lipoprotein plays an important role in promoting retinal
pigment epithelial cell senescence (Kim et al., 2012).

In general, oxidized proteins can be eliminated by degradation
systems and repair mechanisms in younger cells and organisms,
with an extensive network involving molecular chaperones,
ubiquitin-proteasome system, and autophagy-lysosomal system.
However, protein homeostasis network capacity declines
significantly with age (Ben-Zvi et al., 2009; Morimoto and
Cuervo, 2014). Age-related intralysosomal lipofuscin
accumulation and impaired acidification (i.e., pH) are two
important causes of reduced lysosomal degradation activity
(Brunk and Terman, 2002; Colacurcio and Nixon, 2016). Age-
related reductions in certain key regulatory factors, such as
LAMP2A, can also disrupt the autophagy-lysosomal process
(Cuervo and Dice, 2000). In addition, decreased proteasomal
degradation activity can also result from age-related factors,
including decreased expression of both non-catalytic and catalytic
subunits of the proteasome with aging (Ponnappan et al., 2007).
Studies have also linked the accumulation of oxidatively modified
proteins to different age-related diseases, such as neurodegenerative
disorder and cardiovascular disease (Barnham et al., 2004; Dunlop
et al., 2009; Luna et al., 2016). For example, based on redox
proteomics, several studies have reported the presence of
oxidized/misfolded proteins in different brain regions of patients
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with AD (Sultana et al., 2006), with oxidization of glycolytic and
TCA enzymes leading to a decrease in ATP production and
progression of AD (Tramutola et al., 2017). There are also
studies supporting that the aberrant expression of genes
involving to the maintenance of protein homeostasis plays an
important role in the deposition of Aβ peptide and tau protein
in the brains of AD patients (Freer et al., 2016; Rishika et al., 2017).
In addition, oxidized albumin can induce endothelial injury and
increase the risk of cardiovascular disease in elderly individuals
(Luna et al., 2016). Taken together, these findings highlight the
crucial role of cellular homeostasis maintenance, especially the
elimination of oxidized proteins, in healthy aging organisms.

Accordingly, increasing evidence suggests that enhancement of
protein homeostasis network capacity can extend lifespan or
promote longevity in various species, such as yeast, worms, flies,
mice, and humans (Pyo et al., 2013; Schumpert et al., 2014;
Chondrogianni et al., 2015; Madeo et al., 2015; Xiao et al., 2018).
For example, overexpression of molecular chaperones (e.g., HSP70,
HSP16) can lead to an increase in lifespan (Walker and Lithgow,
2003; Schumpert et al., 2014). Likewise, upregulation of certain
autophagy-lysosomal pathway genes is linked to lifespan extension
(or longevity promotion). Activation of transcription factor EB
(TFEB), a key regulator driving autophagy and lysosomal gene
expression, is associated with healthy longevity (Lapierre et al.,
2013). Overexpression of the Atg5 gene, which is essential for
autophagosome formation, can extend the median lifespan of
mice (Pyo et al., 2013). In addition, a summary of key genes
required for protein homeostasis maintenance and longevity
promotion is provided in Table 1. Furthermore, centenarian-
based evidence suggests that increased autophagy-lysosomal
activity is an important mechanism of healthy aging and
longevity in humans (Xiao et al., 2018). Studies have also shown
that overexpression of proteasome subunits can increase lifespan
(Chondrogianni et al., 2015). Interestingly, a growing body of
research suggests that protein homeostasis is a key mechanism
linking certain interventions to longevity promotion and health
improvement, with most demonstrating autophagy-activating

properties (Kaushik and Cuervo, 2015). For example, calorie
restriction, physical exercise, mTORC1 inhibition, sirtuin 1
(SIRT1) activation, spermidine treatment, and p53 suppression,
interventions known to extend lifespan and/or healthspan, can
enhance protein homeostasis network capacity, although
probably through different mechanisms (Mizushima and
Komatsu, 2011; Madeo et al., 2015; Ulbricht et al., 2015; Plaza-
Zabala et al., 2017). Thus, exploring how to mitigate age-related
decline in PQC capacity should provide new perspectives for
achieving healthy aging and longevity.

Protein homeostasis and cancer

Although cancer is also an age-related disease, its biological
underpinnings are tightly associated with protein homeostasis.
Genomic instability and oxidative stress can lead to increased
production of damaged and/or dysregulated proteins in cancer
cells (Wu et al., 2014; Bastola et al., 2018). To resolve the
overwhelming proteotoxic stress, cancer cells require
sophisticated PQC mechanisms to maintain a proper protein
homeostasis for survival and growth. Accordingly, there is a
growing body of evidence supporting the dual roles of PQC
mechanisms in the pathogenesis of human cancers through the
building and turnover of tumor-promoting/suppressing proteins.
Here we mainly summarized the findings on the crucial functions of
the three PQC systems (viz., molecular chaperones, ubiquitin-
proteasome system, and autophagy-lysosomal system) in cancer
progression.

First, HSPs function as the molecular chaperones to mediate
proper protein folding, with more likely being oncogenic
function. Numerous HSPs (e.g., HSP60, HSP70, HSP90) have
been reported to be overexpressed in a wide range of cancers and
are indicative of poor patient prognosis (e.g., gastric, liver and
breast cancer) (Ciocca and Calderwood, 2005; Zagouri et al.,
2012; Li et al., 2014; Wang et al., 2021). HSPs can promote cancer
progression via different pathways. For example, overexpression

TABLE 1 Examples of proteostasis-related genes linked to organismal longevity. (All gene names were in lower case and only one representative study for each
gene was listed here).

Gene Function Association with longevity Species Refs

atg-18 Phagophore formation Mutational inactivation of atg-18 reduce lifespan C. elegans Tóth et al. (2008)

wwp-1 E3 ubiquitin ligase wwp-1 is required for the extension of lifespan by dietary restriction C. elegans Carrano et al. (2009)

hsf-1 A master regulator of HSP
expression

Overexpression of hsf-1 ubiquitously in somatic cells extends lifespan C. elegans Morley and Morimoto
(2004)

atg-8a Autophagosome formation Neuronal overexpression of Atg-18a extends adult lifespan D.
melanogaster

Simonsen et al. (2008)

hsp27 Heat shock protein Neuronal overexpression of Hsp27 extends lifespan D.
melanogaster

Liao et al. (2008)

parkin E3 ubiquitin ligase Ubiquitous or neuron-specific upregulation of Parkin extends lifespan D.
melanogaster

Anil et al. (2013)

becn1 Autophagosome formation Mutation in Becn1 decreases its interaction with BCL2 leads to higher levels of basal
autophagic flux and extends lifespan

M. musculus Fernández et al. (2018)

atg-5 Autophagosome formation Ubiquitous overexpression of Atg5 enhances autophagy and extends lifespan M. musculus Pyo et al. (2013)
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of HSP90 can downregulate E-cadherin and promote epithelial-
mesenchymal transition (EMT), a key step in tumor metastasis
(Hance et al., 2012). HSP90 can also stabilize vascular endothelial
growth factor and nitric oxide synthetase in endothelial cells to
induce tumor angiogenesis (Sun and Liao, 2004).

Second, as one of the major proteolytic system, autophagy-
lysosomal system is tightly associated with cancer development
and progression (Rosenfeldt and Ryan, 2009; Yun and Lee, 2018).
On the one hand, autophagy is thought to play an important role
in promoting cancer cell survival and growth in advanced cancers
(Luo et al., 2016; Liu et al., 2018), as it can provide the substrates
(e.g., amino acid) for metabolism through the intracellular
recycling of damaged or superfluous proteins and then elicit
the formation of an adaptive protein homeostasis in cancer cells
(White, 2012; 2015). Furthermore, autophagy may contribute to
tumor progression by decreasing the levels of some proteins with
tumor-suppressing function. For example, the ATG7 gene, which
is overexpressed in invasive bladder cancer tissue, can promote
autophagic degradation of the HNRNPD (ARE/poly(U)-binding/
degradation factor 1) protein, which, in turn, increases
ARHGDIB mRNA stability and bladder cancer cell invasion
(Zhu et al., 2019). Study shows that autophagy participates in
the degradation of tumor suppressor PP6 (protein phosphatase
6), the level of which correlates with poor prognosis in
glioblastoma (Fujiwara et al., 2020). However, on the other
hand, autophagy is also considered to be a tumor suppressor
mechanism in the early phages of tumorigenesis as it can inhibit
tumors by removing oncogenic protein substrates, toxic unfolded
proteins, and damaged organelles, thereby maintaining genomic
stability (White, 2012; 2015; Xu et al., 2015). Important evidence
for the role of autophagy in tumor suppression comes from the
depletion of the essential autophagy regulator BECN1 (Beclin 1,
also known as autophagy-related gene 6 (ATG6)) in human
breast, prostate, and ovarian cancers (Aita et al., 1999; Liang
et al., 1999; Choi et al., 2013). Loss of BECN1 can lead to a
reduction in autophagy and increase in cell proliferation (Liang
et al., 1999; Qu et al., 2003; Shen et al., 2008). In addition, there is
a study showing that autophagy induction can attenuates theWnt
signalling by promoting Dishevelled degradation, which further
inhibits the formation of colon cancer (Gao et al., 2010).
Autophagy is also required to suppress the accumulation of
oncogenic p62 protein aggregates and prevent tumor initiation
(White, 2012).

Third, it has been reported that the increased rate of protein
turnover in cancer cells also requires the ubiquitin-proteasome
system, which subsequently regulates the “quantity” and “quality”
of various proteins (Crunkhorn, 2018; Deng et al., 2020; Zhang
et al., 2020). That is, in order to adapt the oxidative and proteotoxic
stresses during tumorigenesis, cancer cells rely on the
ubiquitinating and deubiquitinating enzymes to maintain
protein homeostasis and cell viability (Hyer et al., 2018; Harris
et al., 2019). In addition, accumulating evidence suggests that
proteins encoded by oncogenes and tumor suppressor genes
may be targets of ubiquitination, that is, ubiquitin-mediated
proteasomal degradation could either activate or deactivate the
tumorigenic pathways. For example, there are studies showing that
the protein level of tumor suppressor p53 can be reduced by its
ubiquitination and proteasome degradation, resulting in poor

survival and prognosis in cancer patients (e.g., colorectal
cancer) (Zeng et al., 2018; Liu et al., 2020). In addition, studies
also show that multiple proto-oncogenic proteins (e.g., MYC and
JUN) can be degraded by the ubiquitin-proteasome system, and
then function in suppressing cancer growth and progression (e.g.,
glioma) (Welcker and Clurman, 2008; Kim et al., 2017).

Concluding remarks

In this review, we discuss the molecular mechanisms involved
in protecting the stability and functional properties of the
proteome, including molecular chaperones, ubiquitin-
proteasome system, and autophagy-lysosomal system. We also
describe the causes of accumulation of damaged/misfolded
protein aggregates during aging, such as long-term chronic
stress (e.g., oxidative stress) and dysfunctional proteolytic and
repair systems, and the subsequent detrimental effects on
organismal health. Current evidence suggests that
improvements in cellular protein homeostasis capacity can
prolong lifespan or promote healthy aging and longevity, but
with a potential increase in the risk of cancer. Thus, a
comprehensive understanding of the protein homeostasis
network will not only shed light on the fundamental biology
of aging and anti-aging, but also provide new avenues for
context-dependent therapeutic interventions in various age-
related diseases, including neurodegeneration and cancer.
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