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The cochlea is a complex organ comprising diverse cell types with highly specialized
morphology and function. Until now, the molecular underpinnings of its
specializations have mostly been studied from a transcriptional perspective, but
accumulating evidence points to post-transcriptional regulation as a major source
of molecular diversity. Alternative splicing is one of the most prevalent and well-
characterized post-transcriptional regulatory mechanisms. Many molecules
important for hearing, such as cadherin 23 or harmonin, undergo alternative
splicing to produce functionally distinct isoforms. Some isoforms are expressed
specifically in the cochlea, while some show differential expression across the
various cochlear cell types and anatomical regions. Clinical phenotypes that arise
from mutations affecting specific splice variants testify to the functional relevance of
these isoforms. All these clues point to an essential role for alternative splicing in
shaping the unique molecular landscape of the cochlea. Although the regulatory
mechanisms controlling alternative splicing in the cochlea are poorly characterized,
there are animal models with defective splicing regulators that demonstrate the
importance of RNA-binding proteins in maintaining cochlear function and cell
survival. Recent technological breakthroughs offer exciting prospects for
overcoming some of the long-standing hurdles that have complicated the analysis
of alternative splicing in the cochlea. Efforts toward this end will help clarify how the
remarkable diversity of the cochlear transcriptome is both established andmaintained.
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1 Introduction

The cochlea is a highly specialized organ responsible for hearing. Its function depends on the
intricate organization of its myriad cell types, including mechanosensory hair cells (HCs), more
than five types of supporting cells (SCs), and many other non-sensory cells that contribute to the
survival and function of the sensory cells. All these constituents of the mature cochlea are
generated from the otocyst, a spherical and seemingly homogenous population of epithelial cells.
How does the cochlea achieve its distinct anatomy, and how is its remarkable cellular diversity
created and maintained? Until now, efforts to address these questions have focused largely on
regulation at the transcription level. Conditional knockout studies and transcriptomic analyses
have identified key transcription factors governing cochlear development (Elliott et al., 2021).
Single cell RNA-sequencing techniques are now revealing transcriptomic heterogeneity with
unprecedented resolution (Kelley, 2022). Transcriptional control, however, is only one aspect of
genetic regulation. A complete picture of the formation and maintenance of molecular diversity
in the cochlea requires consideration of post-transcriptional regulation as well.
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Proteomic studies have shown that roughly 37% of human
protein-coding genes encode multiple isoforms, allowing the
20,000 genes in the genome to produce more than
290,000 peptides (Kim et al., 2014). Alternative promoters,
alternative translation start/stop sites, and post-translational
modifications are all examples of post-transcriptional regulatory
mechanisms that can contribute to isoform diversity (Hu et al., 2015;
Reyes and Huber, 2018). Recent studies have explored the result of
these processes in the cochlea, and comprehensive reviews have been
written on this subject (Booth et al., 2018a; Shi et al., 2022). In this
article, we focus on alternative splicing (AS), a post-transcriptional
modification process that allows the production of multiple mRNA
transcripts from a single gene.

AS is exceptional in both its extent and its contribution to
transcriptomic diversity. AS is estimated to occur in roughly 95% of
human multi-exon genes (Pan et al., 2008; Wang et al., 2008), about
two-thirds of which are tissue-specific (Wang et al., 2008). During
development, AS acts as a source of transcriptomic variation
required to meet the increasingly specialized demands imposed
upon different tissues or cell types (Baralle and Giudice, 2017).
Therefore, it is possible that 1) cochlea-specific AS might aid in
shaping the unique anatomy of the organ, and 2) region- or cell type-
specific AS might help generate heterogeneity within the cochlea.

Although no systematic attempt has yet been made to assess its
splicing profiles, several reports hint at an active role for AS in the
cochlea. Many of the molecules essential for hearing exist in multiple
splice variants, some of which are expressed specifically in the
cochlea. Biochemical properties differ among isoforms.
Functional and morphological defects observed in isoform-
specific knock-out (KO) animals and different clinical
phenotypes arising from mutations that affect different isoforms
testify to the distinct roles assumed by the splice variants.
Furthermore, AS patterns vary according to cell type, spatial
location, and developmental stage, suggesting the possibility that
AS plays a role in creating morphological and functional
heterogeneity within the cochlea. Finally, mice deficient for
certain splicing regulators show hearing impairment, although
the detailed pathogenic mechanisms underlying this defect
remain unclear. These results highlight the importance of AS
regulation in the normal development and function of the cochlea.

This article aims to provide a comprehensive review of the
literature focusing on the physiological relevance of AS in cochlear
development and hearing function. We will first give a basic
overview of AS and cochlear biology, and then explore the rich
transcriptomic diversity of the cochlea conferred by AS and its
regulator RNA-binding proteins (RBPs). Finally, we will discuss
clinical cases of hearing loss caused by abnormal AS regulation and
potential therapeutic approaches utilizing AS for correcting
deafness-causing mutations.

2 Background

2.1 Overview of alternative splicing

Primary transcripts from most eukaryotic genes contain splice
sites. A ribonucleoprotein complex known as the spliceosome excises
parts of pre-mRNAs whose borders are defined by splice site

sequences (Figure 1A); this is how the task of intron removal is
accomplished. Some introns are defined by splice sites “strong”
enough to be invariably recognized by the spliceosome, so these are
constitutively spliced out. Other introns may or may not be removed
depending on circumstances. A diverse array of transcripts may be
generated from a single gene as a result of such alternative splicing. It
is customary to describe any AS event as one (or a combination) of
5 types of binary processes: skipping of an alternative or “cassette”
exon, alternative 5′ splice site usage, alternative 3′ splice site usage,
utilization of mutually exclusive exons, and intron retention
(Figure 1B). As a result, the quantity and kind of processed
transcripts are affected. When a premature termination codon is
introduced via AS, the transcript is likely to be degraded by the non-
sense-mediated decay pathway (Titus et al., 2021). Modification of
untranslated region (UTR) sequences may influence mRNA
localization or stability (Titus et al., 2021). Finally, when a coding
sequence is differentially spliced, the resulting protein isoforms may
differ in stability, localization, or function (Titus et al., 2021).

Factors affecting splicing outcomes can be broadly categorized
as either cis- or trans-acting (Figure 1C). Cis-regulatory elements are
pre-mRNA sequences near the splice site that influence recognition
by the spliceosome. These are further classified as exonic or intronic
splicing enhancers or silencers according to their location and
function. Trans-regulatory elements refer to factors—usually
RBPs—that localize to cis-regulatory sequences and affect binding
of the splicing machinery to the pre-mRNA. Regulation of trans-
acting factor expression can alter splicing outcomes to suit various
physiologic requirements. In addition, since splicing occurs
concurrently with transcription, various aspects of transcription,
such as elongation rate, can also affect splicing outcomes (Kornblihtt
et al., 2013).

2.2 Overview of cochlear structure and
function

The cochlea consists of three chambers (Figures 2A,B). The scala
vestibuli and scala tympani are spaces filled with a fluid called
perilymph. These spaces together function as a conduit for
incoming sound waves. Sandwiched between these two spaces is
the scala media, a blind tube surrounded by three walls. Reissner’s
membrane and the cochlear floor constitute the scala media’s
borders with the scala vestibuli and scala tympani, respectively.
The wall facing the lateral side houses a special kind of epithelium,
the stria vascularis, which is important for maintaining ion
homeostasis. Vibrations in the perilymph are converted to
undulations of the basilar membrane underlying the cochlear
floor. Within the cochlear floor resides the organ of Corti, the
auditory sensory organ that harbors the mechanosensory hair
cells (HCs) and supporting cells (SCs). Movements of the basilar
membrane displace the HCs relative to the overlying tectorial
membrane, deflecting their hair bundles.

Each hair bundle is an array of actin-based protrusions called
stereocilia located on the apical surface of every HC (Figures 2C,D).
A variety of structures work together to translate these mechanical
stimulations into electric signals. These include various hair bundle
links, which ensure the entire hair bundle moves in concert to
generate a coherent signal (Figures 2D,F). Horizontal top connectors
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connect adjacent rows of stereocilia, while tectorial membrane
attachment crowns anchor the tips of tallest stereocilia to the
tectorial membrane. Some structures, such as ankle links, appear
transiently during development and are thought to be involved in
hair bundle maturation. Most importantly, tip links connect the
uppermost regions of adjacent rows of stereocilia with one another
(Richardson and Petit, 2019). Tip links are somehow coupled to the
mechanoelectrical transduction (MET) machinery, an apparatus
consisting of molecules such as TMC1, LHFPL5, and TMIE that
triggers the influx of K+ and Ca2+ in response to mechanical tension
(Zheng and Holt, 2021). Depolarization of the HC membrane leads
to additional Ca2+ influx through CaV1.3 L-type Ca2+ channels,
further accelerating depolarization (Brandt et al., 2003; Sidi et al.,
2004). Increased intracellular Ca2+ concentration leads to K+ outflow
through Ca2+-sensitive K+ channels located at the basolateral
membranes of the HCs. This triggers cell repolarization so the
cycle can begin again (Fettiplace, 2017).

In mammals, the subsequent response depends on the type of
HC. Inner hair cells (IHCs) receive the majority of auditory
afferent innervation and possess specialized structures called
ribbon synapses at their interface with nerve fibers (Figures
2C,E). Depolarization in the IHCs leads to glutamate release at
these synapses, propagating the sound-evoked electrical signals to
the neurons, which carry it to the brain. On the other hand, outer
hair cells (OHCs) receive only a limited number of afferent fibers.
Electrical excitation of these cells, rather than promoting

neurotransmission, triggers cell contraction (Fettiplace, 2017).
This cochlear amplifier mechanism acts to augment the acoustic
signal in a non-linear fashion.

3 Cochlear transcriptomic diversity
from alternative splicing

The intricate organization and function of the cochlea suggests
its transcriptome must also be quite specialized and diversified. Does
AS contribute to sculpting the unique and diverse transcriptome of
the cochlea? Compiling known cases of cochlear AS could be a good
starting point for answering this question, but few such attempts
have been made. One study found 20 unannotated, highly conserved
exons in 12 deafness-related genes (Ranum et al., 2019). This hints
that vast areas of the cochlear transcriptome remain unexplored.
Although unbiased, transcriptome-wide analyses are still wanting,
some isoforms of important proteins have been documented. For
example, proteins related to Usher syndrome—a group of genetic
conditions characterized by hearing loss and blindness—tend to
exist in multiple isoforms with unique functions and distribution
patterns (Whatley et al., 2020). An earlier review summarized the
most well-known examples of cochlear AS (Wang et al., 2016). Here,
we have created a more comprehensive and up-to-date catalogue of
cochlear splice variants, which is presented in Supplementary
Table S1.

FIGURE 1
Overview of alternative splicing. (A) The splicing reaction. The core spliceosome consists primarily of five small nuclear ribonucleoproteins (snRNPs):
U1, U2, U4, U5, and U6. The splicing reaction begins when the U1 snRNP binds the 5′ splice site (5′ SS). Next, U2 and some non-snRNP factors recognize
other important sequences, including the 3′ splice site (3′ SS) and the branch point (BP). The resulting RNA-protein complex then undergoes a series of
conformational rearrangements, becoming catalytically active. Finally, in a two-step transesterification reaction, two exons are ligated and the
intervening intron is spliced out in the form of a ‘lariat’ before being subsequently degraded. (B) Themajor types of binary AS events. (C) The determinants
of splicing outcomes. Exonic/intronic splicing enhancer (ESE/ISE) sequences are recognized by splicing activators, such as the serine-rich (SR) family of
proteins, which facilitates the action of the splicing machinery. Repressors, such as the heterogeneous nuclear ribonucleoproteins (hnRNPs), bind to
exonic/intronic splicing silencers (ESSs/ISSs) to inhibit the components of the spliceosome from recognizing splice site sequences.
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FIGURE 2
Gross and molecular anatomy of the mammalian cochlea. (A) The structure of the inner ear. (B) Transverse section of the cochlea. (BC: Boettcher
cell; BM: Basilar membrane; CC: Claudius cell; DC: Deiters cell; HeC: Hensen cell; IBC: Inner border cell; IHC: Inner hair cell; IPC: Inner pillar cell; IPhC:
Inner phalangeal cell; ISC; Inner sulcus cell; OHC: Outer hair cell; OPC: Outer pillar cell) (C) Enlarged view of the two kinds of cochlear HCs depicting the
locations of the most important ion channels. Efferent fibers from the olivary complex synapse mainly with OHCs. (BK channel: large-conductance
Ca2+-activated K+ channel; nAChR: α9/α10 nicotinic acetylcholine receptor; SK channel: small-conductance Ca2+-activated K+ channel) (D–F) Important
structures are labeled in blue with their molecular constituents listed below in black. (D) Enlarged view of the HC apical surface depicting various types of
hair bundle links. The asterisk (*) indicates that ankle links are transient structures absent from the mature hair bundle. (Inset: A section parallel to the
cochlear floor at the level of the tight junctions. Specialized structures called tricellular junctions are formed at points of tricellular contact.) (E) The

(Continued )
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In this section, we will examine whether and how AS helps to
address the following two challenges: to specialize the cochlear
transcriptome so that it becomes distinct from that of other
organs, and to diversify the transcriptome so as to distinguish
various cochlear cell types or anatomical regions. One caveat is
that transcript diversity does not necessarily translate into diversity
at the protein level. And even when it does, the mere existence of
protein isoforms is not necessarily evidence of functional relevance.
Ideally, we need clinical or experimental evidence that depletion of
different isoforms affects cochlear anatomy or physiology in
different ways. Biochemical studies could directly prove that
molecular characteristics differ among isoforms, but it is possible
that each splice variant performs its unique function in every cell,
whatever the circumstances. To argue that AS accounts for
differences among cells or tissues, it must be shown that the
expression of the splice variants is differentially regulated in
those environments. With this in mind, we now proceed to
inspect several selected AS events and discuss their potential
significance.

3.1 Alternative splicing events with cochlea-
specific roles

How does the cochlear transcriptome differ from that of other
organs, and how does AS contribute to this difference? To date, no
high-throughput study has yet been conducted specifically to
address this question, but the wealth of publicly available RNA-
sequencing datasets provides opportunities to mine cochlea-specific
AS events. One study took advantage of published transcriptome
datasets to compare exon inclusion rates in different cell types (Ling
et al., 2020). Although the focus was on neurons, the paper presented
as an example one cassette exon of Sptan1 used specifically in
cochlear HCs. Sptan1 is a cytoskeletal protein expressed broadly
in many tissues, and has been shown in vivo to be necessary for hair
bundle morphogenesis and HC survival (Yao et al., 2022). It would
be worth investigating whether the exon confers an HC-specific
function to the protein.

Further research using a similar approach will help to
characterize the unique cochlear transcriptome on a large scale.
At present, a number of studies have reported inner ear- or cochlea-
specific AS in genes important for hearing. We will examine those
examples and try to infer the role of such AS events in cochlear
function.

3.1.1 Cadherin 23
Cadherin 23 (CDH23, USH1D) is an Usher protein that

constitutes the upper part of the stereociliary tip link (Figure 2F).
The inclusion of CDH23 exon 68 is probably the best-known inner
ear-specific AS event (Figure 3A) (Di Palma et al., 2001; Siemens
et al., 2002; Siemens et al., 2004; Xu et al., 2008). Given the essential

role of CDH23 in hearing, the specificity of this AS event strongly
suggests the peptide encoded by exon 68 (hereafter abbreviated
peptide 68) must perform some function unique to the inner ear. For
example, one study reported that peptide 68 contained a cysteine
residue that could induce conformational changes in a redox-
dependent manner. The authors speculated that this may help
relieve some of the mechanical stress caused by stereociliary
deflection (Yonezawa et al., 2008). But since the cytoplasmic
domain of CDH23 has been best characterized in its interaction
with other Usher proteins such as harmonin (USH1C), most efforts
to determine the significance of peptide 68 have focused on these
interactions as well.

CDH23 interacts with a PDZ domain of harmonin via its
C-terminal PDZ-binding motif (PBM) (Boëda et al., 2002; Pan
et al., 2009), and with an N-terminal domain (NTD) of
harmonin via an internal cytoplasmic domain (Siemens et al.,
2002; Pan et al., 2009). In vitro comparisons of variants with and
without peptide 68 have generally indicated that peptide 68 inhibits
the CDH23-harmonin interaction (Siemens et al., 2002; Xu et al.,
2008; Xu et al., 2010). One group conjectured that harmonin may
not be the primary interaction partner of CDH23, and used yeast
two-hybrid screening to identify two novel PDZ domain-containing
proteins that bind CDH23: MAGI-1 and PIST (Xu et al., 2008; Xu
et al., 2010). Harmonin, MAGI-1, and PIST compete for the same
C-terminal PBM on CDH23. The presence of peptide 68 induced
stronger colocalization of CDH23 with PIST than with harmonin,
leading to its partial retention in the trans-golgi network (Xu et al.,
2010).

In contrast, a separate study reported that peptide 68 is a
facilitator of protein-protein interactions. Wu et al. (2012) found
that peptide 68 can bind two mutually exclusive targets: either the
harmonin NTD or peptide 68 of another CDH23 molecule. Large-
molecular weight complexes formed when CDH23 and harmonin
were mixed, but only in the presence of peptide 68. Peptide
68 seemed, therefore, to contribute to CDH23-harmonin complex
formation by providing an additional interface for harmonin NTD-
binding and by facilitating self-dimerization. The authors speculated
that such polymers could create a dense web-like structure that
augments the stability of the stereociliary tip links (Wu et al., 2012).
This hypothesis would explain the significance of inner ear-specific
AS of CDH23, but it will have to be corroborated with biophysical
measurements. To pinpoint the exact role of peptide 68 in cochlear
function, it will be necessary to study exon-specific KO models.

3.1.2 Harmonin
Another well-known inner ear-specific AS event concerns

harmonin (USH1C), a scaffolding protein thought to act as a
hub for Usher protein interactions (Reiners et al., 2006; Whatley
et al., 2020). Harmonin splice variants comprise three classes: a, b,
and c (Figure 3C). Class a includes the canonical isoform, as well as
an alternative transcript that utilizes exon A instead of exon 15. Class

FIGURE 2 (Continued)
components of a ribbon synapse. (F) The components of the tip link and its adjacent structures. The insertion sites of the tip links into neighboring
stereocilia appear as electron-dense structures when viewed under electron microscopes, which earned them the names upper and lower tip link
densities (UTLD and LTLD). Various Usher proteins form scaffolds that connect the tip link to the actin core, which is stabilized by other actin-binding
proteins.
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a proteins possess three PDZ domains. Class b includes transcripts
that lack exon 15 but contain alternative exons A-F, which encode
additional functional domains. Class c, which includes the
remaining isoforms, encodes proteins with only two PDZ
domains (Verpy et al., 2000).

Harmonin-b is considered the primary isoform in the cochlea.
Two types of class b transcripts are detected only in the inner ear
(Verpy et al., 2000), and harmonin-b proteins are restricted to HC
stereocilia (Figure 2F) (Boëda et al., 2002; Michalski et al., 2009).
Whereas harmonin-a and c mainly interact with other Usher
proteins, the domains encoded by the alternative exons allow
harmonin-b to interact with actin filaments and harmonin
molecules as well (Boëda et al., 2002; Adato et al., 2005). Mice
homozygous for a mutation that specifically affected the b isoform
were profoundly deaf and had vestibular dysfunction (Johnson et al.,

2003), which is probably caused by the structural and functional
defects in OHCs and the ensuing HC degeneration (Johnson et al.,
2003; Michalski et al., 2009). In contrast, harmonin-a is expressed
broadly, including in the retina (Verpy et al., 2000). Harmonin-a
proteins localize to the basolateral membranes of retinal
photoreceptors (Reiners et al., 2003) and HCs (Gregory et al.,
2011), rather than to their apical surfaces or stereocilia. Class a
isoforms associate with CaV1.3 channels, which reduces the number
of channels available at the basal cell surface (Gregory et al., 2011).

These findings suggest a model in which the more widespread
harmonin-a performs some common function in regulating synaptic
transmission at the basal membranes of retinal photoreceptors and
inner ear HCs, while the inner ear-specific harmonin-b uses its
additional functional domains to target apical plasma membranes
and form scaffolds therein. Clinical data contribute to the

FIGURE 3
Usher gene splice variants. The major classes of Usher protein isoforms and the AS events responsible for producing them. Protein regions affected
by AS are indicated in orange boxes. In the transcript diagrams, the different colors indicate different splice variant classes. Exons (or more generally,
transcript regions) selectively utilized in a certain class are indicated with corresponding colors. Dark gray boxes represent constitutively included exons,
while light gray boxes denote alternative exons that do not belong to a single isoform class. Arrows labeled ‘STOP’ indicate stop codons specific to
the splice variant class of the corresponding color. (A) Cadherin 23 isoform classes a, b, c are produced by utilization of alternative promoters. All three
types of transcripts can either include or exclude exon 68. (B) Splice variants of protocadherin 15 are classified into 4 categories according to their
cytoplasmic domains. Although AS can also affect the number of EC repeats, 11 repeats are usually assumed to comprise the standard extracellular
domain. (C) Splice variants of harmonin are divided into three classes—a, b, and c—according to the arrangement of the functional domains in their
encoded proteins. (CC: coiled coil domain; CD: cytoplasmic domain; EC: extracellular cadherin repeat; NBM: harmonin N-terminal-binding domain;
NTD: N-terminal domain; PBM: PDZ-binding motif; PST: proline, serine, threonine-rich region; TM: transmembrane domain).
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plausibility of this model. Mutations in USH1C exons B and D
underlie DFNB18, a non-syndromic hearing loss disorder (Ouyang
et al., 2002). In addition, a mutation in exon 15 was identified as the
pathological variant in some families with retinitis pigmentosa,
which is the ocular component of the Usher phenotype (Khateb
et al., 2012). Patients with this variant displayed late-onset, mild-to-
severe hearing impairment (Khateb et al., 2012). Hearing loss due to
USH1C mutation is usually congenital and profound (Castiglione
and Möller, 2022), so the newfound mutation represented the first
deviation from this standard pattern (Khateb et al., 2012). These
observations make sense when isoform distribution is considered;
mutations in inner ear-specific exons should spare the retina and
exon 15 mutations should still allow proper class b isoform function
in HC stereocilia. Therefore, organ-specific AS is essential for
harmonin’s unique localization and scaffolding function in the
inner ear.

3.1.3 Protocadherin 15
Protocadherin 15 (PCDH15, USH1F) is the component of the

stereociliary tip link that connects to both CDH23 and the MET
machinery (Figure 2F). Many PCDH15 splice variants exist in the
cochlea, with transmembrane isoforms belonging to one of three
categories—CD1, CD2, and CD3—according to their cytoplasmic
domains (Figure 3B) (Ahmed et al., 2006; Ahmed et al., 2008).
USH1F mutations usually manifest with hearing loss accompanied
by vestibular and visual defects, but mutations that selectively affect
CD2 isoforms cause non-syndromic hearing loss (Pepermans et al.,
2014). This suggests CD2 splice variants perform some unique
function in the mature cochlea. Unlike in our previous examples,
however, this organ-specificity cannot be attributed to differential
AS alone. Although it is true that the distribution of the CD1 and
CD2 isoforms is restricted compared to the CD3 isoforms,
CD2 isoforms appear in several tissues other than the cochlea,
such as the retina, spleen, and testis (Ahmed et al., 2008).

The uniqueness of the cochlea in this case seems to lie in its
specific requirement for AS, rather than in its AS profile. While each
isoform is dispensable for the initial formation of hair bundles and
for acquisition of MET (Webb et al., 2011), CD2 isoforms are
necessary for maintenance of the tip links and for hearing at
later stages (Webb et al., 2011; Pepermans et al., 2014). We can
speculate as to the molecular nature of this isoform-specific
requirement. The subcellular expression patterns of the three
isoform classes are distinct and change dynamically during
development (Ahmed et al., 2006; Michel et al., 2020). Perhaps,
the precise localization of each isoform is essential in the mature
cochlea but not in the vestibule, retina, or immature cochlea. It is
also possible that PCDH15-CD2 binds directly to the MET
machinery component TMIE, whereas the interactions of the
CD1 and CD3 isoforms with TMIE depend on LHFPL5 (Zhao
et al., 2014). The CD2 isoforms might be required because of the
relatively low level of LHFPL5 expression in the mature cochlea
(Xiong et al., 2012; Mahendrasingam et al., 2017) or because of some
unique geometric configuration formed by the direct interaction
between PCDH15-CD2 and TMIE. Regardless, the example of
PCDH15 illustrates that unique requirements for AS can also
contribute to the specialization of the cochlear transcriptome.

3.2 Cell type-specific splicing in the cochlea

Although the cochlea is a small organ, it is astoundingly
complex. It is conceivable that AS might help achieve the precise
level of transcriptomic heterogeneity required for creating
distinct anatomic regions and cell types within the cochlea.
One study using single cell long-read RNA-sequencing found
considerable AS variation between cell types, although the
authors only provided a detailed analysis of isoform diversity
and distribution for one example gene (Ranum et al., 2019).
Further unbiased analyses of cell type-specific splicing profiles
are needed to bolster this hypothesis.

There are only a few published reports of cell type-specific
splicing, most of which relate to genes encoding ion channels.
C-terminal splice variants of CACNA1D encode truncated
CaV1.3 channel α subunits with peculiar electrophysiological
characteristics (Figure 4A). One isoform that is expressed more
abundantly in OHCs than in IHCs nearly lacks the Ca2+-dependent
inactivation property typical of CaV1.3 channels. It is possible that
current through the channels may drive synaptic transmission to the
few afferent nerve endings that terminate at the OHCs, mediating
activity-dependent transcriptional changes during maturation or in
some way contributing to the cochlear amplifier function (Shen
et al., 2006).

Another example is the ATP2B2 gene, which encodes the
PMCA2 channels that are the primary route by which Ca2+ is
removed from the HCs (Lumpkin and Hudspeth, 1998). Two
classes of splice isoforms, w and z, differ in the number of cassette
exons inserted in a specific splice site (Figure 4B). As a result, w
and z isoforms are selectively targeted to the apical and
basolateral membranes of epithelial cells, respectively (Chicka
and Strehler, 2003; Grati et al., 2006; Hill et al., 2006). The w
isoform is predominant in cochlear HCs, where the channels are
localized exclusively to stereociliary hair bundles (Grati et al.,
2006; Hill et al., 2006; Chen et al., 2011). In contrast, the z isoform
is expressed mainly in spiral ganglion neurons where it localizes
to the membranes of their cell bodies and neurites (Chen et al.,
2011). It is plausible that AS serves to optimize PMCA2 function
according to the unique Ca2+ dynamics of each cell type. The
validation of these hypotheses will require cell type-specific
knockout studies.

A final example illustrates how cell type-specific transcriptome
data could be exploited to analyze differences in AS patterns. In a
feat of precision, He et al. (2000) pioneered the suction pipette
technique, in which dissociated cells are manually separated based
on morphological differences (He et al., 2000). Transcriptomes of
4 cell types have been characterized using this method (Liu et al.,
2018). Zhou et al. (2021) probed this database for previously
unknown splice variants of MET machinery components. Four
AS events were identified in the Tmc1, Lhfpl5, and Tmie genes
and subsequently verified through RT-PCR. Three of these events
occurred in significantly higher frequencies in OHCs than in IHCs
(Zhou et al., 2021). Although they avoided speculation as to the
possible implications of these data, the authors of the study did
demonstrate that data generated via high-throughput pipelines can
help identify potentially important AS events.
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3.3 Alternative splicing and cochlear
tonotopy

We now turn to a particularly interesting case of
heterogeneity within the cochlea, that of tonotopy. The
information content of a sound is encoded in its frequency
makeup. How does the auditory system analyze and interpret
this signal? Viewed from the middle ear, the distal end of the
cochlear duct is called the apex, whereas the most proximal region
is called the base (Figure 5). Various mechanical and
electrophysiological parameters vary systematically along the
apicobasal (longitudinal) axis. As a result, the resonant
frequency of each HC—the input frequency at which its
receptor potential amplitude is maximized—exhibits a spatial
gradient. The apex of the cochlea responds most efficiently to
low-frequency sounds, whereas the base responds best to high-
frequency sounds. Taking advantage of this organization, which
is known as tonotopy, the cochlea effectively performs a Fourier
transformation, such that the frequency composition of the sound
stimulus is converted into an amplitude distribution of HC
receptor potentials along the longitudinal axis (Fettiplace, 2020).

Many studies have tried to uncover the molecular basis of
tonotopy (Frucht et al., 2011; Kowalik and Hudspeth, 2011; Son
et al., 2012). Although there has been remarkable progress in
elucidating the formation and maintenance of tonotopy during
cochlear development (Mann et al., 2014; Thiede et al., 2014; Son
et al., 2015; Koo et al., 2023), the molecular apparatus responsible for
transforming an embryonic blueprint into an actual gradient of
anatomical and physiological features is largely unknown. Here, we
explore those studies that included AS in their attempts to solve the
riddle of tonotopy. Overall, the results are far from conclusive,
perhaps again owing to the technical difficulties of having to analyze
subregions of an already miniscule organ. Nevertheless, these offer
tantalizing hints towards a plausible hypothesis that AS
complements the regulation of gene expression required to create
spatial heterogeneity within the cochlea.

3.3.1 BK channels
In amphibians and reptiles, a short tubular structure called the

basilar papilla takes on the role of sound detection. Unlike in the
cochlea, where gradients in the mechanical properties of the basilar
membrane are most relevant for frequency discrimination, it is

FIGURE 4
Ion channel gene splice variants. The structure of ion channel proteins and important AS events. The protein regions affected by AS of each channel
are indicated by orange boxes or circles. The meaning of the color schemes is the same as in Figure 3. (A) Splice variants of CaV1.3 α subunit 1D
(CACNA1D). Splice site numbering is arbitrary. Only some of the reported AS events are depicted. Please refer to Table S1. (B) Splice variants of plasma
membraneCa2+-ATPase 2 (PMCA2). (C) Splice variants of the pore-forming BK channel α subunit (KCNMA1). Cytoplasmic splice sites are circled, and
the sites reported to be utilized in murine inner ears by Miranda-Rottmann et al. (2010) are colored in orange. (D) Splice variants of delayed rectifier K+

channel Kv7.4 (KCNQ4) as identified by Beisel et al. (2005).
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electrical resonance that predominates in the basilar papilla. HC
resonant frequency is determined by the properties of each cell’s ion
channels (Fettiplace, 2020). In particular, the density and kinetics of
large-conductance Ca2+-activated K+ channels, or BK channels, are
the major determinants of resonant frequency in turtles (Crawford
and Fettiplace, 1981; Art and Fettiplace, 1987; Art et al., 1995; Wu
et al., 1995). These are the channels primarily responsible for the fast
outward K+ currents observed in IHCs.

Channel density might be controlled through the regulation of
gene expression, but how might the kinetic properties of a channel
be tweaked to form a systematic gradient? It was hypothesized that
AS of KCNMA1, the gene encoding the pore-forming α subunit,
underlies this phenomenon. Two studies examined the chicken
basilar papilla and found isoforms with distinct expression
patterns along the longitudinal axis also showed distinct
electrophysiological properties (Navaratnam et al., 1997;
Rosenblatt et al., 1997). Studies in turtles yielded similar results
(Jones et al., 1998; Jones et al., 1999a; Jones et al., 1999b). Models
incorporating splice variant distribution succeeded in explaining a
frequency range of 300–1,100 Hz (Ramanathan et al., 2000;
Ramanathan and Fuchs, 2002). Although this range fell short of
covering the entire range of chicken hearing (up to roughly
5,000 Hz), there was reason for optimism. Perhaps unknown
splice variants or subunits account for the unexplained portion of
the hearing range (Ramanathan and Fuchs, 2002). After all, the
combinatorial inclusion of 11 alternative exons at 7 splice sites could
in theory generate up to 576 splice variants (Navaratnam et al., 1997;
Rosenblatt et al., 1997). The fact that only a few transcripts have been

detected (Ramanathan et al., 2000) may indicate the existence of
undetected isoforms.

Later investigations employing genome-wide technologies,
however, yielded results that were far from what was hoped for
(Miranda-Rottmann et al., 2010). The transcript diversity promised
by AS failed to materialize, with only 4 of the 7 potential AS sites
being utilized (Figure 4C). This meant that the number of possible
combinations fell from 576 to only 48. Worse still, only 28 of those
48 were detected in the basilar papilla. Then, only 5% of the
identified transcripts included alternative exons. Even after
compensating for possible artifacts, the estimated proportion of
transcripts undergoing AS was no more than 30%. No systematic
differences in exon combinations were observed between the basal
and apical regions. Transcripts containing exons 34 and 35, which
encode slower channels, tended to be more abundant in the apex
(Figure 5), but the difference between fast and slow channels seemed
too meager to explain the observed variance in kinetics (Miranda-
Rottmann et al., 2010). In summary, the contribution of AS to the
variation of BK channel kinetics seems minor if it exists at all. There
have been attempts to interpret the significance ofKCNMA1 splicing
in different contexts (Kim et al., 2010; Sakai et al., 2011), but the
gradient of AS that does exist along the tonotopic axis still awaits
interpretation.

3.3.2 Kv7.4
The differential AS of an ion channel gene along the tonotopic

axis has been pointed to as the explanation for some peculiar
characteristics of a congenital hearing loss disorder. The voltage-
gated K+ channel Kv7.4, which is known as a delayed rectifier
potassium channel for its function in cardiomyocytes, is encoded
by the KCNQ4 gene. This channel accounts for the majority of
outward K+ conductance in mature OHCs, although IHCs also
partly depend on this channel (Oliver et al., 2003). Thus, it is
unsurprising that those who mapped the KCNQ4 gene to the
autosomal-dominant deafness locus DFNA2 immediately pointed
to OHC dysfunction as the key pathological mechanism (Kubisch
et al., 1999). Their observation thatKCNQ4 transcripts are expressed
specifically in OHCs lent further credibility to their hypothesis
(Kubisch et al., 1999).

One problem with their hypothesis, however, was that the
eventual degree of hearing loss was more severe than what would
be expected from OHC dysfunction alone (Marres et al., 1997). To
clarify the reason for this discrepancy, Beisel et al. (2000) examined
Kcnq4 expression in the mouse cochlea, finding the highest levels of
expression in basal auditory neurons and IHCs, as well as a
reciprocal gradient in OHCs (Beisel et al., 2000). Combined with
the slow progression of the relevant deafness from high to low
frequencies (Marres et al., 1997), it seemed that spiral ganglion
neuron or IHC pathology may be to blame for the progressive
hearing loss of DFNA2. Studies using mouse models, however,
showed that Kcnq4 disruption selectively affected OHCs, leaving
IHC morphology and function mostly intact. Of note, OHC
degeneration progressed from the base towards the apex
(Kharkovets et al., 2006), implying that Kcnq4 deficiency affects
more severely the regions in which its expression levels are normally
the lowest.

Although this puzzle is far from solved, studies of Kcnq4 AS
might provide some hints. Four splice isoforms of Kcnq4, v1-4, have

FIGURE 5
Tonotopic AS events. The cochlea is depicted unwound such
that its longitudinal axis is straightened. The region of the straightened
cochlear duct farthest from themiddle ear is called the apex, the most
proximal region is the base, and the virtual line joining these
regions is the longitudinal or tonotopic axis. The colored triangles
represent the relative abundance of splice variants for the indicated
gene along the axis. The numbers inside the triangles refer to the
exons that characterize each variant, and the cartoons next to the
triangles indicate the organism in which the tonotopic expression of
each splice variant has been verified.
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been identified (Figure 4D), and the v3 variant was predominant in
both types of HCs in the basal region (Figure 5) (Beisel et al., 2005).
In addition to affecting channel expression levels, AS affected the
electrophysiological properties of each variant as well (Xu et al.,
2007). Perhaps OHC survival depends on the base-specific Kcnq4
variant v3 rather than on overall gene expression. Investigating such
possibilities may help us uncover the roles played by the tonotopic
AS of Kcnq4 in cochlear physiology. For example, why is there a
gradient in the size of the outward K+ current along the tonotopic
axis (Jeng et al., 2020)? As with the case of KCNMA1, the
phenomenon is there, but its significance needs to be elucidated.

3.3.3 Transcriptome-wide studies of tonotopic
splicing

With the considerable interest surrounding tonotopy, it is
surprising how little attention has been given to tonotopic AS.
Although many studies have used transcriptome-wide techniques
to identify tonotopically expressed genes (Frucht et al., 2011;
Kowalik and Hudspeth, 2011; Son et al., 2012), only one study
examined splicing differences. Koo et al. (2021) divided the chicken
basilar papilla at post-hatch day 1 into three segments along the
longitudinal axis and looked for differential inclusion of cassette
exons (Koo et al., 2021). Genes such as LMO7, EPB41L3, and
KCNMA1 showed tonotopically differential AS, and this was
confirmed via RT-PCR (Figure 5). One specific C-terminal tail
variant of KCNMA1 was more abundant at the apex than either
the middle or the base, which was consistent with previous isoform
distribution measurements (Rosenblatt et al., 1997; Miranda-
Rottmann et al., 2010). In another example validated by RT-PCR,
CDH23 exon 32, the chicken exon orthologous to mouse Cdh23
exon 68, showed differential inclusion in a gradient increasing from
base to apex (Koo et al., 2021). This novel result requires further
verification, but if it is true, it suggests several interesting questions.
For example, how is the tonotopic splicing of CDH23 related to the
gradient of hair bundle mechanical properties observed along the
longitudinal axis (Tobin et al., 2019)? Overall, this study illustrates
the strengths of an unbiased approach towards AS analysis: past
findings are readily verified, novel events are easily discovered, and
sometimes unexpected heterogeneity may emerge from well-known
results.

4 Regulation of alternative splicing in
the cochlea

The discoveries outlined above offer a glimpse into the rich
diversity of the cochlear transcriptome created by AS. But which
trans-acting regulators are responsible for those AS events? Research
in this direction has only just begun. For example, two studies
attempted to uncover the basis of the tonotopic gradient of AS we
introduced in the previous section (Miranda-Rottmann et al., 2010;
Koo et al., 2021). One study conducted a microarray analysis of the
chicken basilar papilla and found no significant difference in the
expression of splicing regulators between the apex and the base, but
quantitative PCR results indicated that some regulator transcripts
have been filtered out of the microarray results (Miranda-Rottmann
et al., 2010). Using RNA-sequencing, another study identified
tonotopic expression of several splicing regulator genes, including

PTBP3, ESRP1, and ESRP2 (Koo et al., 2021). Interestingly, by
performing a motif enrichment analysis, the authors also found
an enrichment of PTB-like binding motifs and ESRP motifs near
alternative exons (Koo et al., 2021). These could be taken as indirect
evidence of the importance of RBPs in forming the tonotopic
organization of the cochlea.

To infer causality, however, knockout experiments would have
to be conducted. Only a handful of such endeavors have been
undertaken, but even the results of such loss-of-function analyses
should be interpreted with caution. Because constitutive splicing is
obviously necessary for cell survival, any abnormal phenotype may
simply indicate a requirement for that RBP’s role in constitutive
splicing. Specific expression must be confirmed to argue for the
importance of an RBP in regulating AS. Also confounding any
conclusion are the many roles RBPs play in mRNA regulation,
which include coordination of translation, monitoring of mRNA
stability and decay, and mRNA transport between organelles
(Gerstberger et al., 2014). Indeed, there is ample evidence that
RBPs regulate cochlear development via mechanisms unrelated to
AS (Shi et al., 2022). Therefore, the effect of an RBP on cell function
or survival cannot be attributed to AS alone without sufficient
evidence. All told, not a single RBP has been conclusively proven
to govern the unique AS events of the cochlea. The diverse array of
splice variants introduced thus far will require much more work to
explain.

4.1 ESRP1

The only splicing regulator that may legitimately be considered
necessary for cochlear development is ESRP1. In the fibroblast
growth factor (FGF) signaling pathway, three FGF receptors
(FGFRs) are alternatively spliced to produce two isoforms each.
Selective expression of these isoforms enables specific
communication across the epithelial-mesenchymal boundary
(Zhang et al., 2006). ESRP1 was initially identified in a screen for
RBPs governing the production of epithelium-specific FGFR
isoforms (Warzecha et al., 2009). Since FGF signaling is
implicated in various stages of cochlear development (Ebeid and
Huh, 2017), the identification of ESRP1 mutations in a patient with
congenital hearing loss naturally led one group of researchers to
hypothesize that ESRP1-mediated splicing of FGFRs is essential for
hearing (Rohacek et al., 2017). Indeed, mice deficient for Esrp1
displayed a widened and shortened cochlear duct, expanded
Reissner’s membrane, and a contracted stria vascularis. A
sequencing analysis of the mutant embryos revealed expression
of the mesenchymal FGFR2-IIIc isoform in the cochlear
epithelium. Unlike the typical epithelial FGFR2-IIIb isoform,
which binds the ligand FGF10, FGFR2-IIIc binds FGF9 and
induces inappropriate FGF signaling. Reduction of FGF9 gene
dosage restored the proportions of Reissner’s membrane and the
stria vascularis almost to normal, proving that the abnormalities in
non-sensory development were indeed attributable to aberrant
FGFR splicing (Rohacek et al., 2017).

The case of ESRP1 clearly illustrates that AS fine tunes
developmental signaling to enable precise communication
between tissue compartments. In this case, however, the RBP
itself is broadly expressed in epithelial tissues and governs an
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epithelium-specific splicing program rather than performing an
organ-specific function. In fact, Esrp1 mutant mice exhibit many
phenotypes other than inner ear malformation, including cleft lip
and palate arising from a defective epithelial-to-mesenchymal
transition (Lee et al., 2020). To identify the regulators that shape
the unique splicing landscape of the cochlea, it will perhaps be more
prudent to take inspiration from mutants that display more specific
phenotypes. This is what we will do in the following paragraphs.

4.2 SRRM4

The Bronx Waltzer (bv) mouse, a spontaneous mutant
characterized by recessively inherited hearing and balance
abnormalities, harbors a large deletion in Srrm4 (nSR100).
Srrm4 encodes a splicing factor predominantly expressed in
neurons and HCs (Nakano et al., 2012). A microarray analysis
identified several AS defects in the vestibular organs of bv mice,
including an aberrant skipping of Rest exon 4 (Nakano et al.,
2012). REST was a transcription factor described in vitro as a
target of SRRM4. SRRM4 promoted Rest exon 4 inclusion,
which reduced REST’s transcriptional repressor activity,
upregulating expression of its target genes (Raj et al., 2011).
Experiments in an exon-specific KO mouse model showed that
Rest exon 4 was indeed necessary for HC survival (Nakano et al.,
2018). Later, the REST-dependence of the Srrm4-induced
cochlear phenotype was confirmed when transgenic
expression of a dominant-negative REST restored HC
numbers and hearing function to bv mice (Nakano et al.,
2020). This was the first splicing regulator that was found
essential for hearing, and it remains, alongside ESRP1, one of
the only examples in which AS has been conclusively
demonstrated to be the underlying mechanism.

The bv mutation has long been noted to affect IHCs more
severely than OHCs (Whitlon et al., 1996; Sobkowicz et al., 2002).
SRRM4 is expressed in both IHCs and OHCs in wildtype mice,
and absent from both cell types in bv mice (Nakano et al., 2012).
What difference between the two types of HCs could account for
this phenotypic discrepancy? It was later found that OHCs
transiently repress Rest transcription independently of
SRRM4 during development (Nakano et al., 2020). The
authors proposed a model that includes a negative feedback
loop between REST and SRRM3, a splicing regulator expressed
in HCs that inactivates REST like SRRM4. Once SRRM3 is
derepressed in OHCs due to transient REST downregulation, it
inactivates REST independently of SRRM4 and ensures cell
survival (Nakano et al., 2020). The precise relationship
between SRRM4, REST, and SRRM3 activity and cell survival
remains unclear. Mice doubly deficient for Srrm3 and Srrm4
suffer degeneration of both IHCs and OHCs, although this
could only be confirmed in culture conditions due to the early
lethality of the double mutant. Forced expression of dominant-
negative REST restored survival to IHCs but not OHCs (Nakano
et al., 2020). These results suggest the 2 cell types have different
survival requirements. More focused experiments with
conditional knockout models will be necessary to clarify how
the regulation of splicing and transcription interact to cause such
a cell type-specific phenotype.

4.3 SFSWAP

Another hearing-related splicing regulator was discovered in a
lentiviral mutagenesis screen. The study identified a mouse strain
that exhibited circling behavior because of a mutation in an intron of
the Sfswap gene (Moayedi et al., 2014). First identified inDrosophila,
SFSWAP (SFRS8) is an RBP that regulates the splicing of several
genes, including Sfswap itself (Chou et al., 1987; Zachar et al., 1987;
Sarkissian et al., 1996). Mutant mice exhibited hearing and balance
deficits, possessed shorter cochleae and smaller vestibules than
wildtype, and had fewer third row OHCs and SCs, as well as
some ectopic IHCs (Moayedi et al., 2014). The authors noted
that this phenotype was similar to that observed in mice
heterozygous for Jag1, a Notch ligand crucial for cochlear sensory
development (Kiernan et al., 2001). The severe functional and
morphological defects seen in Sfswap−/−;Jag1+/− mice were argued
to be evidence of a synergistic relationship between the two genes
(Moayedi et al., 2014). Although a subsequent RT-PCR experiment
revealed the downregulation of some Notch pathway genes, the
expression of Jag1 itself was unaffected. Neither were any splicing
defects observed in the affected genes (Moayedi et al., 2014). Since
then, only one further study of the Sfswap mutant has been
published, and it concerned the biophysical properties of the
mutant cochleae (Gao et al., 2014). It remains unclear whether
splicing dysregulation is even occurring at all. Transcriptome-wide
studies will probably be necessary to confirm this, as well as to
identify the underlying mechanism.

4.4 RBM24

RBM24 is an RBP that was first implicated in muscle
development, but RBM24 expression was also found via
immunostaining in HCs of both the cochlea and vestibule
(Grifone et al., 2018). Rbm24 has been identified as a target of
ATOH1 and GFI1, key transcription factors required for HC
differentiation, through DNA-protein interaction assays and in
vivo knockout studies (Cai et al., 2015; Jen et al., 2022). Whole-
body deletion of rbm24a in zebrafish embryos disrupted HC
morphogenesis and led to hearing and balance deficits (Zhang
et al., 2020a; Cheng et al., 2020). Deletion of Rbm24 in 2-month-
old mice also resulted in auditory and vestibular dysfunction (Zheng
et al., 2021). Interestingly, although Rbm24 was expressed in both
types of HCs, its mutation selectively affected OHCs (Zheng et al.,
2021). This cell type-specific phenotype was replicated in a mouse
study that deleted Rbm24 in all cells that express Atoh1, including
cochlear HCs. Although OHC numbers were normal at P0, they
were greatly reduced by P19 (Wang et al., 2021). Thus, this RBP
seems to be important for postnatal survival of OHCs in the cochlea.

Since RBM24 immunofluorescence was mainly observed in the
cytoplasm in head sensory epithelia, it was initially suggested that
the protein plays a role in mRNA stabilization (Grifone et al., 2018).
Consistent with this prediction, RNA-sequencing revealed no
significant splicing changes in the otic vesicles of rbm24 mutant
zebrafish. This was despite many changes in gene expression,
including those in the expression of several orthologues of
human deafness genes (Zhang et al., 2020a). Nevertheless, it was
previously demonstrated in vitro that RBM24 regulated AS of
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CDH23 exon 68 (Li et al., 2020a). RT-PCR revealed that inclusion of
CDH23 exon 68 was indeed reduced in rbm24 mutant zebrafish
(Zhang et al., 2020a). In addition, several RBM24-dependent
alternative exons were identified in mice, including Cdh23 exon
68 and Kcnq4 exon 9 (Zheng et al., 2021). Some of these exons seem
to be cochlea-specific, and their corresponding genes include Usher
genes (Myo7a, Ush1c, Pcdh15), hair bundle link genes (Ptprq), and
ion channel genes (Cacna1d, Atp2b2) (Zheng et al., 2021).

In summary, it is far from clear whether the phenotypes of
RBM24-deficient cochleae can be attributed to splicing
dysregulation. Although the inclusion of Cdh23 exon 68 does
seem to be genuinely regulated by RBM24, there is ample
residual expression of the exon 68-containing isoform in mutant
cochleae to cast doubt on its implication in hearing pathogenesis
(Zhang et al., 2020a; Zheng et al., 2021). The other AS events
mentioned in the last paragraph should also be validated.
Because RBM24 participates in a variety of post-transcriptional
regulatory mechanisms in other tissues (Grifone et al., 2020),
splicing-independent mechanisms must also be considered. For
example, regulation of p53 mRNA translation by RBM24 is
required to maintain appropriate levels of programmed cell death
during heart development (Zhang et al., 2018). Comparable
mechanisms are likely at play in the postnatal OHCs. This
example illustrates the difficulty of inferring the action of an RBP
from the phenotypes of its loss-of-function mutant models.

5 Aberrant splicing as a cause of hearing
loss in humans

When splicing regulatory elements are disrupted, the ensuing
aberrant splicing can cause disease. Mutations affecting splice site
sequences or cis-regulatory elements are the most common splice-
altering mutations, and indeed a significant proportion of the
mutations associated with hearing loss belong to this category
(Abu Rayyan et al., 2020). In contrast, mutations affecting trans-
regulatory elements appear more rarely because they simultaneously
affect the splicing of many genes.

An interesting example was described in a recent study of a
pedigree of recessively inherited non-syndromic hearing
impairment. A synonymous variant was identified in TMC1,
which had not been labeled pathogenic according to previous
classifications because it was neither predicted to affect existing
splice site sequences nor to activate new ones. Further in silico
analysis, however, suggested the mutation may disrupt exonic cis-
regulatory elements. On the basis of in vitro experiments confirming
the predicted splicing alteration, the authors proposed that the
variant be reclassified as pathogenic (Vaché et al., 2022). This
example illustrates the importance of taking splicing into
consideration when evaluating variant pathogenicity.

It is obvious that aberrant splicing of essential cochlear genes
would impair hearing, but such instances do not necessarily
demonstrate the relevance of AS in a physiological context. If the
splicing event in question occurs only in pathological conditions, all
we can learn from the phenotype is that the gene is actually required
for hearing. Therefore, these events will not be discussed further in
this review. Nevertheless, some cases of genetic hearing loss do
provide insight into the role of AS in cochlear physiology. For

example, some hearing disorders are caused by mutations in
alternative exons. Moreover, their clinical manifestations
sometimes depend on the isoforms affected by the mutation.
Even if the mutations are not splice-altering in nature, they allow
us to infer the role of each splice isoform by examining the
phenotype resulting from its specific disruption. Several such
examples are summarized in Table 1.

In this section, we will first look at some splice-altering
mutations that cause hearing loss. As we explained, the existence
of non-syndromic deafness caused by mutations in cis-regulatory
sequences of essential hearing genes is unsurprising. We will focus
on cases that could be expected to produce a global phenotype but
that present with the specific symptom of hearing loss. These kinds
of examples are opportunities to clarify the unique properties of the
cochlea. After exploring rare cases of hearing loss arising from the
dysregulation of trans-regulatory elements or of the core splicing
machinery, we discuss intriguing reports in which efforts to clarify
the function of deafness-associated genes have led to unexpected
discoveries suggesting their involvement in splicing. Finally, we
explore how the splicing might be engineered to tackle various
hearing loss disorders.

5.1 Alterations of cis-regulatory elements

5.1.1 DFNA5: A gain-of-function splice alteration
DFNA5 is a form of autosomal dominant non-syndromic

sensorineural hearing loss that arises via a gain-of-function
mechanism related to the Gasdermin E gene (GSDME).
Interestingly, Gsdme knockout mice exhibit normal hearing (Van
Laer et al., 2005), as do humans with whole gene deletion and
truncation mutations in exon 5 (Dunø et al., 2004; Van Laer et al.,
2007). Every pathogenic GSDME mutation identified thus far has
been found to cause exon 8 skipping. These variants include
disruptions in the consensus splice acceptor site (Bischoff et al.,
2004; Chai et al., 2014; Wang et al., 2018; Chen et al., 2020; Yuan
et al., 2020; Mansard et al., 2022), the splice donor site (Cheng et al.,
2007; Li-Yang et al., 2015), the intronic splicing regulatory elements
(Van Laer et al., 1998; Yu et al., 2003; Park et al., 2010; Nishio et al.,
2014; Nadol et al., 2015; Booth et al., 2018b; Booth et al., 2020), or
exonic splicing regulatory elements (Booth et al., 2018b).

The skipping of exon 8 leads to a frameshift and C-terminal
truncation, and expression of this truncated GSDME caused cell
death (Van Laer et al., 2004; Op de Beeck et al., 2011; Van Rossom
et al., 2012).Wildtype GSDME protein was later found to comprise a
cytotoxic N-terminal domain, a connecting hinge region, and a self-
inhibitory C-terminal domain. Cleavage of the hinge releases the
cytotoxic N-terminal domain, triggering inflammatory cell death
(Rogers et al., 2017; Zhang et al., 2020b). Together, these results
suggest constitutive cytotoxic activity of mutant GSDME may
underlie DFNA5, with enhanced cell death eventually manifesting
as sensorineural hearing loss. Although there is no direct evidence,
the progressive nature of the hearing impairment in DFNA5 is
consistent with this hypothesis (Op de Beeck et al., 2012). Also,
histopathologic examination of temporal bone specimens from one
DFNA5 patient revealed loss of cochlear HCs, as well as
degeneration of spiral ganglion neurons and various regions of
the inner ear epithelium (Nadol et al., 2015).
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It remains unclear, however, why activation of GSDME
promotes enough cell death in the cochlea to produce a
discernible phenotype but not in other organs. It is possible that
GSDME is simply expressed at low levels in other organs. Consistent
with this hypothesis, one study found intense expression of GSDME
mRNA in the placenta and cochlea and minimal expression in the
heart, brain, and kidney (Van Laer et al., 1998). It is also possible that
the cochlea is particularly susceptible to degeneration. Consistent
with this hypothesis is the fact that cochlear HCs are notoriously
resistant towards attempts to trigger their regeneration (Burns and
Corwin, 2013).

5.1.2 DFNA27: Tissue-specific requirements for AS
The next example concerns a gene already discussed

above—REST. In a forward genetic screen, a pathogenic locus for
an autosomal dominant form of non-syndromic hearing loss was
mapped to the REST-containing region of chromosome 4 and
designated DFNA27 (Peters et al., 2008). But no pathogenic
variants were identified in the exons of REST, nor did
heterozygous knockout of REST result in hearing loss (Gao et al.,
2011). Later, a variant in a conserved intronic region of REST was
found in a pedigree analysis to co-segregate with hearing loss. The
variant promoted the usage of an aberrant splice site at REST exon
4a/b. Normally, SRRM4 would promote inclusion of exon 4a/b to
produce truncated, inactive proteins, but use of the aberrant splice
site in the presence of SRRM4 generates a mutant form of exon 4b.

This mutant exon 4b does not introduce any stop codons and
enables translation of the full-length product, albeit with some
amino acid sequence differences (Nakano et al., 2018).

Downregulation of REST is required, not only in HCs, but also
in neurons (Mandel et al., 2011; Baldelli and Meldolesi, 2015; Lu
et al., 2018). How is it, then, that a REST gain-of-function mutation
leads to a cochlea-specific phenotype? As mentioned previously,
OHCs transiently repress REST transcription independently of
SRRM4 and are thought to be spared from degeneration for that
reason (Nakano et al., 2020). Similarly, differentiating neurons
employ a variety of strategies other than AS to ensure robust
inactivation of REST, including transcriptional silencing,
ubiquitination, and phosphorylation (Nesti et al., 2014). Thus, in
this case, the tissue-specific nature of the phenotype seems to arise
from differential requirements for AS.

5.1.3 DFNB39: Tissue-specific splicing at play?
DFNB39, an autosomal recessive form of non-syndromic

sensorineural hearing loss (Wajid et al., 2003), is caused by
mutations in the hepatocyte growth factor gene (HGF). Three
potentially pathogenic variants have been reported. One is a
synonymous substitution that led in vitro to greatly reduced use
of exon 5a relative to exon 5b. The other two variants are deletions in
a conserved intronic region transcribed as the 3′-UTR of a short
splice variant of HGF (Schultz et al., 2009). Mice homozygous for
one of the deletions faithfully reproduced the early-onset non-

TABLE 1 Mutations associated with hearing loss that affect specific splice variants.

Gene Location of
mutation

Molecular consequence Associated phenotype References

USH1C Exons 3 & 5, intron 5,
intron 5/exon
6 junction, etc.

Constitutive exons are affected USH1C; congenital severe-to-profound
hearing loss along with retinitis pigmentosa

Verpy et al. (2000); Ouyang et al. (2003);
Ebermann et al. (2007a)

Exons B, D Additional domains translated only in
class b isoforms are affected

DFNB18; prelingual severe-to-profound
sensorineural hearing loss

Ouyang et al. (2002)

Exon 15 Class a and c isoforms are affected Retinitis pigmentosa, together with mild late
onset hearing loss

Khateb et al. (2012)

PCDH15 Exons 6, 17, 32, etc. All cytoplasmic isoform classes are
affected

USH1F; congenital severe-to-profound
hearing loss along with retinitis pigmentosa

Ahmed et al. (2008)

Exon 38 Only CD2 isoforms are affected Non-syndromic congenital, profound
sensorineural hearing loss

Pepermans et al. (2014)

USH2A Exons 22–72 Only the long, transmembrane
isoforms are affected

USH2A; congenital moderate-to-severe
hearing loss along with retinitis pigmentosa,
usually without vestibular dysfunction

Aller et al. (2006); Dai et al. (2008); McGee
et al. (2010); Xu et al. (2011)

MYO15A Exon 2 (all mutations
are truncating
mutations)

Isoforms including the large
N-terminal domain are truncated

DFNB3; severe-to-profound hearing loss. The
striking absence of pathogenic mis-sense
mutations in exon 2 implies a milder, clinically
overlooked phenotype

Nal et al. (2007); Rehman et al. (2016)

TRIOBP Exons 7 & 9
(compound)

One copy of TRIOBP-4 is functional,
while TRIOBP-5 and 6 isoforms are
completely deleted

DFNB28, but with a milder or later-onset
phenotype compared to the usual congenital,
profound hearing loss

Pollak et al. (2017); Wesdorp et al. (2017)

ATP2B2 Exon 8 Isoform w is affected while x and z
remain intact

DFNA82; childhood-onset, rapidly progressive
sensorineural hearing loss

Smits et al. (2019)

OTOF Exon 48 Highly conserved C-terminal domain
of the major cochlear isoform is
disrupted

AUNB1; non-syndromic autosomal recessive
auditory neuropathy

Yasunaga et al. (2000);
Rodríguez-Ballesteros et al. (2003); Varga
et al. (2003); Choi et al. (2009)
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syndromic hearing loss phenotype of DFNB39, which was attributed
to defective incorporation of melanocytes into the stria vascularis
due to disruption of HGF-MET signaling (Shibata et al., 2016;
Morell et al., 2020).

Inquiries into this tissue-specific phenotype led to some
intriguing findings. Although HGF is normally expressed at high
levels in organs other than the cochlea (e.g., lung, kidney), these
organs were normal in homozygous knock-in mice. Comparisons
between these organs revealed that the intronic mutation reduced
Hgf mRNA expression in the cochlea, but not in the lung or kidney.
When transcripts including exons 6a and 6b (the mouse equivalents
of human exons 5a and 5b) were quantified separately, the use of
exon 6a was reduced in the cochleae of mutant mice but not in other
organs (Morell et al., 2020).

It is tempting to assume that this reflects tissue-specific
regulation of splicing. The intronic deletion may require cochlea-
specific trans-regulatory elements to affect splicing decisions.
Considering that all three pathogenic variants reduce the
inclusion of exon 5a, functional differences among the various
isoforms may also contribute to tissue specificity. We must also
consider mutations in the MET gene, which encodes an HGF
receptor, mutations of which can lead to non-syndromic hearing
loss (DFNB97) (Mujtaba et al., 2015; Bousfiha et al., 2019). As HGF-
MET signaling is implicated in a myriad of biological processes
(Baldanzi and Graziani, 2015), it is surprising that mutations of both
HGF and MET can show such tissue-specific effects on the cochlea.
Perhaps cochlear development requires specific isoforms of a
component of the HGF-MET signaling pathway. Regardless of its
mechanism, this is an interesting instance of tissue-specific AS co-
occurring with, if not causing, a cochlea-specific phenotype.

5.2 Alterations of trans-regulatory elements

As mentioned above, mutations in ESRP1, a splicing factor and
regulator of cochlear non-sensory development, have been
associated with hearing loss. Not only was the splicing of ESRP1-
dependent cassette exons altered in patient-derived induced
pluripotent stem cells carrying ESRP1 mutations, but the splicing
defects were restored when the ESRP1 mutations were corrected. In
fact, this very finding was the motivation for an investigation into
the role of this splicing factor in cochlear development (Rohacek
et al., 2017). To this day, this remains the only instance where
mutations in a known splicing regulator gene have been implicated
in human hearing loss.

5.3 Dysregulation of the core splicing
machinery

Mutations affecting the core splicing machinery can also cause
disease. Since core spliceosome components are, by definition,
required constitutively in every cell, their disruption usually
results in embryonic lethality. In some cases, however, their
disruption can preferentially affect some cell types over others,
the most prominent example being neural crest cells (Beauchamp
et al., 2020). This implies that certain cells are particularly vulnerable
to splicing dysregulation (Olthof et al., 2022).

Hearing loss is a component of several developmental disorders
caused by mutations in core splicing machinery genes (Ritter and
Martin, 2019). Does this imply that cochlear cells are particularly
vulnerable to aberrant splicing? Rather than arising from defective
splicing in the cochlea, these developmental forms of hearing loss are
more likely caused by defective neural crest cell migration into the
stria vascularis where they normally form melanocytes (Ritter and
Martin, 2019). In this regard, an interesting observation was made in
a study of a zebrafish model of Nager syndrome. Maharana and
Saint-Jeannet, (2021), noting that Nager and Rodriguez syndrome
patients typically exhibit hearing loss, hypothesized that the splicing
factor Sf3b4 might be necessary for cochlear development. Sf3b4
depletion in zebrafish led to reduced expression of genes related to
development of the otic placode—the embryonic structure that
develops into the otocyst. After also observing smaller otocysts in
Sf3b4 mutant zebrafish, the authors concluded that Sf3b4 is
important in otic placode in addition to neural crest
development (Maharana and Saint-Jeannet, 2021). It remains
unclear whether this is a first hint at an inner ear-specific
requirement for correct splicing regulation or merely a non-
specific phenomenon that should be expected to accompany
housekeeping gene deletion.

5.4 Splice-altering activity of hearing-
related proteins

5.4.1 SANS
Recently, it has been suggested that splicing dysregulation may

play a role in the pathogenesis of Usher syndrome (Yildirim et al.,
2021). While the hearing loss of Usher syndrome arises from
dysregulation of stereocilia development, the pathological
mechanism of its associated retinitis pigmentosa remains rather
unclear. Yildirim et al. (2021) found via yeast two-hybrid screening
that the Usher protein SANS (USH1G) may interact with several
components of the spliceosome (Yildirim et al., 2021). They then
found that knockdown of SANS in vitro resulted in slower splicing
kinetics and altered inclusion of several cassette exons. Most
interestingly, two of the exons they studied belonged to the
MYO7A and USH1C genes. The authors then proposed a model
in which SANS promotes the transportation of spliceosome
components to nuclear speckles, where they are stored
temporarily before being recruited to sites of active spliceosome
assembly (Yildirim et al., 2021).

In vivo confirmation of these results would constitute
compelling evidence for a role for SANS in splicing regulation,
but it remains unclear whether such a mechanism is necessary in
accounting for the auditory phenotype of Usher syndrome. SANS
interacts with other Usher proteins to form the scaffolds that
support the stereociliary tip links (Caberlotto et al., 2011; Grati
and Kachar, 2011). In mouse models, SANS depletion leads to
abnormal stereocilia development in HCs (Kitamura et al., 1992).
Although defective stereocilia morphogenesis seems to be the
primary pathology in the Usher syndrome cochlea, it is possible
that aberrant splicing of Usher genes due to SANS depletion also
contributes to hair bundle malformation. Alternatively, splicing
dysregulation could represent an entirely different mechanism
underlying Usher syndrome pathogenesis. Another recent report
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of an interaction between splicing-related proteins and the Usher
protein VLGR1 lends more credibility to the latter suggestions
(Knapp et al., 2022). It will be interesting to see how these
findings generalize to the retinae and cochleae of live animal models.

5.4.2 ILDR1
Efforts to uncover the pathogenesis of DFNB42, a non-

syndromic hearing loss disorder caused by mutations in the
ILDR1 gene, also led to some unexpected discoveries (Borck
et al., 2011; Liu et al., 2017). Ildr1 knockout mice are profoundly
deaf due to loss of cochlear HCs (Higashi et al., 2015; Morozko et al.,
2015; Sang et al., 2015), but what causes the degeneration? Initial
investigations that focused on the role of ILDR1 in cochlear
tricellular junctions (tTJs) were rather inconclusive (Higashi
et al., 2015; Morozko et al., 2015). Using a yeast two-hybrid
approach to search for alternative ILDR1 functions, one group
discovered that ILDR1 binds the splicing factors TRA2A, TRA2B,
and SRSF1, translocating into the nucleus when these factors are
present (Liu et al., 2017). They found ILDR1 affected the AS of
Tubd1, Iqcb1, and Pcdh19 transcripts in vitro, but they were unable
to discern any differences in the splicing patterns of wildtype and
Ildr1 knockout mouse cochleae. Since ILDR2 interacted with the
same splicing factors as ILDR1 and similarly affected AS in cultured
cells, compensatory upregulation of ILDR2 could account for the
discordance. Selective and simultaneous knockdown of ILDR1 and
ILDR2 in cells indicated that the effects of the two proteins on
splicing were additive (Liu et al., 2017).

Is splicing dysregulation an additional pathway that contributes
to epithelial barrier disruption? Or does it affect hearing through an
altogether different mechanism? Since the proposed target genes of
ILDR1 have not been implicated in hearing, more unbiased analyses
may be necessary to identify relevant pathways. The hypothesis
proposed by the authors will have to be tested by generating mice
doubly deficient for ILDR1 and ILDR2.

5.5 Antisense oligonucleotides for treating
hearing loss

An emerging therapeutic strategy against splicing dysregulation
caused by mutations in cis-regulatory elements is the delivery of
antisense oligonucleotides (ASOs). Splice-switching ASOs are short
oligonucleotides designed to bind specific RNA sequences and alter
splicing, preventing the production of pathogenic transcripts. Splice-
switching ASOs are actively being developed with the aim of treating
hearing loss arising from cis-acting mutations (Hastings and Jones,
2019). We will discuss some prominent examples in the following
paragraphs.

5.5.1 Usher syndrome
AG>Amutation at position c.216 inUSH1C exon 3 accounts for

most cases of type 1 Usher syndrome in Acadian and related
populations (Ouyang et al., 2003; Ebermann et al., 2007a). This
mutation strengthens a latent 5′splice site, facilitating its preferential
utilization over the constitutive splice site. As a result, a premature
termination codon is introduced and truncated proteins are
produced (Lentz et al., 2005). Mice homozygous for this
mutation were deaf and displayed behavior suggestive of

vestibular dysfunction. When a splice-switching ASO
complementary to the aberrant splice site sequence was injected
intraperitoneally at P5, the mis-splicing of Ush1c was partially
corrected and hearing was restored. This rescue was complete at
lower frequencies and partial at higher frequencies, persisting for at
least 6 months. Vestibular dysfunction was also ameliorated (Lentz
et al., 2013; Vijayakumar et al., 2017; Donaldson et al., 2018). This
was the first demonstration in an animal model of the potential of
ASOs for treating inner ear dysfunction caused by a mutation
identified in human patients. Several groups are working
continuously to optimize the timing (Vijayakumar et al., 2017;
Donaldson et al., 2018; Ponnath et al., 2018) and route (Depreux
et al., 2016; Lentz et al., 2020; Wang et al., 2020) of ASO
administration in hope of extending their application to human
patients.

Analogous strategies have been pursued for other types of Usher
syndrome (Liquori et al., 2016; Slijkerman et al., 2016; Slijkerman
et al., 2018; Panagiotopoulos et al., 2020; Dulla et al., 2021), although
none have focused on the inner ear phenotype. One specific ASO
construct is worth discussing because it illustrates the important
principle that splice-switching ASOs can be effective even when the
mutation in question is not splice-altering in nature and because it is
closest to being used in the clinic as we write this article. Ultevursen,
which was previously dubbed QR-421a, was designed to induce the
skipping of USH2A exon 13 (Dulla et al., 2021). Truncating
mutations in exon 13, such as c.2299delG, account for a large
proportion of type 2A Usher syndrome cases (Yan et al., 2009).
Skipping this exon does not cause a frameshift, and so it leads to the
translation of partially functional proteins. Positive results were
reported in a phase 1/2 clinical trial evaluating the safety and
tolerability of ultevursen in retinitis pigmentosa patients (Audo
et al., 2022), and a phase 2/3 clinical trial is currently under way
(https://clinicaltrials.gov/ct2/show/NCT05158296).

5.5.2 DFNB4/pendred syndrome
Mutations in the SLC26A4 gene can cause both non-syndromic

(e.g., DFNB4) and syndromic (e.g., Pendred syndrome, PS) forms of
deafness (Li et al., 1998). The c.919–2A>Gmutation of the SLC26A4
gene is one of the most frequent mutations causing deafness in East
Asian populations (Park et al., 2005; Du et al., 2013). This mutation,
which is located at the 3′splice site of intron 7, promotes exon
8 skipping, which, in turn, introduces a premature termination
codon (Yang et al., 2005). One study, using a multi-step screening
process, identified an ASO that could correct a splicing defect in
patient-derived blood cells and in mouse models (Feng et al., 2022).
The ASO was predicted to prevent the binding of splicing silencers
to a regulatory element located within intron 8 (Feng et al., 2022).
Another study evaluated the feasibility of using small molecules to
correct deafness-causing splicing defects (Lee et al., 2019). Some
SLC26A4 mutations occur in 5′splice sites where they are predicted
to hinder recognition by the U1 snRNA, a component of the core
splicing machinery. Synthetic U1 snRNAs were created with
sequences perfectly complementary to those of the mutated splice
sites. In many cases, these modified U1 snRNAs prevented mis-
splicing, but some mutations near exon 8 were resistant to this type
of treatment. In the presence of these resistant mutations, a nearby
cryptic splice site was being used instead. To reduce competition for
U1 snRNA binding, ASOs designed to mask the cryptic splice site
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were delivered together with the modified U1 snRNAs, and this
restored normal splicing of exon 8 (Lee et al., 2019). These results
show that different strategies for modulating splicing can be used
together to produce a synergistic effect.

6 Conclusion

In this review, we covered many clues that point to the importance
of AS in the cochlea. Both unbiased studies and targeted approaches will
be necessary to proceed further. Unbiased high-throughput studies will,
first of all, help to quantify the extent to which AS contributes to the
unique transcriptomic landscape of the cochlea, which still has not been
adequately assessed. The task of identifying AS events that occur
differentially either along the tonotopic axis or among the various
cochlear cell types will also benefit from such unbiased studies. In
addition, uncovering the network of splicing regulators that govern
cochlear development will require further unbiased analysis of gene
expression, transcript usage, and RBPmotif distribution. Meanwhile, as
more AS events are identified, targeted investigations will be required to
identify their full physiological significance. Examples of AS events that
demand interpretation include the usage of CDH23 exon 68 and the
tonotopic splicing ofKCNMA1 andKCNQ4. Clarifying the precise ways
RBPs such as SRRM4, SFSWAP, and RBM24 affect cochlear function is
yet another task where much work remains.

Transcriptome studies of the cochlea have typically been limited
by its small size and considerable heterogeneity. In bulk RNA-
sequencing, the diverse cell types within each sample are all lumped
together, while the high levels of dropout in single cell sequencing
data make it difficult to computationally quantify isoform
abundance with any accuracy (Buen Abad Najar et al., 2020;
Westoby et al., 2020). Yet as in all fields, technological advances
promise new opportunities. Methods such as fluorescence-activated
cell sorting allow bulk RNA-sequencing to be applied at higher
resolution, rendering it more suitable for inspecting heterogeneous
tissues like the cochlea (Liu et al., 2018; Hertzano et al., 2021). On the
other hand, single cell long-read RNA sequencing pipelines are
continuously being refined, and the algorithms used to analyze their
output are rapidly improving (Olivieri et al., 2022). As these tools
becomemore powerful and effective, it will soon be possible to assess
cochlear AS at sufficiently high resolution to draw more clear
conclusions.

New venues of research are constantly opening up. For example,
single cell-RNA sequencing has revealed unexpected cell type
heterogeneity within the cochlear epithelium (Kelley, 2022) or
the auditory ganglion (Petitpré et al., 2018; Shrestha et al., 2018;
Sun et al., 2018). It would be worthwhile to investigate the
contribution of AS to this newly discovered transcriptomic
diversity. Also, splicing outcomes are governed not only by the
mRNA sequence and the presence of trans-acting regulators, but
also by chromatin structure and transcription kinetics (Kornblihtt
et al., 2013). The interaction between splicing, transcription kinetics,
and epigenetics could be investigated using recent techniques that
allow simultaneous analysis of gene expression and chromatin
accessibility at single-cell resolution. Finally, there are
mechanisms other than AS that merit investigation as sources of
molecular diversity. Many isoforms of hearing-related proteins are
produced via alternative transcription/translation site usage, and

they show different expression patterns (Sekerkova et al., 2006; Li
et al., 2020b), subcellular localization patterns (Ebrahim et al., 2016),
and associations with clinical phenotypes (Mburu et al., 2003; Tlili
et al., 2005; Ebermann et al., 2007b; Audo et al., 2011; Besnard et al.,
2012; Mathur et al., 2015). Isoform sequencing technologies could be
employed to examine how the various post-transcriptional
regulatory mechanisms contribute to molecular diversity in the
cochlea. In summary, clarifying the role of AS in the cochlea is a
viable goal that offers the enticing prospect of understanding the
mechanisms that underlie the formation and function of
transcriptomic diversity in the cochlea.
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