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Autophagy, one of the arms of proteostasis, influences aging and age-related
diseases. Recently, the discovery of additional roles of autophagy-related proteins
in non-canonical degradation and secretion has revealed alternative fates of
autophagic cargo. Some of these non-canonical pathways have been linked to
neurodegenerative diseases and improving the understanding of this link is crucial
for their potential targetability in aging and age-related diseases. This review
discusses recent investigations of the involvement of non-canonical autophagy
players and pathways in age-related diseases that are now beginning to be
discovered. Unraveling these pathways and their relation to classical autophagy
could unearth a fascinating new layer of proteostasis regulation during normal
aging and in longevity.
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1 Introduction

Autophagy, the process of sequestration of damaged macromolecules and organelles,
culminates with cargo being degraded in lysosomes. Based on the specificity of cargo
selection and the mechanism of cargo delivery to the lysosome, the process has been sorted
into various forms of autophagy (reviewed by Kaushik and Cuervo (2012); Abdrakhmanov
et al. (2020)). Macroautophagy requires the conjugation of members of the ATG8 family,
ubiquitin-like proteins including LC3s and GABARAPs, to phosphatidylethanolamine (PE)
(Ichimura et al., 2000). This enables double-membrane vesicles termed autophagosomes to
recruit ATG8 proteins, which mediate loading and maturation of cargo (Johansen and
Lamark, 2020). More recently, autophagy-independent functions of ATG8 proteins have
been discovered (reviewed by Galluzzi and Green (2019); Nieto-Torres et al. (2021a)). Some
of these functions involve unconventional conjugation of ATG8 proteins to
phosphatidylserine (PS) in addition to that of PE and incorporation of ATG8-PE/PS
into single-membrane vesicles, a process known as Conjugation of ATG8 to Single
Membranes (CASM) (Durgan et al., 2021). Additionally, post translational modifications
such as phosphorylation of LC3B/ATG8 on Thr50 regulates directionality of autophagosome
movement toward the cell periphery in mammalian cells and neurons (Nieto-Torres et al.,
2021b) which could potentially influence the fate of autophagosomes. Several recent studies
have highlighted these additional roles of ATG8 proteins leading to alternative fates of their
cargo in degradation and secretion, together referred to as non-canonical autophagy (NCA)
(reviewed by Codogno et al., 2011; Nieto-Torres et al., 2021a).
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2 Forms of non-canonical autophagy

Although autophagy has always been accepted as a degradative
process, not all cargoes from NCA culminate with lysosomal
degradation. Owing to the alternative fates of cargoes, NCA can
be either degradative or secretory (Figure 1).

2.1 Degradative autophagy

2.1.1 LC3-associated phagocytosis
Combining the forces of phagocytosis with LC3 recruitment,

LC3-associated phagocytosis (LAP) enhances the fusion of LC3-
associated phagosomes (LAPosomes) with lysosomes to increase
degradation and elimination of LAPosome-contained pathogens
(reviewed Heckmann and Green, 2019; Herb et al., 2020). This is
different than a branch of canonical selective autophagy, termed
xenophagy, which targets cytosolic pathogens and other foreign
material for degradation (reviewed by Sharma et al. (2018)).
Although the fundamental LC3 conjugation machinery consisting
of ATG7, ATG3, and a complex of ATG16L1, ATG5, and
ATG12 are shared between xenophagy and LAP, the LAP
pathway differs in the mechanism of induction, membrane PI(3)
P generation, requirement for reactive oxygen species (ROS),
conjugation of LC3 to single membranes, and regulation of
associated genes (reviewed in Heckmann and Green (2019)).

Unlike canonical autophagy, LAP starts with phagocytosis that
is initiated via receptors on the cell surface such as pattern
recognition, IgG, and dead cell receptors (Sanjuan et al., 2007;

Martinez et al., 2011). LAP and autophagy share the components
of the PI3K complex, Beclin1, VPS15, and VPS34, for membrane
PI(3)P generation, however, LAP PI3K complexes additionally
require UVRAG and Rubicon which are necessary for
downstream events such as LC3 recruitment (Martinez et al.,
2015). Prior to LC3 conjugation, LAP requires NOX2-mediated
ROS generation at the phagosome membrane which regulates
phagosomal pH and signals that recruit the LC3 conjugation
machinery ((Martinez et al., 2015); reviewed by Heckmann and
Green (2019)). Phagosomes are then decorated with LC3 via CASM
which requires theWD40 C-terminal domain of ATG16L1, which is
a domain that is dispensable for ATG16L1’s role in canonical
autophagy (Fletcher et al., 2018). Unlike in autophagy,
LC3 lipidation occurs after cargo is selected and the phagosome
is sealed (Sanjuan et al., 2007; Martinez et al., 2015), suggesting
LC3’s role in cargo selection is unlikely, but rather LC3’s role in LAP
is predominantly in phagosome-lysosome fusion (Martinez et al.,
2015). Subsequent lysosome fusion results in degradation of
engulfed pathogens making LAP an important process in
immune regulation in aging as discussed later.

2.1.2 Endosomal microautophagy
Endosomal microautophagy (eMI) was discovered as a pathway

distinct frommacroautophagy that delivers cytosolic proteins to late
endosomes or multivesicular bodies (MVBs) by a microautophagy-
like process ((Sahu et al., 2011); reviewed by Schuck (2020)). eMI is a
variant of general microautophagy that does not require the core
autophagic machinery but instead depends on the Endosomal
Sorting Complex Required for Transport (ESCRT). However, the

FIGURE 1
Overview of canonical and non-canonical autophagy and their dysfunctions in aging.
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recruitment of ESCRT is unlike during MVB synthesis (reviewed by
Hurley (2008)). eMI is induced upon acute amino acid starvation
resulting in rapid degradation independent of the nutrient sensor
and classical autophagy regulator, MTOR (Mejlvang et al., 2018).
This response was found to be immediate, setting in prior to
macroautophagy, with substrates including LC3B, GABARAPL2,
and autophagy receptors (Mejlvang et al., 2018). At fly synapses,
protein turnover occurs by eMI facilitated by chaperone HSC70-4-
dependent membrane deformation while the co-chaperone SGT
inhibits microautophagy (Uytterhoeven et al., 2015).
HSC70 recognizes synaptic proteins with KFERQ motifs and
binds endosomes via membrane PS (Sahu et al., 2011). This
recognition is distinct from KFERQ recognition during
chaperone-mediated autophagy, which involves recognition and
import of unfolded proteins into lysosomes (reviewed by Kaushik
and Cuervo (2018)).

2.2 Secretory autophagy

2.2.1 LDELS
LDELS (LC3-dependent extracellular vesicle loading and secretion)

is a form of “secretory autophagy” (SA) that requires the
LC3 conjugation machinery for loading cargoes into vesicles which
are ultimately released extracellularly. Proximity labeling and
extracellular vesicles (EV) proteomics revealed several RNA binding
proteins to be the main cargoes of this pathway that also impacts
extracellular secretion of non-coding RNAs (ncRNA) (Eng et al., 2021)
and small nucleolar RNAs (snoRNA) (Leidal et al., 2020). This
highlights a previously unclear role of LC3 in loading cargo into
secreted EVs. Yet, how this pathway crosstalks with classical
degradative autophagy is still being elucidated. Inhibition of
autophagosome maturation, autophagosome-lysosome fusion, or
lysosomal acidification each upregulated SA dependent on several
ATG proteins and the small GTPase Rab27a. Such EV- and
particle-mediated SA facilitates release of autophagic cargo receptors,
buffering against their accumulation when classical autophagy is
inhibited (Solvik et al., 2022). This highlights an interesting
alternative route for maintaining proteostasis by secretory autophagy
when autophagosome maturation and lysosome function are impaired.

2.2.2 Unconventional secretion
Secreted proteins usually carry a leader peptide sequence which

sorts them to the trans-Golgi network to vesicles destined for the
plasma membrane (reviewed by Viotti (2016)). However, proteins with
and without leader sequences have been found to bypass the Golgi
apparatus to be secreted by pathways together known as
unconventional protein secretion (UPS) [reviewed (Ponpuak et al.,
2015; Balmer and Faso, 2021)]. Of theseUPS pathways, unconventional
secretion constitutes sequestration of leaderless proteins into
autophagosomes and secretion either by direct binding of the
autophagosome with the plasma membrane or by autophagosome
fusion with a multivesicular body (MVB) to form an amphisome
followed by its fusion with the plasma membrane (Dupont et al., 2011;
Zhang et al., 2015). Such secretory autophagosome formation is
thought to be facilitated by compartments of UPS (CUPS) in yeast
and a yet uncharacterized equivalent in mammalian cells along with
Golgi assembly stacking protein (GRASP), ESCRT proteins for MVB

formation and sorting, and SNAREs for vesicular fusion (Duran et al.,
2010; Manjithaya et al., 2010). Cargo selection, although yet unclear, is
thought to involve Vps23, found at CUPS in yeast (Bruns et al., 2011).
Cargoes of unconventional secretion include many cytosolic proteins
such as IL-1β, IL-18, galectin, tubulin, organellar content, and
aggregation-prone proteins (Schweers et al., 2007; Dupont et al.,
2011; Ejlerskov et al., 2013; Nilsson et al., 2013; Pallet et al., 2013;
Ohman et al., 2014) making UPS a protective pathway to prevent
intracellular accumulation, but could also potentially be an important
influencer of inflammation.

2.3 Recycling autophagy

2.3.1 LANDO
LC3-associated endocytosis (LANDO) begins with recognition

of cargo by cell surface receptors like Toll-Like Receptors (TLR) and
TREM2 followed by clathrin-mediated endosome internalization.
The machinery for the formation of the PI3K complex and
LC3 recruitment to the single membrane LANDOsome is similar
to that of LAP (Heckmann et al., 2019; Heckmann et al., 2020), but
unlike LAP, LANDO has multiple endpoints; LANDOsome fusion
with the lysosome followed by ligand degradation and recycling of
the cell surface receptors back to the plasmamembrane ((Heckmann
et al., 2019); reviewed in Pena-Martinez et al. (2022)). The
protection offered by LANDO-mediated receptor recycling in
microglia in neurodegeneration is discussed in the next section.

3 Non-canonical autophagy in aging
and age-related diseases

Aging is the number one risk factor for many diseases, and with
age, there is a general decrease in efficiency of degradative
autophagy, both canonical and NCA (Finkbeiner, 2020; Krause
et al., 2022) (Figure 1). Additionally, in what is likely a response
to age-associated decreased degradation through the lysosome is the
shift to SA (Krause et al., 2022); however, owing to the overlap of the
initial steps of autophagosome formation, SA also decreases with age
(Gonzalez et al., 2020). Understanding the mechanisms that
differentially initiate and regulate NCA will help identify how
defects in these pathways contribute to aging and disease.

One of the defining hallmarks of aging is altered intercellular
communication, with a prominent example being “inflammaging”,
or the chronic inflammation that further amplifies the aging process
(López-Otín et al., 2013). Growing evidence identifies inflammaging as
the driver for NCA in aged microglia. SA has been shown to maintain
proteostasis when autophagy is inhibited by blocking fusion with the
lysosome in vitro (Solvik et al., 2022). However, the downstream effect
of this is the release of cargo into the extracellular space, and, depending
on what was targeted for degradation but is now in the extracellular
space, can itself induce an immune response (Tan et al., 2022).
Hyperactivation of macrophages will lead to increased phagocytosis
of the discarded cargo, bringing it back into the cell to attempt to be
cleared by LAP or LANDO. However, if the limitation is at the
lysosome, the effort is futile and will lead to deposition of
aggregated proteins both intracellularly and in the extracellular
space. Thus, chronic inflammation seen with aging is a likely driver
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for aggregation-associated diseases, including many neurodegenerative
diseases (Figure 2).

Cellular senescence is also a hallmark of aging that NCA may
have a role in perpetuating. P53-regulated activation of the
production and release of exosomes containing miRNA and
protein cargoes from senescent cells could worsen senescence-
associated secretory phenotypes (SASPs), ultimately resulting in
LDELS-driven chronic inflammation (Xu and Tahara, 2013).
When investigating NCA pathways in age-associated diseases and
potential therapeutic targets, the roles of SA, LDELS, LAP, and
LANDO must all be considered.

3.1 Alzheimer’s disease

A uniting characteristic of adult-onset neurodegenerative diseases
is the abnormal deposition of misfolded aggregated proteins. The age-
associated down-regulation of autophagy in the brain suggests
autophagy dysfunction is a common mechanism in
neurodegenerative disease (Lipinski et al., 2010; Friedman et al.,
2012). Alzheimer’s Disease (AD) is caused by neuronal death
associated with amyloid beta (Aβ) and tau tangle deposition in the
brain. Exploration of canonical autophagy as a therapeutic target for
AD has been extensively investigated (reviewed in Guo et al. (2018)),
with the targeting of NCA just beginning to surface. Evidence to
suggest targeting NCA as a therapeutic is supported by reports that
several components that regulate the machinery for LANDO were
found to be downregulated in mixed sex and age cohorts of human
AD brains compared to matched controls (Heckmann et al., 2020).
Experimentally, aged mice (two-years old) lacking theWD domain of
ATG16L (specifically required for NCA) showed spontaneous
deposits of endogenous Aβ, increased microglial inflammation, and
neuronal death in their hippocampi (Heckmann et al., 2020). Further,

loss of LANDO leads to a defect in returning the Aβ receptors to the
cell surface (Heckmann et al., 2019), so LANDO protects against
neuronal loss by improving Aβ clearance in mouse models of AD,
owing to the efficient recycling of receptors for Aβ in microglia,
including TREM2. This brings to question if inhibition of canonical
autophagy to promote LANDO or LDELS would be an appropriate
method to consider as an AD therapeutic (Limone et al., 2022).

Further evidence to target NCA for AD therapeutics focuses on
LDELS and the role of EV secretion. With age, EV secretion
decreases due to the disruption of the endosomal/lysosomal
trafficking pathway involved in Aβ metabolism. In a non-human
primate study, the contribution to age-associated intraneuronal
accumulation of Aβ was partially due to Aβ build-up in EVs.
Intraneuronal accumulation of Aβ precedes extracellular Aβ
depositions, and the experimental downregulation of
autophagosome formation enhanced EV secretion to ameliorate
intracellular Aβ accumulation, although there was no success in
clearing the extracellular Aβ. Understanding the spatiotemporal
transition from intracellular to extracellular depositions may
delineate the connection to the age-associated decrease of
autophagy-related protein levels that precedes Aβ deposition
(Koinuma et al., 2021).

3.2 Parkinson’s disease

Parkinson’s Disease (PD) is characterized by neuronal death
associated with α-synuclein deposits in the brain. The age-
associated loss of autophagy in neurons does not drastically affect
the total amount of soluble α-synuclein, suggesting the proteasome is
the preferred degradative pathway for α-synuclein, and autophagy
would only be activated to clear the aggregated α-synuclein
(Ebrahimi-Fakhari et al., 2011). This suggests that autophagy of α-

FIGURE 2
Potential link between autophagy dysfunction and inflammaging. Created with BioRender.com.
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synuclein in neurons does not greatly contribute to the degradation of
the protein until it becomes pathological (α-synuclein structure
changes or aggregation) and overloads the system (Choi et al., 2022).

The investigation of the specific role of NCA in PD is very
undeveloped, although there have been clues to the involvement of
SA historically. For instance, it has been demonstrated that α-
synuclein is secreted from neurons in PD models (Kim et al.,
2013), and that this secretion is a driver of the disease because of
the impact it has on neighboring cells. This secretion may be a
response to decreased degradative autophagy (Cuervo et al., 2004)
by switching to SA to maintain proteostasis in neurons, similar to
the mitochondrial SA in cardiomyocytes shown by Huang et al.
(2018). Disruption of the canonical autophagic pathway seems to
drive SA, indicated by TPPP-p25α’s α-synuclein aggregation
properties that also prevents maturation of autophagosomes into
autolysosomes by limiting mobility (Ejlerskov et al., 2013). This begs
the question if canonical autophagy and SA coexist or if SA is meant
as a last resort protective response to the loss of the lysosomal
degradation pathway.

3.3 Infection and immunity

Responding to infections and inducing an immune response is
heavily supported by efficient killing and clearance of pathogens and
directing proinflammatory responses by LAP and LANDO in
systemic macrophages and dendritic cells in the brain (Heckmann
et al., 2017). LC3 recruitment to phagosomes enhances antigen
presentation by MHC class II molecules, and the failure of fungal
antigen presentation by MHC class II molecules was seen in both
mouse and human macrophages when LAP was inhibited (Ma et al.,
2012; Romao et al., 2013; Jülg et al., 2020). This could explain why the
decreased efficiency of LAP seen with age couldmake the elderly more
susceptible to infectious diseases (Inomata et al., 2020).

Control of the inflammatory response after an infection is as
important as modulating an immune response, and NCA has a
suggested role in this control. Mitochondria are found to be
cleared independently of lysosomal degradation in HeLa cells
harboring knockouts of the ATG8 conjugation machinery (ATG7,
ATG5, and ATG3). The SA pathway clears mitochondria via their
extracellular release by a process defined as Autophagic Secretion of
Mitochondria along with concurrent increased pro-inflammatory
cytokine release from recipient cells (Tan et al., 2022). This study
highlights the role of ATG8 lipidation in suppressing inflammatory
responses by preventing inflammation-inducing SA of mitochondria.

3.4 Cancer

Age is an associated risk factor for many cancers as well, and
autophagy in established tumor cells and the supporting cells in the
tumor microenvironment is often hyperactivated to support the
increased metabolic demand (Sousa et al., 2016; Kimmelman and
White, 2017). Therefore, it is not surprising that we are beginning to
discover that tumor and associated cells have also adapted the use of
the NCA pathways to support tumor growth and progression. For
instance, LAP in macrophages that clears dead cancer cells actually
helps to suppress an inflammatory response against tumor cells,

leading to immune tolerance of these mutant cells (Asare et al.,
2020).

However, inhibition of canonical autophagy as a therapeutic
must consider the downstream effects of a broad inhibition. As
mentioned above, inhibition of autophagy tends to drive NCA. This
is particularly detrimental when activating SA, since increased SA is
associated with increased cancer proliferation (Gonzalez et al.,
2020). While much more work must go into this investigation, in
theory, inhibiting canonical autophagy would push the cancer cell to
increase exosome release of dangerous ncRNA that perpetuates
tumor progression through the uptake of oncogenic exosomes by
neighboring cells (Eng et al., 2021). Similar effects could be seen
when expelled unhealthy mitochondria are taken up by recipient
cells (Tan et al., 2022). With evidence that suppression of LAP has
anti-tumor effects (Cunha et al., 2018) and the risk of driving
oncogenesis via SA, NCA may become a more attractive cancer
therapeutic target than canonical autophagy.

4 Conclusion and future prospects

The role of NCA in aging and age-related diseases is still under
intense investigation. To name a few, preliminary studies have defined
roles for LANDO and SA in neurodegenerative diseases, LAP,
LANDO, and SA in infection and immune responses, and LAP and
SA in cancer, but many questions remain to be answered. It is still not
clear how cargo is recruited for NCA, whether NCA and canonical
autophagy coexist, if differential signals direct the decision to complete
canonical versus NCA, and whether the cell has a preference for either
type. Alternatively, NCA may only be initiated when canonical
autophagy cannot meet cellular requirements, and thus becomes the
dominant response for cargo clearance. Furthermore, the molecular
pathways and vesicular trafficking in SA are not fully described, but
canonical autophagy machinery is required for the initiation. So, if the
same machinery is needed, but there are different outcomes, what
determines if degradation occurs in the lysosome or if SA is induced?
Moreover, with somany pathways to deliver cargo to the lysosomes for
degradation, does everything come down to functional lysosomes? This
seems to be the case, since the switch from degradation to SA does not
solve the overall problem in neurodegenerative diseases, but instead
seems to exacerbate the pathology by inducing a vicious cycle that
propagates inflammation (Solvik et al., 2022; Tan et al., 2022). Finally,
the most important question is how we can harness NCA to use for
prevention, prognosis, or therapeutics for aging and age-associated
diseases.
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