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Introduction:Objective, accurate, and efficient measurement of exophthalmos is
imperative for diagnosing orbital diseases that cause abnormal degrees of
exophthalmos (such as thyroid-related eye diseases) and for quantifying
treatment effects.

Methods: To address the limitations of existing clinical methods for measuring
exophthalmos, such as poor reproducibility, low reliability, and subjectivity, we
propose a method that uses deep learning and image processing techniques to
measure the exophthalmos. The proposed method calculates two vertical
distances; the distance from the apex of the anterior surface of the cornea to
the highest protrusion point of the outer edge of the orbit in axial CT images and
the distance from the apex of the anterior surface of the cornea to the highest
protrusion point of the upper and lower outer edges of the orbit in sagittal CT
images.

Results: Based on the dataset used, the results of the present method are in good
agreement with those measured manually by clinicians, achieving a concordance
correlation coefficient (CCC) of 0.9895 and an intraclass correlation coefficient
(ICC) of 0.9698 on axial CT images while achieving a CCC of 0.9902 and an ICC of
0.9773 on sagittal CT images.

Discussion: In summary, our method can provide a fully automatedmeasurement
of the exophthalmos based on orbital CT images. The proposed method is
reproducible, shows high accuracy and objectivity, aids in the diagnosis of
relevant orbital diseases, and can quantify treatment effects.
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1 Introduction

The exophthalmos reflects the anterior-posterior position of the eye relative to the orbit
(Segni et al., 2002; Ameri and Fenton, 2004) and is associated with various orbital diseases,
including Graves’ orbitopathy, orbital tumor, and orbital fracture (Burch and Wartofsky,
1993; Bartalena et al., 2000; Alsuhaibani et al., 2011; Guo et al., 2018; Huh et al., 2020; Huang
et al., 2022; Ji et al., 2022). Accurate measurement of exophthalmos can assist in the diagnosis
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of these related diseases (Segni et al., 2002; Lam et al., 2010) and also
quantify the treatment outcome.

Currently, the main clinical methods for measuring
exophthalmos can be classified as exophthalmometer and
computed tomography (CT) methods. The most widely used
method is the Hertel exophthalmometer (Migliori and Gladstone,
1984; Dunsky, 1992), which measures the distance from the lateral
orbital rim to the corneal surface in a direction perpendicular to the
frontal plane as a quantitative indicator of the degree of
exophthalmos (O’Donnell et al., 1999). However, the Hertel
exophthalmometer has low inter- and intraobserver
reproducibility, which in turn affects the reliability of its results
(Frueh et al., 1985; Musch et al., 1985; Dunsky, 1992; Chang et al.,
1995; Kim and Choi, 2001; Sleep and Manners, 2002; Ameri and
Fenton, 2004). Furthermore, this method is not suitable for subjects
with abnormalities, such as severe upper eyelid swelling, ptosis, and
hyper-deviated eyes, because it is greatly influenced by facial tissues
(Na et al., 2019).

Meanwhile, clinicians using CT scans for diagnosing the
degree of exophthalmos measure the relevant distance
manually by dragging the mouse after determining
physiological structures, such as the outer edge of the orbit
and the apex of the anterior surface of the cornea (Nkenke
et al., 2003; Bingham et al., 2016; Na et al., 2019). Such a
manual method of measuring exophthalmos is not only time-
consuming and inefficient but also inevitably subjective to the
clinician, resulting in poor reproducibility of the interobserver
measurements (Huh et al., 2020). Therefore, an objective,
accurate, convenient, and efficient method for measuring
exophthalmos is necessary for the timely diagnosis or
assessment of treatment outcomes for relevant orbital diseases.
The development of image processing and deep learning methods
has provided the basis for automatic, objective, efficient, and
accurate computer-aided diagnosis, and these methods have been
widely applied in a variety of fields—especially in studies related
to the diagnosis of ophthalmic diseases (Zhao et al., 2022).

In this paper, we propose an automated method based on image
processing and deep learning to measure the vertical distance from
the apex of the anterior corneal surface to the lateral orbital rim of
both eyes and the longest line of the superior to the inferior orbital
rim on the axial and sagittal plane of CT images, respectively. The
two distance parameters, related to ocular prominence, can be
measured objectively, accurately, and efficiently without relying
on the clinician. This method can help clinicians diagnose
diseases related to protrusion or depression by measuring the
exophthalmos.

2 Materials and methods

2.1 Data

Ocular CT images were collected from 31 subjects in the
horizontal position and 43 subjects in the sagittal position at the
Shenzhen Eye Hospital and Shenzhen Overseas Chinese Hospital
using a Philips Ingenuity core 129—a Dutch computed tomography
machine with a CT scan thickness of 0.625 mm using the soft tissue
window. For this study, 79 horizontal CT images and 99 sagittal CT

images including the thickest lens were selected by clinicians
empirically.

To train a deep learning network model for automatic eye region
segmentation, we divided 79 axial CT images from 31 CT sequence
images and 99 sagittal CT images from 43 CT sequence images into a
training, validation set, and test set in the ratio of 48:8:23 and 48:8:
43, respectively. The ratio of the number of eyes in the training set,
validation set and test set for axial and sagittal images is 96:16:40 and
96:16:43, respectively.

Two ophthalmology clinician measured the vertical distance of
the line from the apex of the anterior surface of the eye to the most
protruding point of the orbital rim for 23 images of the axial plane
and 43 images of the sagittal plane. A researcher contributed to the
annotation of the ground truth using the “polygon selections” and
“fill” function of the software ImageJ (National Institutes of Health,
Bethesa, MD, United States) to map the mask of the eye region in all
CT images for eye region segmentation by U-Net++ networks.

2.2 Overall approach

In this study, we calculated the vertical distance from the apex of
the anterior corneal surface to the lateral orbital rim of both eyes on
the axial plane of the CT images, as shown in Figure 1. First, the
neural network was trained based on the U-Net++ model for
segmenting the eye region in the axial plane of the CT images,
and then input the remaining CT images not used for training the
model into the segmentation model to obtain a mask of the eye.
Furthermore, the lateral orbital rim region of both eyes was obtained
after a series of image processing steps. Next, the coordinates of the
apex of the anterior corneal surface and themost protruding point of
the lateral orbital rim of both eyes were extracted. Additionally, the
vertical distance of the line from the apex of the anterior corneal
surface to the most protruding point of the upper and lower orbital
rim was calculated, as shown in Figure 2.

Similarly, the neural network must be trained to segment the eye
region based on the U-Net++ model in the sagittal plane of the CT
images while processing the CT images to obtain the upper and
lower orbital rim regions. After extracting the coordinates of the
apex of the anterior corneal surface and themost protruding point of
the upper and lower orbital rim, the vertical distance of the line from
the apex of the anterior corneal surface to the most protruding point
of the upper and lower orbital rim was calculated.

2.3 Segmentation

In order to obtain the best segmentation results, we trained the
models commonly used segmentation networks in clinical practice,
including FCN32 (Long et al., 2015), SegNet (Badrinarayanan et al.,
2017), U-Net (Ronneberger et al., 2015), U-Net++ (Zhou et al.,
2018), and Res-U-Net (Zhang et al., 2018), respectively, using the
dataset of this paper. The U-Net++ model that achieved the best
segmentation performance on the test set was selected for the eye
region segmentation.

We implemented the U-Net++ model for eye region
segmentation. First, the learning rate and decay rate were set
to 0.0001 and 0.99, respectively, Kaiming initialization (He et al.,
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FIGURE 1
Process of calculating the vertical distance from the apex of the anterior surface of the cornea to the lateral orbital rim of both eyes in the axial plane
of the CT image. (A) The original axial plane of the CT image, and after the U-Net++model and Image processing, we can obtain the binary images of the
eye regionmask shown in (B) and the lateral orbital rim region of both eyes shown in (C), respectively. (D) The line from the apex of the anterior surface of
the eye to the apex of the lateral orbital rim is represented by the blue line in (D), and the vertical distance from the apex of the anterior surface of the
eye to the apex of the lateral orbital rim represented by the orange and green lines.

FIGURE 2
The vertical distance from the apex of the anterior surface of the cornea to the longest line between the superior and inferior orbital margins in the
sagittal plane of the CT image. (A) Represents the original sagittal CT image, and after the U-Net++ model and Image processing, we obtain the binary
images of the eye region mask shown in (B) and the upper and lower orbital rim regions shown in (C), and then after locating the coordinates of the
anterior surface apex of the eye and the upper and lower orbital rims, we obtain the line from the apex of the upper and lower orbital rims
represented by the blue line in (D) and the vertical distance of the line from the apex of the anterior surface of the cornea to the upper and lower orbital rim
most protruding points represented by the orange line.
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2015) was used for initializing the weights of the model. Dice loss
(Milletari et al., 2016) was used to compare the model
segmentation results with the ground truth, and the Adam
optimization method (Kingma and Ba, 2014) was applied to
minimize the loss value of the network. We inputted the
original images and ground truth masks from the training and
validation sets to the U-Net++ model. After 200 training
iterations of epochs on a server configured with the GPU
NVIDIA GeForce GTX 3090TI and using the Pytorch (Paszke
et al., 2017) framework, we obtained a network model for
automatic eye region segmentation. The formula for Dice loss
is shown below.

Dice loss � 1 − 2p X ∩ Y| |( )/ X| | + Y| |( )
X represents the eye area mask produced by the neural network
segmentation, and Y represents the ground truth of the eye area
mask input to the neural network.

In addition to the orbital region, we must segment the lateral
orbital rim regions of both eyes in the axial plane as well as the
superior and inferior orbital rim regions in the sagittal plane of the
CT images to extract the coordinates of their most protruding
points. The orbital rim, i.e., the human orbital bone, shows
strong contrast in CT images compared to other tissues, so we
can use traditional image processing methods to extract the skeletal
region.

We first performed threshold segmentation separately with a
grayscale values’ threshold of 200 for the CT images of the two
planar views (as in Figure 3A) empirically. After extracting the
structures with grayscale values greater than 200 (as in Figure 3B),
we eliminated the residual watermark in the CT images, following
threshold segmentation, by performing the morphological opening
(as in Figure 3C). Finally, after eliminating the smaller connected
domains in the images (considered to be noisy), a binary image

containing the lateral orbital rims or the upper and lower orbital
rims of both eyes was obtained (as in Figure 3D).

2.4 Distance calculation

In the axial plane of the CT images, the lateral orbital rims of
both eyes were located in the leftmost third of the CT image and
the rightmost third of the CT image. Furthermore, the most
protruding point can be regarded as the pixel point closest to the
top, i.e., the pixel point with the smallest y-value in the image
coordinate. Therefore, to extract the coordinates of the most
protruding point of the lateral orbital rim of both eyes in the
axial plane of the CT image, we divided the (d) image in Figure 4
into three subplots: left, middle, and right. First, the images were
divided according to the direction of the x-axis in the image
coordinates, and then the pixel points were traversed in the left
and right images in turn. The pixel point with the smallest
y-value in the “white” area of the two subplots was shortlisted as
the coordinate of the most protruding point of the lateral orbital
rim of both eyes, as shown in Figure 4. The entire process is
shown in Figure 4.

In the sagittal plane of the CT images, the upper and lower
orbital margins are located in the upper and lower molecular maps
of the CT image, respectively—their most protruding point can be
regarded as the point closest to the left side of the image, i.e., the
pixel point with the smallest x-value in the image coordinates.
Therefore, we follow an operation similar to that of the axial
plane–the pixel points in the “white” area in the upper and lower
submaps are traversed, respectively, and the point with the smallest
x-value is recorded as the coordinate of the most protruding point of
the upper and lower orbital margins. The entire process is shown in
Figure 5.

FIGURE 3
Image processing of the segmented orbital rim region. (A) The unprocessed CT image and the binary image in (B) are obtained after the threshold
segmentation; the binary image shown in (C) is obtained after the morphological opening operation, and finally, the smaller connected domain is
eliminated to obtain the binary image containing the outer edge of the orbit shown in (D). The first row represents the axial CT image and the second row
the sagittal CT image.
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After obtaining the coordinates of the lateral orbital rims of
both eyes, we obtained the equation of the line passing through
the two points of the lateral orbital rims of both eyes. Similarly,
we obtained the equation of the line passing through the two
points of the upper and lower orbital rims based on the
coordinates of the most protruding points of the upper and
lower orbital rims in the sagittal plane of the CT image.
Subsequently, we traversed the pixel points of the eye region
mask output by the eye region segmentation model and recorded
the point with the smallest x-value among the mask pixel points
as the coordinates of the most protruding point of the anterior
corneal surface vertex. From this, we calculated the vertical
distance from the apex of the anterior corneal surface to the
lateral orbital rim of both eyes in the axial plane of the CT image

and the vertical distance from the apex of the anterior corneal
surface to the upper and lower orbital rims in the sagittal plane of
the CT image. The results of our automated method and the
manual measurements by the physicians were compared.

2.5 Statistical analysis

The Dice coefficient (Dice, 1945), Intersection Over Union
(IOU), precision, and recall were used as metrics to evaluate the
segmentation performance of the model. The metrics were
calculated as shown below.

Dice � 2TP/ FP + 2TP + FN( )

FIGURE 4
The process of obtaining the coordinates of themost protruding point of the lateral orbital rim of both eyes in the axial plane of theCT image. (A) First
row of Panel (B), which is the binary image containing the lateral orbital rim region of both eyes. Subsequently, the coordinates of the most protruding
points (x1, y1), (x2, y2) of the left and right lateral orbital rims can be determined by traversing the two subgraphs separately, and the straight line passing
through the two most protruding points can be visualized by the blue line in (C).

FIGURE 5
The process of obtaining the coordinates of the most protruding points of the upper and lower orbital rim in the sagittal plane of the CT image. (A)
The second row of Figure 4B, which is the binary image containing the upper and lower orbital rim regions, and extracts the submaps of the upper and
lower halves, respectively, to obtain the two submaps as shown in (B). Subsequently, the coordinates of the most protruding points of the superior and
inferior orbital rims can be determined by traversing the two subgraphs separately, and then the straight line passing through the two most
protruding points can be obtained—the straight line is shown in blue in (C).
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IOU � TP/ TP + FN + FP( )
Precision � TP/ TP + FP( )
Recall � TP/ TP + FN( )

The intraclass correlation coefficient (ICC) and the
concordance correlation coefficient (CCC) were used to
demonstrate the concordance between the results of our
automated method and the manual measurements of the
physicians. The two-way mixture model and the absolute
consistency type were chosen for the calculation of the intra-
group correlation coefficients.

3 Results

3.1 Ocular segmentation

We used the segmentation results of 40 eyes in 23 horizontal CT
images and 43 eyes in 43 sagittal CT images to test the ability of the
model to segment eye region. Table 1 shows the segmentation
performance of the five models on the test set data, and Figure 6
shows the visualization of the U-Net++ model segmentation results.
From the results, we observe that the region of the eye was
segmented accurately in both horizontal and sagittal CT images.

TABLE 1 The mean values (standard deviation) of the Dice Coefficient, IOU, Precision, Recall for segmenting the ocular region model in the axial plane and the
sagittal plane of the CT images, respectively.

View Model Dice Recall Precision IOU

The axial plane FCN32 0.8847 (0.0150) 0.8213 (0.0731) 0.9660 (0.0380) 0.7951 (0.0572)

SegNet 0.9684 (0.0163) 0.9802 (0.0118) 0.9577 (0.0329) 0.9382 (0.0295)

U-Net 0.9757 (0.0150) 0.9529 (0.0271) 0.9887 (0.0086) 0.9636 (0.0302)

U-Net++ 0.9805 (0.0059) 0.9829 (0.0090) 0.9782 (0.0140) 0.9617 (0.0112)

Res-U-Net 0.9805 (0.0073) 0.9838 (0.0085) 0.9775 (0.0164) 0.9619 (0.0138)

The sagittal plane FCN32 0.8425 (0.0587) 0.7487 (0.0878) 0.9729 (0.0335) 0.7319 (0.0813)

SegNet 0.9570 (0.0376) 0.9506 (0.0517) 0.9662 (0.0463) 0.9200 (0.0650)

U-Net 0.9770 (0.0135) 0.9804 (0.0170) 0.9740 (0.0224) 0.9553 (0.0248)

U-Net++ 0.9816 (0.0087) 0.9802 (0.0158) 0.9831 (0.0087) 0.9640 (0.0164)

Res-U-Net 0.9505 (0.0809) 0.9273 (0.1201) 0.9849 (0.0299) 0.9150 (0.1223)

FIGURE 6
Visualization segmentation results of the model used to segment the eye region. Row (A) represents the visual segmentation results of the model in
the axial plane of the test set, and row (B) represents the visual segmentation results of themodel in the sagittal plane of the test set. The purple and green
area represent the segmentation masks predicted by the manual and network, respectively. The light blue area is the overlapping part of both, i.e., the
correctly predicted eye area.
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This indicates that this method can accurately locate the vertex
coordinates of the anterior surface of the eye.

3.2 Ocular prominence measurement

For testing, we used the vertical distance from the apex of the
anterior corneal surface to the most protruding point of the
lateral orbital rim of both eyes in 40 eyes from 23 CT images in
the axial plane and the vertical distance from the apex of the
anterior corneal surface to the most protruding point of the
upper and lower orbital rims in 43 eyes from 43 CT images in the

sagittal plane. Table 2 shows the mean values (standard
deviation) of the Exophthalmometric values between the
results measured by the proposed automated method and the
manually measured results. The Bland-Altman plots and the
scatter diagram between the computed results of the proposed
automated method of ocular prominence measurement on the
test set and its corresponding manual measurement by the
physician is shown in Figure 7. Figure 8 shows the results of
the proposed automated method and the manual measurement
by the physician on an axial plane and one sagittal plane of the CT
image, respectively. The results of the statistical analysis between
the measurements using the two methods on all test sets are
shown in Table 3.

From the results of the statistical analysis, it can be observed
that although the Bland-Altman plots diagram as well as the
mean values of the Exophthalmometric values show a stable error
in the results measured by the proposed automated method and
the manually measured results, our method is in good agreement
with the results of the manual measurement by the physician for
both vertical distances. Thus, the accuracy of this method can be
verified.

TABLE 2 The mean values (standard deviation) of the Exophthalmometric
values between the results measured by the proposed automated method and
the manually measured results.

View Manual method Automated method

The axial plane 17.83 (2.85) 18.37 (2.67)

The sagittal plane 8.01 (2.79) 8.48 (2.82)

FIGURE 7
The Bland-Altman plots and the scatter plots between the results on the test set using the automated method proposed in this paper. Row (A)
represents the Bland-Altman plots and row (B) is the scatter plot, column (C) means the results on the axial plane while column (D) is the results on the
sagittal plane. In the scatter plots, the y-axis represents the results calculated by the automatedmethod we proposed in this paper while the x-axis means
the results measured by the doctors.
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4 Discussion

The degree of orbital protrusion is associated with a variety of
orbital diseases, and its accurate quantification is important to
diagnose certain orbital diseases and determine the effectiveness
of their treatment. CT imaging has been used to measure the
prominence of the eye because of its high-resolution accuracy
and ability to analyze multiple views simultaneously (Kim and
Choi, 2001; Nkenke et al., 2003; 2004; Fang et al., 2013). Some
studies have shown that CT image-based ocular prominence
measurements are more accurate (Hallin and Feldon, 1988; Segni
et al., 2002; Nkenke et al., 2003; 2004; Ramli et al., 2015) and

correlate well with measurements using the Hertel ocular
prominence meter (Klingenstein et al., 2022). For special subjects
such as children and those suffering from ptosis, using CT images to
measure ocular prominence is the only feasible method. Currently,
the most common clinical method is to manually measure the
vertical distance from the apex of the anterior corneal surface to
the lateral orbital rim of both eyes on an axial CT image as a measure
of ocular prominence (as shown in Figure 9A ) (“Axial Globe
Position Measurement: A Prospective Multicenter Study by the
International Thyroid Eye Disease Society,” 2016; Nkenke et al.,
2004). However, when the subject’s head is tilted, using only one
plane of view may lead to large errors. In 2019, Na et al. (Na et al.,
2019) proposed a method to represent ocular prominence in sagittal
CT images by measuring the vertical distance of the longest line
connecting the anterior surface apex of the cornea to the superior
orbital rim to the inferior orbital rim (as shown in Figure 9B). The
method proposed by Park et al. has been validated to be comparable
to the Hertel exophthalmometer method with high correlation while
being applicable to subjects with horizontal and vertical strabismus.
Therefore, a exophthalmos measuring method that combines the
two planar views described above would be applicable to a wider
population with guaranteed accuracy.

FIGURE 8
Visualization of measurement results of the proposed automated method and the manual measurement method by the physician on the test set.
Row (A) represents the visualization result of measurement using the proposedmethod, and row (B) is the visualization result of manual measurement by
the physician on the same image.

TABLE 3 Results of statistical analysis of the concordance correlation
coefficient (CCC) and the intraclass correlation coefficient (ICC) between the
results measured by the proposed automated method and the manually
measured results.

View CCC ICC

The axial plane 0.9895 0.9698

The sagittal plane 0.9902 0.9773
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In this paper, we propose a method based on deep learning and
image processing techniques to combine axial and sagittal CT
images for the automatic measurement of exophthalmos. The
experimental results show that our method can achieve accurate
segmentation results with Dice coefficients of 0.976 ± 0.015 and
0.977 ± 0.0135 for the eye region in the axial and sagittal plane of the
CT images, respectively, on the dataset used in this paper, as shown
in Figure 6. We used image processing techniques to segment the
orbital region to achieve accurate localization of the apex of the
anterior surface of the eye and the most protruding point of the
outer edge of the orbit. Based on the results obtained, the CCC and
ICC between the two methods were 0.988 and 0.957 for the axial
plane of the CT images, respectively, and 0.990 and 0.965 for the
sagittal plane of the CT images, respectively—in our dataset of
23 axial and 43 sagittal CT images, which shows high consistency.

The deep learning and digital image processing methods used in
our study can automatically segment the structures of the eye and
orbital rim, and locate the apex of the anterior corneal surface and
the most protruding point of the orbital rim. The process can then
calculate the relevant parameters, ensuring the high accuracy and
reproducibility of this method to a certain extent in our dataset.
Furthermore, the suggested approach can determine the relevant
exophthalmos measurements in both axial and sagittal planes of CT
scans, offering medical professionals a multi-dimensional reference
for diagnosing orbital disorders in patients displaying abnormal
exophthalmos seen only in the axial or sagittal plane. After
conducting a PubMed search using the keywords “proptosis” and
“CT,” we discovered 57 relevant studies published in the past
20 years. However, all of these studies relied on manual drawings
and measurements performed by clinicians or researchers, which
can be remedied by implementing the proposed method.
Additionally, the full automation of the process in this paper not

only minimizes the impact of subjective factors on measurement
results, but also enhances measurement efficiency. On average, the
time required to calculate the vertical distance from the anterior
corneal surface’s apex to the most protruding point of the lateral
orbital rim in axial CT images and the vertical distance from the
anterior corneal surface’s apex to the most protruding points of the
upper and lower orbital rims in sagittal CT images is 0.9 s and 0.75 s,
respectively. This automated method significantly reduces the time
and effort required for eye protrusion measurement compared to
manual methods.

The work in this paper was performed on 2D CT images,
which meets the practical needs of current clinicians for
diagnosis (Kim and Choi, 2001), especially in patients with
eyelid exophthalmos and other conditions (Na et al., 2019). It
is worth mentioning that some research teams have implemented
the quantification of ocular prominence on 3D CT images (Guo
et al., 2017; 2018; Huh et al., 2020; Willaert et al., 2020), but none
of them have been fully automated. However, the mainstream
methods in clinical practice are still dominated by the Hertel
ocular prominence meter method and the lightweight-based 2D
CT image method. The 3D CT image-based ocular prominence
measurement method is complex and time-consuming, and we
will explore other ocular prominence-related parameters (Kim
and Choi, 2001; Campi et al., 2013; Guo et al., 2017; Afanasyeva
et al., 2018; Choi and Lee, 2018) in our future work, for automatic
measurement and validate their practical feasibility in a clinical
setting.

However, the approach in this paper applies to both axial and
sagittal CT images and requires the most protruding point of the
outer edge of the orbit to determine the measurement of the
exophthalmos, which is a limitation in case of some images with
incomplete, missing or displaced outer orbit edges.

FIGURE 9
Two commonly used clinical parameters formeasuring the prominence of the eye based onCT images. (A) The axial plane of the CT image, (A and B)
represent the vertical distance from the apex of the anterior corneal surface to the lateral orbital rim of both eyes, respectively; (B) The sagittal plane of the
CT image, C represents the vertical distance from the apex of the anterior corneal surface to the longest line of the upper and lower orbital rims.
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5 Conclusion

This study introduces an automated approach for assessing eye
prominence in both axial and sagittal CT images of the orbit using
deep learning and image processing techniques. This method
eliminates the need for prior knowledge from clinicians, thereby
reducing their workload. On the experimental dataset, the method
shows satisfactory efficiency, accuracy, reliability, and
reproducibility. This approach has the potential to support the
diagnosis and treatment quantification of related orbital diseases.
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