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Building limb morphogenesis in vitro would substantially open up avenues for
research and applications of appendage development. Recently, advances in stem
cell engineering to differentiate desired cell types and produce multicellular
structures in vitro have enabled the derivation of limb-like tissues from
pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis
is yet to be achieved. To formulate a method of building limbs in vitro, it is critically
important to understand developmental mechanisms, especially the modularity
and the dependency of limb development on the external tissues, as those would
help us to postulate what can be self-organized and what needs to be externally
manipulated when reconstructing limb development in vitro. Although limbs are
formed on the designated limb field on the flank of embryo in the normal
developmental context, limbs can also be regenerated on the amputated
stump in some animals and experimentally induced at ectopic locations, which
highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb
identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are
initially instructed by the body axis of the embryo, and maintained in the limb
domain once established. In contrast, the aspects of dependency on the external
tissues are especially underscored by the contribution of incoming tissues, such as
muscles, blood vessels, and peripheral nerves, to developing limbs. Together,
those developmental mechanisms explain how limb-like tissues could be derived
from pluripotent stem cells. Prospectively, the higher complexity of limb
morphologies is expected to be recapitulated by introducing the morphogen
gradient and the incoming tissues in the culture environment. Those
technological developments would dramatically enhance experimental
accessibility and manipulability for elucidating the mechanisms of limb
morphogenesis and interspecies differences. Furthermore, if human limb
development can be modeled, drug development would be benefited by
in vitro assessment of prenatal toxicity on congenital limb deficiencies.
Ultimately, we might even create a future in which the lost appendage would
be recovered by transplanting artificially grown human limbs.
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1 Introduction

The current advances in stem cell biology have enabled the
differentiation of the limb bud mesenchyme from pluripotent stem
cells (PSCs) such as embryonic stem cells (ESCs) or induced
pluripotent stem cells (iPSCs) (Chen et al., 2017; Mori et al.,
2019; Yamada et al., 2021). Those findings have provided us with
hopes of engineering limb morphogenesis in vitro and utilizing
regenerative medicine to rescue damaged limbs. Engineering limb
morphogenesis should require recapitulating the developmental
environment of the limbs in vitro. Importantly, the modularity of
limb development, namely, independence from the development of
other organs, might potentially facilitate the self-organization of
patterns and structures without external guidance in culture
(Schlosser and Wagner, 2004; Sasai, 2013). Therefore,
understanding the modular aspects and the dependency on the
external tissues in limb development would help to postulate what
can be self-organized and what needs to be manipulated in vitro, and
to formulate the method for engineering limbs. In this article, we will
review the current knowledge on the modularity of limb bud
morphogenesis in embryonic development and regeneration as
well as its dependence on the externalenvironment of the limb.
Based on knowledge of in vivo limb morphogenesis, we will discuss
the feasibility of in vitro engineering of the limb.

Limb development initiates as epithelial-mesenchymal
transition of the lateral plate triggered by FGF-signaling from
ectoderm (Gros and Tabin, 2014). The mesenchymal cells
migrate towards the ectoderm at the lateral trunk region, and the
outlining ectoderm then differentiates into a signaling center called
the apical ectodermal ridge (AER). Signaling interactions between
AER and the limb bud mesenchyme regulate massive cell
proliferation and patterning of the limb bud.

Once the limb bud is established, the morphogenesis of the limb
proceeds in a semi-independent manner, as shown by the fact that
limb bud morphogenesis could happen in an unusual part of the
body in experimental and regenerative situations. In 1995, Cohn
et al. showed that when a bead soaked with FGF or WNT is
implanted into the flank region between the forelimb and
hindlimb, an ectopic limb bud is induced and the established
bud then independently develops into a complete additional limb
(Cohn et al., 1995; Kawakami et al., 2001). These studies suggest that
once a limb bud is established, the limb morphogenesis requires
little, if any, specificity of the tissues proximal to the limb. Thus, the
ability of ectopic limb development is one of the striking examples
showing the modularity of limb development.

Regeneration of the limbs in urodele amphibians and larval
anurans is another example showing the modularity of limb
formation, as it can be interpreted as ectopic and heterochronic
limb development. When the limb is amputated in those animals,
the stump is immediately covered by the wound epidermis and the
wound epidermis then serves as the signaling center called apical
ectodermal cap (AEC), which functionally corresponds to AER of
the developing limb bud (Stoick-Cooper et al., 2007). Underneath
the AEC, the cells in the remaining tissues of the limb, including
dermis, cartilage, muscles, Schwann cells, and other connective
tissues undergo dedifferentiation (Kragl et al., 2009), and the
tissue stem cells such as muscle satellite cells are activated
(Sandoval-Guzmán et al., 2014). The dedifferentiated cells and

the activated tissue stem cells undergo extensive proliferation
forming a blastema of mesenchyme, which essentially resembles
the developmental limb bud mesenchyme.

Interestingly, Endo et al. (2004) discovered that, in regenerative
urodele amphibians, after one peels off a piece of the skin on the
lateral side of the limb, reroutes the nerve to the skin wound, and
grafts a piece of skin from the side of the limb contralateral to the
wound site, a blastema is formed ectopically on the lateral side of the
limb. As a result of these manipulations, called the “accessory limb
model,” the ectopic blastema continues to grow and forms an
additional limb, demonstrating the minimum sufficient
conditions to initiate limb regeneration. It was later found that
when the same operation is conducted on the lateral trunk, ectopic
formation of a blastema and limb morphogenesis can be induced
even on the trunk (Hirata et al., 2013). These examples in highly
regenerative animals suggested that the proper limb morphogenesis
could happen not only in the designated limb field on the flank of the
embryo, but also on the completely mature tissues of the adult limb
and even the trunk if only the minimal conditions to trigger limb
morphogenesis are satisfied.

Those instances highlight the autonomous and modular nature
of limb morphogenesis. However, that does not mean limb
morphogenesis could occur independently of the proximal
tissues. Indeed, the ex vivo culture of chick limb bud fails to
develop properly (Strangeways et al., 1926). What kinds of
interactions between external tissues are important for limb
development and how much independence does the developing
limb have? To explore these questions, in the next section, we will
review the molecular mechanisms of modularity, namely, how
polarities and positional identities are established and maintained
and their relationship with the basal tissues.

2 How polarities and positional
identities are established?

The identity of limbs as forelimbs and hindlimbs is determined
by the position along the rostrocaudal axis of the lateral plate where
limb bud mesenchyme is derived (Isaac et al., 1998; Logan et al.,
1998; Ohuchi et al., 1998). The positional identity of the lateral plate
is governed by the antagonistic gradient of rostral retinoic acid (RA)
and caudal FGF signaling (Ribes et al., 2009; Zhao and Duester,
2009). RA is required for the expression of Tbx5 in the presumptive
forelimb field of the lateral plate (Zhao et al., 2009). On the other
hand, the hindlimb field in the caudal lateral plate is determined by
GDF11 secreted from the paraxial mesoderm. GDF11 activates the
expression of the hindlimb field and hindlimb bud-specific genes
such as Isl1, Pitx1, and Tbx4 in the lateral plate, and thus the
initiation of Gdf11 expression controls the position of the hindlimb
along the body (McPherron et al., 1999; Jurberg et al., 2013;
Matsubara et al., 2017). The anatomical features specific to the
forelimb and hindlimb are specified by the expression of Tbx5 in the
forelimb and Tbx4/Pitx1 in the hindlimb (Logan et al., 1998; Logan
and Tabin, 1999; Rodriguez-Esteban et al., 1999; Takeuchi et al.,
1999).

At the later stage of limb development, the same antagonistic
gradient of RA and FGF controls the proximodistal identity of the
limb bud, namely, stylopod, zeugopod, and autopod, from proximal
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to distal. This was first suggested in amphibian limb regeneration.
When the limb is amputated, the lost limb element will be
regenerated depending on the position of the amputation along
the proximodistal axis. However, when a limb is treated with RA, the
regenerated structure is proximalized relative to the position of
amputation in a dose-dependent manner, resulting in a serial
proximodistal duplication such that the stylopod is regenerated
onto the remaining zeugopod (Niazi and Saxena, 1978; Maden,
1982; Maden, 1983). On the other hand, when blastema of a
salamander formed on autopod is transplanted onto stylopod,
zeugopod is regenerated in between (Iten and Bryant, 1975;
Stocum, 1975; Maden, 1980; McCusker and Gardiner, 2013).
This process is referred to as “intercalation”: when the adjacent
cells have discontinuous positional information, the intermediate
cells are regenerated to fill the gap in the positional identities (French
et al., 1976; Agata et al., 2007). The mature autopod tissue is not
capable of inducing intercalary regeneration between itself and the
stylopod, but FGF treatment of the autopod endows the competency
to induce the intercalary formation of zeugopod, suggesting that
FGF might be the distal factor (Satoh et al., 2010).

It was later shown in chicken limb development that the
transplanted limb bud mesenchyme after exposure to RA exhibits
expansion of expression of the proximal marker, Meis1, and
develops the proximalized structure. In contrast, exposure to FGF
and Wnt, which is secreted from AER in normal development,
expands the expression of the distal Hox geneHoxa13, and distalizes
the limb (Cooper et al., 2011; Roselló-Díez et al., 2011). Thus, even
after the limb bud is initiated, proximal RA signaling from the trunk
is supposedly required for the establishment of proper proximo-
distal polarity, although there is controversy about this since in
Rdh10 mutant mouse, which lacks RA synthesis, proximal-distal
patterning of the hindlimb was not affected (Cunningham et al.,
2013).

The key player in establishing the anteroposterior axis of the
limb is SHH. The classical experiments using chick embryos
strikingly showed that after transplantation of the tissue from the
posterior margin of the limb bud, which is known as the zone of
polarizing activity (ZPA), to the anterior margin of another limb
bud, the mirror-duplicated pattern of three digits is induced along
the anteroposterior axis (Saunders and Gasseling, 1968). It was later
identified that SHH is the molecular entity of ZPA activity (Riddle
et al., 1993). SHH, which is secreted from the posterior margin of the
limb bud, specify anteroposterior identity of the digits in its early
time window of the expression, and also promotes the expansion of
the limb in its broader expression duration (Towers et al., 2008;
2011; Zhu et al., 2008; Zhu et al., 2022).

How is the posterior-biased expression of Shh established and
how does the anteroposterior axis of limbs correspond to that of
the body? The axial expression ofHox9 paralogous group genes is
restricted to the posterior portion of the forelimb-forming region
and Hox9 genes activate the expression of Hand2 in the posterior
forelimb, which then activates Shh in ZPA (Xu and Wellik, 2011).
In contrast, the Hox5 paralogous group genes repress the Shh
expression in the anterior forelimb (Xu et al., 2013). Although
these regulations by Hox5 and 9 genes only apply to the forelimb,
the expression domains of Shh in forelimb and hindlimb buds are
regulated by the common downstream effectors such as the
anterior repressor, Gli3, and the posterior activator, Hand2

(Büscher et al., 1997; Galli et al., 2010). In hindlimb, the
anterior expression of Gli3 is regulated by Sall4, and the
posterior expression of Hand2 is regulated by Isl1 (Itou et al.,
2012; Akiyama et al., 2015). Interestingly, an additional limb
induced in the trunk shows the inverted anteroposterior identity.
This might be explained as occurring because the interlimb
region posterior to the forelimb field, which would be the
anterior portion of the additional limb, has stronger potency
of polarizing activity (Tickle, 2015).

In amphibians, the interaction between anterior and
posterior tissues at the stump is essential to initiate limb
regeneration. If an anterior half of one limb is transplanted on
an anterior half of another limb so that the stump has only either
anterior identity, the limb fails to be regenerated (Bryant and
Baca, 1978; Stocum, 1978). Conversely, if a left limb blastema is
grafted onto a right stump so that the anterior tissues of the graft
are adjacent to the posterior tissues of the stump, two
supernumerary limbs are induced due to intercalation along
the anteroposterior axis (Iten and Bryant, 1975). The
accessory limb model, mentioned above, also requires a skin
graft from a posterior limb onto an anteriorly created wound to
initiate intercalation on the stump (Endo et al., 2004). The
posterior skin can be substituted by RA or its downstream
target, Shh (McCusker et al., 2014; Nacu et al., 2016; Iwata
et al., 2020).

Limbs develop on the dorsoventral border of the trunk and AER
is induced at the interface of dorsal and ventral ectoderm (Altabef
et al., 1997). Dorsal ectoderm expressesWnt7a (Parr andMcMahon,
1995), whereas ventral ectoderm expresses Bmp (Pizette et al., 2001).
Recombinant experiments performed by placing ectoderm in
dorsoventrally reversed orientation with respect to the mesoderm
showed that the signals from ectoderm specify the dorsoventral
identity of the limb mesenchyme (MacCabe et al., 1974; Akita,
1996). Like their induction along the anteroposterior axis,
supernumerary limbs can be induced by intercalation along the
dorsoventral axis (Iten and Bryant, 1975).

How are positional identities interpreted into the anatomical
complexity of limbs? Recent single-cell RNA-seq and lineage
tracing experiments have shown that Msx-positive naïve limb
progenitor cells differentiate into proximal or autopodial
progenitors, while the naïve progenitors remain in the distal-
most region beneath the AER. Three axes of positional identities
affect the differentiation timing of proximal and autopodial
progenitors in a complex manner seemingly underlying the
mechanisms by which the positional identities are interpreted
into the anatomical complexity of limb skeletons (Markman
et al., 2023). A comprehensive understanding of this question
requires an understanding of the differences in cellular behaviors
in three-dimensional space in response to positional identities, as
well as physical and mathematical approach to integrate
collective cell behaviors into tissue-level morphogenesis. Limb
organoids would be powerful model systems for the integral
understanding of morphogenesis because simple aspects of
three-dimensional morphogenesis can be extracted on a
smaller scale in a more experimentally accessible environment.

To summarize this section, forelimb-hindlimb identity is
determined by the positional identity of the lateral plate along
the rostrocaudal axis. The proximo-distal axis is established
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through interactions between the trunk, or proximal limb, and
distal AER. The anteroposterior axis of the limb is induced by the
axial rostrocaudal identity. The dorsoventral axis is instructed by
the dorsoventral identity of the ectoderm (Figure 1).Importantly,
the fate map and transplantation experiments show that once the
limb polarity is established, the positional identity can be
maintained in a cell-autonomous manner without reference to
the rest of the embryo. (reviewed in (Tickle, 2015)). However, the
source of the limb tissues is not just the limb bud mesenchyme
and the overlying ectoderm, but also incoming tissues from the
trunk after the limb bud is initiated. In the next section, we will
review how those incoming tissues acquire morphological
information and how those tissues affect the morphogenesis of
the other tissues.

3 The contribution of incoming tissues
on limb morphogenesis

Muscle cells in the limb are derived from ventral–lateral somites
and migrate into the nascent limb bud (Chevallier et al., 1977; Christ
et al., 1977; Hayashi and Ozawa, 1991). The migration of muscle
precursor cells is induced by Hgf expressed in limb mesenchyme
(Bladt et al., 1995; Brand-Saberi et al., 1996; Scaal et al., 1999). Once
they have migrated into the limb bud, the muscle precursors cluster
into dorsal and ventral muscle masses (Hayashi and Ozawa, 1991).
Subsequently, these muscle masses are subdivided into individual,
anatomically distinct muscles by muscle connective tissues, which
are derived from limb bud mesenchyme (Kardon, 1998; Kardon
et al., 2003).

The specific patterns of individual muscles are governed by
muscle connective tissues, and their surrounding blood vessels
(Grim, 1991; Tozer et al., 2007; Mathew et al., 2011). Thus,
muscle patterning defects occur due to mutation of the genes
expressed in limb mesenchyme, such as Tbx3, 4, and 5 (Hasson
et al., 2010; Colasanto et al., 2016). Tendons are also derived from
limb bud mesenchyme and are reciprocally dependent on muscles
for proper patterning and maintenance (Christ et al., 1977; Kieny
and Chevallier, 1979; Kardon, 1998; Schweitzer et al., 2001; Huang
et al., 2015).

Although the initial patterning of bones and cartilage is not
dependent onmuscles, once the muscles are shaped into a functional
unit together with muscle connective tissues and tendons, the
mechanical forces applied to skeletons are responsible for proper
bone morphogenesis, including longitudinal growth,
circumferential growth, and formation of eminence (reviewed in
(Felsenthal and Zelzer, 2017)). Strikingly, most of the limb joints fail
to be matured and become fused (Pai, 1965; Rot-Nikcevic et al.,
2006; Kahn et al., 2009; Nowlan et al., 2010).

Blood vessels are the incoming tissues that substantially affect
the morphogenesis of the limb skeleton. Vascularization of the limb
bud is initiated as angiogenesis from the dorsal aorta (Seichert and
Rychter, 1972a; Seichert and Rychter, 1972b). Concomitantly,
somite-derived angioblasts migrate into the limb bud and
participate in vasculogenesis (Ambler et al., 2001). The
importance of vasculature in limb skeletal morphogenesis is well
demonstrated in avascular culture on chorioallantoic membrane
(CAM). Chick limb bud graft could develop recognizable limb
elements after being transplanted onto CAM, where diffusible
nutrients, growth factors, and blood vessels are supplied from the
host (Murray and Patrick, 1926). However, if the graft and CAM are
separated by an intervening porous filter so that vascular invasion is
prevented, the grafts will develop into very small and grossly
distorted limbs (Searls, 1968).

The failure of proper cartilage morphogenesis in avascular
culture does not seem to be simply due to the lack of oxygen
and nutrient supply. Cartilage morphogenesis is associated with
vascular remodeling since cartilage requires a hypoxic environment
and hypoxic gene regulator, Hif1a, for its development and
maintenance (Schipani et al., 2001; Amarilio et al., 2007; Provot
et al., 2007; Bentovim et al., 2012). While blood vessels are
distributed throughout the limb bud before the emergence of
cartilage anlagen, localized vascular regression avascularizes the
cartilage-forming area (Feinberg et al., 1986). Although this

FIGURE 1
The signalingmolecules that govern positional information of the
limb bud. The distal-proximal axis of the limb bud is governed by FGF/
WNT from AER and RA from trunk, the anterior-posterior axis is
governed by Shh and Gli3 from limb mesenchyme, and the
dorsal-ventral axis is governed byWnt7a and Bmp from the ectoderm.
The anterior-posterior axis of the whole body that governs the
forelimb and hindlimb identities is regulated by RA and Gdf11 in axial
mesoderm.
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vascular remodeling is initiated by VEGF secreted from condensed
mesenchyme (Eshkar-Oren et al., 2009), vasculatures reciprocally
regulate skeletal morphogenesis (Yin and Pacifici, 2001).
Furthermore, interdigital apoptosis requires reactive oxygen
species produced in the highly vascularized area between digits
(Eshkar-Oren et al., 2015).

Unlike cartilage, bone requires vascularization. Limb bone
formation occurs via endochondral ossification, in which
cartilage anlagen is replaced by bone minerals. At the center of
the cartilage anlagen of long bones, the chondrocyte becomes
hypertrophic chondrocyte and secretes VEGF to attract invasion
of blood vessels (Gerber et al., 1999; Zelzer et al., 2002). Bone
minerals are deposited by osteoblast precursors migrated from
perichondrium/periosteum along with blood vessels (Maes et al.,
2010), although recent evidences show trans-differentiation from
hypertrophic chondrocytes is another source of osteoblasts (Yang
et al., 2014a; Yang et al., 2014b; Zhou et al., 2014; Park et al., 2015).
The vasculature is not only important for longitudinal bone growth,
but it also serves as a guiding template for circumferential bone
growth (Shoham et al., 2016).

Peripheral nerves are critically important for limb regeneration.
It has long been known that if a limb of urodele amphibians is
denervated, the amputated limb will fail to regenerate (Todd, 1823).
Conversely, the existence of nerves at the wound site is one of the
sufficient conditions for inducing ectopic limb regeneration in the
accessory limb model (Endo et al., 2004). Rescue experiments in a
denervated limb or accessory limb model without nerve rerouting
showed that nAG, Fgf, Bmp, and Nrg1 are considered to be “nerve
factors” which are secreted from peripheral nerves and induce
blastema formation at a stump (Kumar et al., 2007; Makanae
et al., 2014; Farkas et al., 2016). However, the nerve dependence
seems to be specific to limb regeneration, and not to apply to limb
development. When a chick limb bud graft is made such that the
graft is not innervated from the host, musculoskeletal
development of the grafts is grossly unaffected (Murray and
Patrick, 1926; Hunt, 1932; Hamburger, 1939). Furthermore,
even in limb regeneration, if a limb bud has never experienced
innervation, the limb is competent for regeneration in the
absence of nerves (Yntema, 1959). Thus, the requirement for
peripheral nerves in limb formation might be contingent on the
cellular context of limb progenitors.

In this section, we argued that besides limb bud mesenchyme,
tissues such as blood vessels, muscles, and peripheral nerves come
into the limb bud and contribute to limb morphogenesis (Figure 2).
Musculoskeletal morphologies are fine-tuned based on physical and
biochemical interactions in multiple tissues, including muscles and
peripheral nerves, which reinforce developmental robustness and
malleability of limbs (reviewed in (Tsutsumi et al., 2017)). The
invasion of blood vessels plays critical roles in initial skeletal
patterning. Thus, among the incoming tissues, blood vessels are
seemingly especially important for regulating the morphogenesis of
limb mesenchyme.

In the context of engineering limb morphogenesis in vitro, is it
necessary to direct the morphogenesis of those incoming tissues
separately? Since limb morphogenesis is dependent on the
interaction of multiple different tissues in the limb, it would be
important to establish methods for co-culturing and integrating
multiple cell lineages, including limbmesenchyme and the incoming
tissues. However, the modular aspect of limb development and
regeneration suggests that the incoming tissues as well as limb
mesenchyme do not rely on continuous input of morphogenetic
information from the external environment. Therefore, in the next
section, we will discuss how to achieve the derivation of limb
progenitor cells, introduce the positional identities of limb
mesenchyme, and integrate them with the incoming tissues.

4 How might we build limbs in vitro?

Recently, Chen et al. reported that three-dimensional culture of
mouse iPSCs successfully induced the differentiation of cells with
limb bud identity in vitro (Chen et al., 2017) (Figure 3A). Due to the
high adhesiveness of PSCs, the cells in suspension culture are self-
aggregated into embryoid bodies (Desbaillets et al., 2000). Chen et al.
cultured the embryoid body with a WNT/β-catenin signaling
agonist, CHIR99021, and FGF8 with a fibrin matrix for 6 days,
and subsequently cultured it with SHH agonist Purmorphamine and
a TGFβ type I receptor inhibitor, SB431542, together with
CHIR99021 and FGF8. Both WNT signaling and FGF8 are
present in the primitive streak and play important roles in the
formation of mesoderm in the mouse embryo (Takada et al., 1994;
Yoshikawa et al., 1997; Liu et al., 1999; Sun et al., 1999; Huelsken

FIGURE 2
Contribution of the incoming tissues in limb development. In mouse forelimb, blood vessels invade the limb bud at E9.0 (Walls et al., 2008), muscle
progenitors migrate into the limb at E10.0 (Houzelstein et al., 1999), and the limb bud is innervated at E11.5 (Hurren et al., 2015).
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et al., 2000). Furthermore, treatment with the WNT/β-catenin
signaling agonist induces mesoderm differentiation in the
embryoid body (Berge et al., 2008; Brink et al., 2014). Thus, the
first 6 days of treatment with the WNT/β-catenin signaling agonist
and FGF8 seemed to drive mesodermal differentiation. While SHH
has a critical role in the growth of limb bud mesenchyme, the TGFβ
type I receptor inhibitor suppresses cartilage differentiation and
expands undifferentiated limb bud mesenchyme (Parada et al.,
2022).

Strikingly, the limb bud-like aggregates stimulated the
regeneration of a mouse digit. Chen et al. transplanted the limb
bud-like aggregates derived from iPSCs together with a cocktail of
growth factors, FGF8, WNT3a, Thymosin β4, and BMP2 onto the
amputated second phalange of an adult mouse digit. While the adult
mouse is unable to regenerate the digit after amputation without any
manipulation, the grafted digit showed the outgrowth of distal

phalange tissues which were composed of both graft-derived and
host-derived cells (Chen et al., 2017).

Later, it was reported that another three-dimensional culture
method of mouse ESCs successfully recapitulated the differentiation
of early limb bud-like structure in vitro, in which Hand2-positive
mesenchyme is covered by E-cadherin-positive ectoderm (Mori
et al., 2019) (Figure 3B). Essentially, in this study, mouse ESCs
were differentiated using the serum-free floating culture of embryoid
body-like aggregate with quick reaggregation (SFEBq) method with
a high dose of BMP4. In SFEBq, ESCs are seeded in ultra-low
adhesive 96-well plates to make embryoid bodies and differentiated
in serum-free culture conditions (Eiraku et al., 2008). While without
BMP, the embryoid body would spontaneously differentiate into
epiblasts and subsequently neural ectoderm (Kamiya et al., 2011;
Takata et al., 2016), a high dose of BMP might have contributed to
fate decisions towards limb bud mesenchyme at multiple steps of

FIGURE 3
In vitro induction of limb mesenchyme from pluripotent stem cells.Chen et al., 2017 described the method of differentiating cell aggregates of
mouse iPSCs into limb mesenchyme (A). Mori et al., 2019 reported the differentiation of cell aggregates of mouse ESCs into limb mesenchyme wrapped
by the ectoderm (B). Yamada et al., 2021 established the method of differentiating human iPSCs into limb mesenchyme in two-dimensional culture (C).
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lineage segregation. In the gastrulating mouse embryo,
BMP4 secreted from extra-embryonic ectoderm regulates the
formation of primitive streak from the epiblasts (Mishina et al.,
1995; Winnier et al., 1995; Coucouvanis and Martin, 1999; Beppu
et al., 2000). Thus, the first fate decision directed by BMP was to
drive differentiation of ESCs towards mesoendoderm, instead of
ectoderm (Johansson andWiles, 1995; Finley et al., 1999; Ying et al.,
2003; Ng et al., 2005).

After the primitive streak is established, mesodermal cells
from the posterior part of the primitive streak migrate laterally
more robustly than those from the anterior part, and thereby the
anteroposterior identities of the primitive streak are converted
into the mediolateral axis of mesoderm at the later embryonic
stage. At this stage, BMP4 that is secreted from the lateral plate
and NOGGIN, a BMP antagonist secreted from the notochord,
constitute a BMP gradient along the mediolateral axis, specifying
the subtypes of mesoderm (Pourquié et al., 1996; Tonegawa et al.,
1997; Tonegawa and Takahashi, 1998). Thus, in the culture in
Mori et al. (2019) the second fate decision directed by the high
dose of BMP was to instruct differentiation of lateral plate
mesoderm.

Although it is not very clear how the aggregate with lateral plate
identity is differentiated into limb bud mesenchyme in the culture of
Mori et al., 2019 the overlying ectoderm might induce epithelial-
mesenchymal transition and differentiation of limb bud
mesenchyme, as happens in the embryo (Gros and Tabin, 2014).
As discussed above, the dorsoventral identity of the limb bud is
specified by dorsal Wnt7a and ventral Bmp. Hence, the third fate
decision by BMP was to grant ventral identity to the limb bud-like
aggregates. Indeed, local inhibition of BMP signaling created a
portion with dorsal identity in the aggregate and induced the
formation of AER-like structure at the dorsoventral border.

Yamada et al. (2021) reported the derivation of limb bud-like
cells from human iPSCs (Figure 3C). In their study, iPSCs were
differentiated in a step-wise manner from the mid-primitive streak,
lateral plate, and limb bud progenitors by daily changes of medium
with composition modified from that described in Loh et al. (2016)
so as to maximize the expressions of PRRX1 and other limb bud
markers. The differentiated limb bud-like cells could be expanded by
activation of EGF, FGF, and canonical WNT signaling, as well as
suppression of TGF-β signaling. The limb bud-like cells, which have
the potential to produce cartilage, have proven to be useful for drug
screening of therapeutic candidates for treating type II
collagenopathy (Yamada et al., 2021).

Chen et al. (2017); Mori et al. (2019), and Yamada et al. (2021)
showed that the PSC-derived limb bud-like cells are capable of

forming skeletal tissues after being transplanted in mouse or rat
(Table. 1). However, their ability to undergo cartilage
morphogenesis in culture has not been extensively explored. It
should be noted that in the study of Mori et al., the
anteroposterior and proximo-distal identities in the limb bud-like
cells within the aggregate were disorganized. Though the positional
identities of the cells in the aggregate were not addressed in Chen
et al., given that among the four growth factors in the cocktail, FGF
and WNT specify the distal identity of the limb bud, the interaction
between the distally specified limb bud-like aggregate and the host
tissues might have established the proximo-distal axis, which might
have then enabled the organized outgrowth of the skeletal tissues.
Furthermore, it can be speculated that blood vessels might have
invaded the graft and stimulated the growth and morphogenesis of
the regenerating distal digit.

Is it possible to recapitulate more complex limb morphogenesis
with cultures from PSCs? To achieve this goal, it seems essential to
induce proper organization of the proximo-distal, dorso-ventral,
and anteroposterior axis and to induce vascularization into the limb
bud organoid. In fact, these are two of the current major challenges
in the field of organoids in general: to provide morphogen gradients
that are not self-organized in the aggregate and to induce
vascularization.

To establish morphogen gradient in the culture environment of
organoids, methods are selected based on the scale and duration of
the gradient to bemaintained. One commonly usedmethod relies on
diffusion from two reservoir chambers. Organoids are embedded in
hydrogels and placed between the two chambers (Attayek et al.,
2016; Tabata and Lutolf, 2017; Koh and Hagiwara, 2023). Using this
method, a chemical gradient spanning 1.5-6 folds in a 1 mm scale
can be achieved. When the media in two chambers are kept
replenished or the chambers have a large enough volume, the
gradient can be maintained for 5–10 days. An orthogonal
gradient to create two axes (Such as dorsal-ventral and anterior-
posterior) can be established by four microfluidic channels, where
two parallel flows are placed perpendicular to each other (Demers
et al., 2016).

When a smaller scale of the gradient is required, local
administration of signaling molecules can be utilized. As
mentioned above, Mori et al. (2019) injected a BMP inhibitor
onto a limb bud-like aggregate through a glass capillary and
successfully induced a dorsalized hemisphere within the
aggregate. In this case, since the aggregate was globally
ventralized by BMP signaling prior to the injection, local
inhibition of BMP signaling could sufficiently establish a
morphogen gradient. Embedding morphogen-secreting cells can

TABLE 1 In vitro inductions of limb mesenchyme and their potency after transplantation experiments.

Paper Source Outcome Transplantation experiment

Chen et al.,
2017

Embryoid body from
mouse iPSCs

Limb mesenchyme-like cells Induced phalange regeneration after transplantation onto the P2 amputation in adult
mice

Mori et al., 2019 Embryoid body from
mouse ESCs

Limb mesenchyme-like cells
wrapped by ectoderm

Contribution to multiple connective tissues after cellular engraftment

Cartilage differentiation and endochondral ossification In the renal capsule

Yamada et al.,
2021

Human iPSCs Expandable limb mesenchyme-like
cells

Formation of hyaline cartilage like-structure after subcutaneous transplantation to
mouse and articular cartilage transplantation to rat
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generate a gradient with 500 μm scale (Cederquist et al., 2019). By
using light-inducible expression of morphogen, more precise special
control might be achieved (De Santis et al., 2021).

When a larger scale of the gradient is desired, a 4 mm scale of the
gradient can be achieved by embedding organoids on the confluent
of two parallel streams (Park et al., 2009). An even larger scale
(−20 mm) of the gradient can be achieved by the perpendicular
sequential diffusive mixing of two inlet media (Rifes et al., 2020)

Alternatively, the organoid assembly approach might be utilized.
In this approach, two organoids with two different positional
information are differentiated separately and combined into one
“assembloid” (Bagley et al., 2017; Birey et al., 2017; Koike et al.,
2019). This approach requires to the identification of the timing at
which the positional identities of the two organoids are fixed while
two organoids are still capable of fusing, but it is possible that this
approach might recapitulate the situation of intercalary and
supernumerary regeneration and might powerfully promote limb
morphogenesis.

To vascularize organoids, one of the approaches is co-culturing
with endothelial progenitor cells. For example, in a brain organoid,
human iPS-derived endothelial cells formed a vascular network and
improved the survivability and maturation of the organoid (Pham
et al., 2018; Cakir et al., 2019). Similarly, vascularized organoids were
also generated by co-culturing human PSC-derived cells and human
umbilical vein endothelial cells (HUVECs), which are primary
endothelial cells with high potential for blood vessel formation
in vitro (Takebe et al., 2013; Isshiki et al., 2020; Shi et al., 2020).
However, it is still a challenge to achieve functional perfusion of the
vascularized organoids in vitro. This goal will likely be achieved by
identifying culture environments which allow integration of a
microfluidic device with a vascular bed and vascularized
organoids (Zhang et al., 2021).

5 Conclusion

It is becoming technically feasible to introduce appropriate
morphogen gradients exogenously and to introduce blood vessels
and other tissues to limb bud organoids. If engineering a more
complex limb bud could be achieved, it would substantially open
up avenues for research and applications of appendage
development. If we can create in vitro models of three-
dimensional limb development, manipulability to elucidate the
mechanisms of morphogenesis will be dramatically enhanced.
Furthermore, since iPSCs have been established in many non-
traditional model organisms, molecular and genetic mechanisms
of mammalian limb diversities, including specific features of
human limbs, are expected to be studied using organoids from PS
cells. For instance, the extensive growth of the proximal

hindlimb is one of the remarkable differences between the
bodies of modern humans and any other extant animals. It
has enabled our upright bipedalism and presumably allowed
us to have a heavy brain and has released our hands from their
roles for walking. Thus, it would be exciting to have an
opportunity to unravel the genetic and developmental
mechanisms of the evolution of our limb proportions. Finally,
models of human limb development would bring about medical
benefits, such as drug screening to assess prenatal toxicity
causing congenital limb defects and ultimately rescuing lost
appendages by transplanting in vitro-derived human limb bud
tissues.
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