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Introduction: Despite continued technological improvements, measurement
errors always reduce or distort the information that any real experiment can
provide to quantify cellular dynamics. This problem is particularly serious for cell
signaling studies to quantify heterogeneity in single-cell gene regulation, where
important RNA and protein copy numbers are themselves subject to the inherently
random fluctuations of biochemical reactions. Until now, it has not been clear how
measurement noise should be managed in addition to other experiment design
variables (e.g., sampling size, measurement times, or perturbation levels) to ensure
that collected data will provide useful insights on signaling or gene expression
mechanisms of interest.

Methods: We propose a computational framework that takes explicit
consideration of measurement errors to analyze single-cell observations, and
we derive Fisher Information Matrix (FIM)-based criteria to quantify the
information value of distorted experiments.

Results and Discussion: We apply this framework to analyze multiple models in
the context of simulated and experimental single-cell data for a reporter gene
controlled by an HIV promoter. We show that the proposed approach
quantitatively predicts how different types of measurement distortions affect
the accuracy and precision of model identification, and we demonstrate that
the effects of these distortions can be mitigated through explicit consideration
during model inference. We conclude that this reformulation of the FIM could be
used effectively to design single-cell experiments to optimally harvest fluctuation
information while mitigating the effects of image distortion.
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1 Introduction

Heterogeneity in signaling and gene expression at the single-cell level has wide-ranging
biological and clinical consequences, from bacterial persistence (Lewis, 2010; Garcia-
Bernardo and Dunlop, 2013; 2015; El Meouche et al., 2016) and viral infections (Singh
et al., 2010; Weinberger and Weinberger, 2013; Rouzine et al., 2014; Cao et al., 2018) to
tumor heterogeneity (Brock et al., 2009; Marusyk et al., 2012). Beside genetic and
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environmental factors, a significant degree of heterogeneity is caused
by biochemical noise (McAdams and Arkin, 1997; Raj and van
Oudenaarden, 2008; Balázsi et al., 2011; El-Samad and Weissman,
2011). Therefore, even genetically identical cells grown in the same
experimental conditions may display variability in their response to
environmental stimuli. This variability, often termed intrinsic noise
when it originates within the pathway of interest or extrinsic noise
when it originates outside the pathway of interest, obscures the
underlying mechanisms when viewed through the lens of
deterministic models and bulk measurements (Munsky et al.,
2018). Yet, this so-called noise can be highly informative when
examined through the lens of single-cell measurements coupled with
the mathematical modeling framework of the Chemical Master
Equation (CME) (Gillespie, 2007; Anderson and Kurtz, 2011;
Stewart-Ornstein and El-Samad, 2012). Through this joint
experimental and modeling approach, mechanisms of signaling
and single-cell gene expression can be explained, predicted
(Munsky et al., 2009; Neuert et al., 2013; Munsky et al., 2018), or
even controlled (Milias-Argeitis et al., 2011; 2016; Benzinger and
Khammash, 2018; Fox et al., 2022).

In this paper, we are concerned with how and when stochastic
models based on the CME could be inferred with high confidence
from single-cell experiments such as flow cytometry or optical
microscopy (e.g., single-molecule fluorescence in situ
hybridization, smFISH), from which data sets are produced in
the form of fluorescence intensity histograms (Isaacs et al., 2003;
Lim and van Oudenaarden, 2007; Zuleta et al., 2014; Lipinski-
Kruszka et al., 2015) or molecular count histograms (Femino
et al., 1998; Raj et al., 2006; Li and Neuert, 2019). These
measurements, like any other experimental technique, can be
corrupted by errors arising from imprecise detection or data
processing methods. In flow cytometry, variations in the binding
efficiency, binding specificity, or intensity of individual fluorescent
reporters or probes, or the existence of background fluorescence, are
unavoidable perturbations that may obscure the true copy number
of RNA or protein (Munsky et al., 2009; Ruess et al., 2013; Tiberi
et al., 2018). While smFISH data sets are generally considered to
provide the “gold standard” for measuring transcriptional
heterogeneity, the estimation of molecular copy numbers in
single cells depends heavily on image segmentation and spot
counting algorithms (Raj and Tyagi, 2010; Batish et al., 2011;
Pitchiaya et al., 2014; Kesler et al., 2019) that involve several
threshold parameters, which are set ad hoc and typically vary
from one expert to another. In addition, the sensitivity of
smFISH measurements can be heavily affected by the length of
the target mRNAs, the number of probes (Shepherd et al., 2013), or
the number of hybridization steps (Wheat et al., 2020).

The inescapable fact of measurement noise motivates intriguing
questions on the design of single-cell experiments. For instance, under
what conditions can detailed statistical measurement noise models and
cheap single-cell measurements combine to replace accurate, yet more
expensive experimental equipment? How approximate or coarse (and
therefore fast) can image processing be while still faithfully retaining
knowledge about parameters or mechanisms of interest? These
questions are becoming more pressing as new advances in
fluorescence tagging and microscopy technology are leading to more
sophisticated experimental protocols to produce ever-increasing data
on complex signaling and gene expression networks. Addressing these

challenges is non-trivial, as it requires careful consideration of the
potentially nonlinear combination of measurement noise and the
biological question of interest.

The key contribution of this study is to provide new model-
driven experiment analysis and design approaches (Figure 1) that
include explicit consideration of probabilistic measurement errors in
single-cell observations. The process begins with one or more
hypotheses written in the form of stochastic gene regulation
models (Figure 1A) with uncertain guesses for parameters or
mechanisms. Predictions from these biophysical models are then
coupled with empirically determined or physically estimated
statistical models, known as Probabilistic Distortion Operators
(PDOs), that explicitly estimate the effects of different types of
measurement errors that could be temporal, discrete, non-
symmetric, non-Gaussian, or even the result of their own
stochastic process dynamics (Figure 1B). During model inference,
the biophysical and measurement distortion models are
simultaneously optimized to best explain the data (Figure 1C,
right) and to quantify uncertainty in their respective parameters
(Figure 1C, left). During experiment design (Figure 1D), sensitivity
analysis is used to estimate which combinations of experimental
conditions, sampling procedures, or measurement strategies can be
expected to provide the most information to constrain the current
set of hypotheses, and the procedure is iterated in subsequent rounds
of experimentation and model refinement.

To address the specific question of model-driven single-cell
experiment evaluation and design (Figure 1D), we adopt the
framework of the Fisher Information Matrix (FIM). The FIM is the
basis for a large set of tools for optimal experiment design in amyriad of
science and engineering fields (Pronzato and Walter, 1985; Chaudhuri
and Mykland, 1993; Emery and Nenarokomov, 1998; Ruess and
Lygeros, 2013; Chao et al., 2016; Vahid et al., 2019), and it has been
employed in the study of identifiability and robustness of deterministic
ODEs models in system biology (Gutenkunst et al., 2007; Transtrum
et al., 2010) as well as for designing optimal bulk measurement
experiments (Faller et al., 2003; Gadkar et al., 2005; Kreutz and
Timmer, 2009). As an early application of the FIM to stochastic
modeling of gene expression, Komorowski et al. (2011) devised a
numerical method to compute the FIM based on the Linear Noise
Approximation (LNA) of the CME, which they used to demonstrate the
different impacts of time-series, time snapshots, and bulk
measurements to parameter uncertainties. There have been
subsequent work on approximating the FIM with moment closure
techniques (Ruess et al., 2013; Ruess and Lygeros, 2013), with
demonstrable effectiveness on designing optimal optogenetic
experiments (Ruess et al., 2015). Under an assumption of ideal
measurements, Fox and Munsky (Fox and Munsky, 2019) recently
extended the Finite State Projection (FSP) algorithm (Fox andMunsky,
2019) to compute a version of the FIM that allows for time-varying and
non-linear models that result in discrete, asymmetric, and multi-modal
single-cell expression distributions. By extending the FSP-based FIM
(Fox and Munsky, 2019) to also account for realistic measurement
errors, our new approach can help scientists to decide which
combinations of experimental conditions and measurement assays
are best suited to reduce parameter uncertainties and differentiate
between competing hypotheses.

To verify our proposed approaches, we simulate data for a
simple bursting gene expression model under many different
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types of measurement errors, and we show that the FIM correctly
estimates the effects that measurement distortions have on
parameter estimation (we explore more complicated models and
distortions in the Supplementary Data Sheet S1). To demonstrate
the practical use of our approaches, we apply them to analyze single-
cell data for the bursting and deactivation of a reporter gene
controlled by an HIV promoter construct upon application of
triptolide (Trp). We show that the iterative use of FSP to fit
distorted experimental data, followed by FIM analysis to design
subsequent experiments can lead to the efficient identification of a
well-constrained model to explain and predict gene expression.

2 Methods

2.1 Stochastic modeling of gene expression

The expression dynamics of genes or groups of genes in single
cells are often modeled by stochastic reaction networks

(McQuarrie, 1967; Gillespie, 2007; Anderson and Kurtz, 2011).
For these, the time-varying molecular copy numbers in single cells
are treated as a Markov jump process {X(t)}t≥0 whose sample paths
x(t) = (x1(t), . . ., xN(t)) take place in discrete multi-dimensional
space, where xi(t) is the integer count of species i at time t. Each
jump in this process corresponds to the occurrence of one of the
reaction events Rk (k = 1, . . . , M), which brings the cell from the
state x (t−) right before event time t to a new state x (t+) = x (t−) +
νk, where νk is the stoichiometry vector corresponding to the kth
reaction. The probabilistic rate at which each reaction occurs is
characterized by its propensity (or reaction intensity) function, αk
(t, x, θ). The vector θ � (θ1, . . . , θd) is a d-dimensional vector of
model parameters. Intuitively, we interpret αk(t, x, θ)Δt as the
probability for reaction k to fire during the waiting interval [t, t +
Δt) for a sufficiently small waiting time Δt. The probability
distributions pX (t, θ) of single-cell gene product copy numbers
model what is often termed intrinsic noise in gene expression.
These distributions are the solution of the chemical master
equation (CME)

FIGURE 1
Proposed approach to analyze and design single-cell experiments under measurement distortion. Box (A): One or more mechanistic model
hypotheses are proposed to describe gene regulation processes and are associated with prior parameter guesses. These models are combined with
experiment design considerations (e.g., environmental, sampling, andmeasurement conditions) and the chemical master equation framework is used to
predict statistics of single-cell gene expression. Box (B): Empirical data and physical models are used to define a probabilistic distortion operatorC to
estimate how measurement errors (e.g., labeling inefficiencies, resolution limitations, or image processing errors) affect observations. Box (C): Searches
over model and PDO parameter space are conducted to identify model and parameter combinations that maximize the likelihood of the observed
(i.e., distorted) data. Box (D) Sensitivity analysis and the Fisher Information Matrix are computed and used to analyze the information content for different
mechanistic models, distortion effects, or experiment designs. By estimating parameter uncertainties in the context of different forms of measurement
distortion, subsequent experiment designs can help to alleviate measurement noise distortion effects (return to Boxes (A–C)).
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d

dt
pX t, θ( ) � A t, θ( )pX t, θ( ), (1)

where A (t, θ) is the infinitesimal generator of the Markov process
described above [see Supplementary Data Sheet S1, Section 1 for
detailed definition of A (t, θ)]. Extrinsic noise can be modeled by
assuming a probabilistic variation for the model parameters, then
integrate (1) over that distribution (Ruess et al., 2015). However, we
focus on intrinsic noise for the current investigation.

2.1.1 Computing the likelihood of single-cell data
Consider a data setD that consists of Nc independent single-cell

measurements (t1, c1), . . . , (tNc, cNc) where ci is the vector of
molecule counts of cell i measured at time ti. The likelihood
function of the biophysical parameters θ given the data set D is
given by

L θ|D( ) � ∏Nc

i�1
pX ti, ci, θ( )

where pX (t, x, θ) is the probability of observingmolecular counts x at
time t, obtained by solving the CME (1). Taking the logarithm of
both sides, we have the log-likelihood function

log L θ|D( ) � ∑Nc

i�1
logpX ti, ci, θ( ), (2)

which is mathematically and numerically more convenient to
work with.

2.1.2 Sensitivity analysis
Taking the partial derivative of both sides of the CME (1) with

respect to parameter θℓ (ℓ = 1, . . . , d), we get

d

dt

zpX t, θ( )
zθℓ

( ) � zA t, θ( )
zθℓ

pX t, θ( ) + A t, θ( ) zpX t, θ( )
zθℓ

.

when the state space of the Markov process is finite, we can collect
the equations above for ℓ = 1, . . . , d along with the CME (1) to form
a joint system involving the CME solution pX (t, θ) and its partial
derivatives sX,ℓ(t, θ) ≡ zpX (t, θ)/zθℓ, given by

d

dt

pX t, θ( )
sX,1 t, θ( )

..

.

sX,d t, θ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

A t, θ( ) 0 . . . 0
zθ1A t, θ( ) A t, θ( ) . . . 0

..

.
1

zθdA t, θ( ) 0 . . . A t, θ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pX t, θ( )
sX,1 t, θ( )

..

.

sX,d t, θ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

This forward sensitivity system can be solved numerically with
any standard ODE solver. When the state space is infinite, a
truncation algorithm based on extending the Finite State
Projection (Fox and Munsky, 2019) can be applied to
approximately solve the forward sensitivity system (see
Supplementary Data Sheet S1, Section 3.1 for more details).

Knowing the sensitivity of the distribution to parameter changes
then allows us to compute the sensitivity of the log-likelihood
function with respect to biophysical parameters θ1, . . . , θd using
the formula

z

zθℓ
log L θ|D( ) � ∑Nc

i�1

sX,ℓ t, ci, θ( )
pX t, ci, θ( ) ,

where sX,ℓ(t, x, θ) ≡ zpX (t, x, θ)/zθℓ is the sensitivity for the specific
molecular counts x at time t.

2.1.3 Modeling distortion of measurements
Let y(t) be the multivariate measurement made on a single cell at

time t, such as the discrete number of spots in an smFISH
experiment, or the total fluorescence intensity, such as from a
flow cytometry experiment. Because of random measurement
noise, y(t) is the realization of a random vector Y(t) that is the
result of a random distortion of the true process X(t). The
probability mass (density) vector (function) pY(t) of the discrete
(continuous) observable measurement Y(t) is related to that of the
true copy number distribution via a linear transformation of the
form

pY t, θ( ) � CX→Y t, θ( ) pX t, θ( ). (3)
Mathematically, CX→Y(t, θ) functions as a Markov kernel, and

we shall call it the Probabilistic Distortion Operator (PDO) to
emphasize the context in which it arises. Considered as a matrix
whose rows are indexed by all possible observations y and
whose columns are indexed by the CME states x, it is given
entry-wise as

CX→Y t, θ( ) y, x( ) ≔ Pr Y t( ) � y|X t( ) � x, θ( ), (4)
where Pr stands for probability mass if Y is discrete or probability
density if Y is continuous. Together, Eqs 1, 3 describe single-cell
measurements as the time-varying outputs of a linear dynamical
system on the space of probability distributions on the lattice of
N-dimensional discrete copy number vectors. The output matrix
of this dynamical system is the PDO CX→Y. If the observations
c1, . . . , cNc in the dataset D are assumed to be distorted
according to the PDO C, then the log-likelihood function (2)
is changed into

logL θ|D( ) � ∑Nc

i�1
logpY ti, ci, θ( ) (5)

where pY (t, y, θ) are point-wise probabilities of the distribution pY
(t, θ) defined in (3).

There are many different ways to specify the PDO, depending
on the specifics of the measurement method one wishes to model.
In this paper, we demonstrate various examples where the PDO is
formulated as probabilistic models that use simple distributions
as building blocks (see Results and Supplementary Data Sheet S1,
Section 3.2), or as deterministic binning/aggregation (Results and
Supplementary Data Sheet S1, Section 3.2). One could even use a
secondary CME to model the uncertain chemical kinetics of the
measurement process, such as the random time needed to achieve
chemical fixation in smFISH experiments or the dropout and
amplification of mRNA that occurs during single-cell RNAseq
experiments (Supplementary Data Sheet S1, Section 3.3), or
distribution convolution to describe cell segmentation noise
(Supplementary Data Sheet S1, Section 3.4). Despite the
variety of ways these measurement noise models can be
derived, they all lead to the same mathematical object (i.e., the
PDO), which allows computation of the FIM associated with that
particular noisy single-cell observation approach, and the effects
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of all PDO can be analyzed using the same computational
procedure as we describe next.

2.1.4 Computation of the Fisher Informationmatrix
for distorted experimental measurements

In practice, when closed-form solutions to the CME do not
exist, a forward sensitivity analysis using an extension of the finite
state projection algorithm can be used to evaluate the probability
distribution pX (t, θ) and its partial derivatives zθjpX(t, θ) with
respect to the kinetic parameters (Fox and Munsky (2019). Using
Eq. 3, we can transform these into the distribution pY (t, θ) of Y(t).
Furthermore, the sensitivity indices sjY(t, θ) � zθjpY(t, θ), of the
observable Y are computable by back-propagating the
sensitivities of the noise-free measurement distributions
through the PDO,

z

zθj
pY t, θ( ) � CX→Y t, θ( ) z

zθj
pX t, θ( ) + zθjCX→Y t, θ( )pX t, θ( ). (6)

Then, the Fisher Information matrix (FIM) FY(t)(θ) of the noisy
measurements Y(t) at time t is computed by

FY t( ) θ( )[ ]i,j � ∑
y

siY t, y, θ( )sjY t, y, θ( )
pY t, y, θ( ) . (7)

Details of the numerical approximation can be found in
Supplementary Data Sheet S1 Section 3.1. In this formulation, we
only need to solve the (usually expensive) sensitivity equations
derived from the CME once, then apply relatively quick linear
algebra operations to find the FIM corresponding to any new
PDO for specific microscope, fixation protocol, or probe designs.

To convert the FIM between parameters defined in linear space
to the same parameters in logarithmic space, we apply the
transformation:

FY t( ) logθ( )[ ]i,j � θiθj FY t( ) θ( )[ ]i,j. (8)

Computation of the distorted distributions and FIMs are
performed in Python using the NumPy library (complete
codes available at https://doi.org/10.5281/zenodo.7896003) for
the first set of results (Figures 2–4; Supplementary Figures
S1–S10) or using Matlab (complete codes available at https://
doi.org/10.5281/zenodo.7864743) for the second half of results

FIGURE 2
Probabilistic distortion operators. (A) The “Missing Spots” (MS) distortion model, where spots can randomly go missing. (B) The “Missing Spots with
Variable Rate” (MSVR) distortion, where the probability of missing a spot increases with spot density. (C) The “Poisson Noise” (PN) model, where false
positive spots are added to the counted number of spots. (D) A “Poisson Observation” (PO) model, where the detected spots follow a Poisson distribution
with mean proportional to the true number. (E) The “Integrated Intensity” (II) model, where only a perturbed version of the total fluorescence is
recorded per cell. In each heatmap, the color at point (~x, ~y) is the conditional probability mass/density of themeasurement y having value ~y given that the
true copy number x has value ~x.
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(Figures 5–8; Supplementary Data Sheet S1, Supplementary
Figures S11, S12). Details of computer hardware and software
are provided in Supplementary Data Sheet S1.

2.1.5 Parameter estimation and uncertainty
quantification

Models are fit to experimental data in Matlab [R2021b, Inc.
(2022)], using an iterated combination of the builtin fminsearch
algorithm [an implementation of the Neldar-Mead simplex
method, Lagarias et al. (1998)] to get close to the MLE (i.e., to
maximize the likelihood in Eq. 5) followed by a customized
version of the Metropolis Hastings (MH) sampling routine,
mhsample Chib and Greenberg (1995). Chemical master
equation models are define using sparse tensors utilizing the
Tensor Toolbox for Matlab Bader and Kolda (2008). All
parameter searches were conducted in logarithmic space, and
model priors were defined as lognormal with log-means and
standard deviations as described in the main text. For the MH
sampling proposal function, we used a (symmetric) multivariate
Gaussian distribution centered at the current parameter set
and with a covariance matrix proportional to the inverse of
the Fisher Information matrix (calculated at the MLE
parameter set) and scaled by a factor of 0.8, which achieves an

approximately 20%–50% proposal acceptance rate for all
combinations of PDOs and data sets. MH chains were run for
20,000 samples. Convergence was checked by computing the
autocorrelation function and verifying that the effective sample
size was at least 1,000 for every parameter in every MH chain. All
data, model construction, FSP analysis, FIM calculation,
parameter estimation, and visualization tasks were performed
using a preliminary version of the Stochastic System
Identification Toolkit (SSIT), and full codes are available at
https://doi.org/10.5281/zenodo.7893296.

2.2 Single-cell labeling and imaging

2.2.1 Cell culture
The experiments presented here were performed on Hela Flp-in

H9 cells (H-128). The generation of the H-128 cell line has previously
been discussed (Tantale et al., 2016). Briefly, Tat expression regulates
the MS2X128 cassette-tagged HIV-1 reporter gene in H-128 cells. The
HIV-1 reporter consists of the 5′and 3′long terminal repeats, the polyA
sites, the viral promoter, the SD1 and SA7 splice donors, and the Rev-
responsive element. Additionally, the MS2 coating protein conjugated
with a green fluorescent protein (MCP-GFP), which binds toMS2 stem

FIGURE 3
Estimating and correcting for how measurement distortion affects model identification. (A): Schematic of the random telegraph gene expression
model. Parameter values: gene activation rate kON = 0.015 events/minute, gene deactivation rate kOFF = 0.05 events/min, transcription rate kr = 5
molecules/minute, degradation rate γ= 0.05molecules/minute. (B): A submatrix of the PDO formissing spots with varying rates, restricted to the domain
{0, . . . , 200}×{0, . . . , 100}. (C,D): Maximum likelihood fits to validate FIM-based uncertainty quantification for observed mRNA distributions under
distortion model shown in (B). We simulated 1,000 datasets and performmaximum likelihood fits to these datasets using either a likelihood function that
ignores measurement noise (red, labeled “MLE with uncorrected likelihood”), or one whose measurement noise is corrected by incorporating the PDO
(dark green, labeled “MLE-PDO fits”). The estimated density contours (delineating 10, 50, and 90 -percentile regions) of the fits are superimposed in light
shades. Also displayed are the three-sigma confidence ellipses computed by the FIM-PDO approach or from sample covariance matrix of the corrected
MLE fits. Panel (C) shows the results in log10 (kOFF) − log10 (kON) plane, while panel (D) shows them in the log10 (kr) − log10(γ) plane. The intersection of the
thick horizontal and vertical lines marks the location of the true data-generating parameters. See Table 2 for a quantitative comparison between the
uncorrected MLE and MLE-PDO.
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loops when transcribed, is expressed persistently by H-128 cells. Cells
were cultured in Dulbecco’s modified Eagle medium (DMEM, Thermo
Fisher Scientific, 11,960–044) supplementedwith 10% fetal bovine serum
(FBS, Atlas Biologicals, F-0050-A), 10 U/mL penicillin/streptomycin (P/
S, Thermo Fisher Scientific, 15140122), 1 mML-glutamine (L-glut,
Thermo Fisher Scientific, 25030081), and 150 μg/mL Hygromycin
(Gold Biotechnology, H-270-1) in a humidified incubator at 37°C
with 5% CO2.

2.2.2 smiFISH and microscopy
Single-molecule inexpensive fluorescence in situ hybridization

(smiFISH) was performed following a protocol previously described

(Tsanov et al., 2016; Haimovich and Gerst, 2018). This technique is
known as inexpensive, because the primary probes consist of a
region binding the transcript of interest plus a common sequence
established as FLAP, which is bound by a complementary FLAP
sequence conjugated with a fluorescent dye following a short PCR-
cyle (the primary and FLAP-Y-Cy5 probes used in this study were
purchased from IDT, see Table 1). To perform smiFISH, H-128 cells
were plated on 18 mm cover glasses within a 12-well plate (~ 105

cells/well), 24 h before the experiment. Some samples were exposed
to 5 μM triptolide (Sigma-Aldrich, 645,900) for different incubation
periods. Immediately after these drug treatment periods, samples
were washed out twice with RNAse free 1XPBS, and fixed in 4% PFA

FIGURE 4
Optimizing experiment sampling rate under different measurement distortion effects. (A): Comparison of D-optimality criteria in single-cell
experiments with different types of measurement noise and at different sampling intervals (Δt). In this settings, independent measurements are collected
at five equally-spaced time points kΔt, k = 1, 2, 3, 4, 5 with 1,000measurements placed at each time-point. The+ symbol marks the optimal point of each
curve and the bar charts in (B) visualizes the relative differences in D-optimal achievable by the measurement methods at their respective optimal
sampling rates. (C,D): The three-sigma confidence ellipses projected onto the log10 (kON) − log10 (kOFF) and log10 (kr) − log10(γ) planes. These ellipses are
computed by inverting the FIMs of different measurement noise conditions at their optimal sampling rates. All analyses use the model and parameters
from Figure 3.
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FIGURE 5
Effect of labeling strategy on quantification of single-cell mRNA expression. (A) Example image of a single-cell population expressing a reporter
gene controlled by an HIV-1 promoter and containing 128XMS2 stem-loop cassette, in which the mRNA was simultaneously measured using MCP-GFP
labeling (green) and with smiFISH probes against MS2-Cy5 (magenta). A higher resolution image of the indicated single nucleus is shown at the top;
merged image on the right includes DAPI and MemBrite cell surface stain 543/560 to denote the cell nucleus and plasma membrane, respectively.
Triangles denote example mRNA that are detected in both channels (white, 34.8%), only in the MCP-GFP channel (green, 37.5%) and only in smiFISH
(MS2-Cy5) channel (magenta, 27.7%). (B) BIC to compare different combinations of PDO (columns) and measurement type (rows) given an assumed
“true” measurement of smiFISH mRNA. In all cases, PDO parameters are chosen to maximize likelihood for t = 0 and 300 min data, and t = 18 min is
predicted without chanign parameters. Blue shading denotes PDO selection is identical if based on BIC for (0,300) min data or prediction of 18 min data.
(C) Scatter plot of the spot count using MCP-GFP versus using smiFISH for data collected at t = 0 min (black squares). Shading and contour lines denote

(Continued )
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at RT for 10 min, followed by 70% ethanol permeabilization at 4°C
for least 1 h. After washing each sample with 150 μL of wash A buffer
(Biosearch Technologies, SMF-WA1-60) for 5 min, each cover glass
was set on a droplet (cells facing down) consisting of 45 μL
hybridization buffer (Biosearch Technologies, SMF-HB1-10) and
1 μL of the duplex smiFISH probes (MS2-transcript-binding probe
mix + FLAP-Y-binding region annealed to FLAP-Y-Cy5) in a
humidified chamber at 37°C overnight. The following day,
samples were placed in a fresh 12-well plate, and the cells (facing
up) were incubated twice in wash A buffer at 37°C for 30 min, first
alone, and then containing DAPI. Finally, cells were incubated with
wash B buffer (Biosearch Technologies, SMF-WB1-20) at RT for
5 min, and then mounted on a 15 μL drop of Vectashield mounting
medium (Vector Laboratories, H-1000-10), and sealed with
transparent nail polish.

Fluorescent images were acquired with an Olympus
IX81 inverted spinning disk confocal (CSU22 head with quad
dichroic and additional emission filter wheel to eliminate spectral
crossover) microscope with 60x/1.42 NA oil immersion objective.
Confocal z-stacks (0.5 μm step-size, 27 stacks in each channel)
were collected. Each field of view was imaged using four high-
power diode lasers with rapid (microsecond) switcher (405 nm
for DAPI, 488 nm for MS2-MCP-GFP reporter, 561 nm for
cytosol marker, and 647 nm for smiFISH MS2-Cy5, exposure
time of 100 ms for all except smiFISH channel that was 300 ms)
when samples had cytosol marker or three lasers for samples
without the marker. The system has differential interference
contrast (DIC) optics, built-in correction for spherical
aberration for all objectives, and a wide-field Xenon light
source. We used an EMCCD camera (iXon Ultra 888, Andor)

FIGURE 5 (Continued)
the levels of the PDO (log10C) that has been determined empirically from the data. (D,E) Empirical probability mass (D, bin size = 20) and cumulative
distributions (E, no binning) for number of detected smiFISH spots detection (red) and number of detected MCP-GFP spots (blue). Predicted MCP-GFP
spot distributions using the smiFISH spot measurements and the estimated PDO are shown in green. (F–H) Same as (C–E) but where the distorted
measurement is the total integrated intensity of the smiFISH channel. (I–K) Same as (C–E) but where the distorted measurement is the total
integrated intensity of the GFP channel.

FIGURE 6
Validation of PDO on held out data. (A) Scatter plot of smiFISH spot counts andMCP-GFP spot counts for data collected at t= 18 min and contour of
PDO determined from data at t = (0, 300) min. (B,C) PDF (bin size = 20) and CDF for smiFISH mRNA detection (red) or with MCP-GFP (blue) and MCP-
GFP-based PDO-prediction of total mRNA (green). (D–F) Same format as (B–D) but formeasurements of the total smiFISH fluorescence intensity per cell.
(G–I) Same format as (B–D) but for measurements of the total GFP fluorescence intensity per cell.
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integrated for image capture using Slide book software
(generating 60× images with 160 nm/pixel). The imaging size
was set to 624 × 928 pixels2. All raw images are available at https://
doi.org/10.5281/zenodo.7868322.

2.2.3 smiFISH image processing
In this study, we employed Python to implement an image

processing pipeline comprising three steps: cell segmentation,
spot detection, and data management [as previously described

in Safieddine et al. (2022)]. Nuclear segmentation on the DAPI
channel (405 nm) was carried out using Cellpose (Stringer et al.,
2021) with a 70-pixel diameter as an input parameter. Spot
quantification for both the MS2-MCP-GFP reporter channel
(488 nm) and the smiFISH MS2-Cy5 channel (647 nm) was
performed independently, using BIG-FISH software (Imbert
et al., 2022). The spot quantification procedure employed a
voxel-XY of 160 nm, a voxel-Z of 500 nm, and spot radius
dimensions of 160 nm and 350 nm in the XY and Z planes,

FIGURE 7
Identification of stochastic model for MS2X128 cassette-tagged HIV-1 reporter gene. (A) Schematic of the 3-state bursting gene expression model.
(B) Results for model fitting, prediction, and uncertainty quantification for measurements based smiFISH spots (top row), MCP-GFP spots (row 2), total
FISH intensities (row 3) and GFP intensities (row 4). Left two columns show the measured and model-fitted probability mass vectors (PMV) at 0 and
300 min after 5 μM Tpt. Third column shows the model-predicted and measured PMV for the corresponding (distorted) measurement modality at
18 min after 5 μMTpt. Fourth column shows themodel predictionwithout distortion andmeasured PMV for the smFISHmRNA count at 18 min after 5 μM
Tpt. All histograms use a bin size of 20. Log-likelihood values for all model-data comparisons (and BIC values for fitting cases, k = 4 parameters, N =
197 cells) are computed without binning and are shown below the corresponding histograms. Right two columns show joint parameter uncertainty for
model estimation using data for 0 and 300 min after 5 μM Tpt. In each case, the 90% CI for prior is shown in cyan; Metropolis Hastings samples (N =
20,000) are shown in dots; 90% CI for posterior is shown in dashedmagenta; and FIM-based estimate of 90% CI is shown in black. Horizontal and vertical
dashed black lines denote the “true” parameters and are defined as the MLE when using fit to the smFISH counts and using all time points. Determinant of
inverse FIM and covariance of MH samples is shown below each pair of uncertainty plots (both use log base 10).
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respectively. This process included the following steps: i) the
original image was filtered using a Laplacian of Gaussian filter to
improve spot detection. ii) Local maxima in the filtered image
were then identified. iii) To distinguish between genuine spots
and background noise, we implemented both an automated
thresholding strategy and a manual approach involving the
use of multiple threshold values between 400 and 550. The
intensity thresholds (550 for MS2-MCP-GFP and 400 for
smiFISH MS2-Cy5) that resulted in the highest number of
co-detected spots in both channels were chosen.
Additionally, we quantified the average nuclear intensity for
each color channel by computing the mean intensity of all pixels
within the segmented nuclear region. Data management

involved organizing all quantification data into a single
dataset, including information on the specific image and cell
in which the spots were detected. All image processing codes
(Aguilera et al., 2023) are available from https://doi.org/10.
5281/zenodo.7864264.

3 Results

Many models have been used to capture and predict
observations of single-cell heterogeneity in gene expression
(Munsky et al., 2009; Skupsky et al., 2010; Lou et al., 2012;
Earnest et al., 2013; Neuert et al., 2013; Sepúlveda et al., 2016;

FIGURE 8
Design of Subsequent Experiment for MS2X128 cassette-taggedHIV-1 reporter gene. (A) Expected volume of uncertainty (det (FIM−1)) versus time of
thirdmeasurement assuming 100 cells andmeasurement of: (left to right) smiFISHmRNA, MCP-GFP spots, FISH intensity, or GFP intensity. Solid lines and
shading denote mean ± SD for 20 parameter sets selected from MH chains after fitting initial data (magenta, t = (0,300) min) or final data (cyan, t =
(0,18,300) min). Cyan and magenta vertical lines denote the optimal design for the third experiment time assuming the corresponding parameter
values. (B) Expected volume of MLE uncertainty (det (FIM−1)) for different sets of experiment times and measurement modalities and averaged over
20 parameters sets sampled from the MH chains for initial fit (magenta) or final parameter estimates (cyan). (C) Volume of MLE uncertainty (det (ΣMH)
estimated from MH analysis in the same experiment designs as (B). (D) Posterior variance versus FIM prediction of variance for each parameter (symbol
key at bottom right), for each measurement modality (different columns) and for analyses based on different sets of data: t =(0,18) min (black), t =(0,300)
min (magenta), or t =(0,18,300) min (cyan). All MH analyses contain 20,000 samples. Measurements include 135 cells at t = 0, 96 at t = 18, and 62 at t =
300. Parameter uncertainties defined in log base 10 for all panels.
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Skinner et al., 2016). When selecting an experimental assay to
parameterize such models, one is faced with several choices, each
with its own characteristic measurement errors (Raj and van
Oudenaarden, 2009). Here, we start by introducing several
mathematical forms for probabilistic distortion operators (PDOs)
that can quantify these measurement errors. We then use a model
and simulated data to show how different measurement errors can
affect model identification, and we show how this can be corrected
through consideration of the PDO in the estimation process. Next,
we show how models and PDOs can be used in the framework of
Fisher Information in iterative design of single-cell experiments for
efficient identification of predictive models. Finally, we illustrate the
practical use of the PDO, model inference, and FIM based
experiment design on the experimental investigation of bursting
gene expression from a reporter gene controlled by an HIV-1
promoter.

3.1 Distorted single-cell measurements
sample a probability distribution that is the
image of their true molecular count
distribution through a linear operator

Most parameters needed to define single-cell signaling or gene
expression models cannot be measured directly or calculated from first
principles. Instead, these must be statistically inferred from datasets
collected using single-molecule, single-cell experimental methods such
as smFISH (Raj et al., 2006; Gómez-Schiavon et al., 2017), flow
cytometry (Lim and van Oudenaarden, 2007; Lipinski-Kruszka et al.,
2015), or live-cell imaging (Suter et al., 2011; Fukaya et al., 2016; Forero-
Quintero et al., 2021). In this work, we focus on the former two
experimental approaches in which collected data consists of
independent single-cell measurements taken at different times. Here,
we consider measurement distortion effects corresponding to probe
binding inefficiency and spot detection for smiFISH experiments, and

in the Supplementary Material, we extend this to consider effects of
reporter fluorescence intensity variability in flow cytometry
experiments (Supplementary Data Sheet S1, Section 3.1), data
binning (Supplementary Data Sheet S1, Section 3.2), effects of
competition with non-specific probe targets (Supplementary Data
Sheet S1, Section 3.3), and effects of segmentation errors
(Supplementary Data Sheet S1, Section 3.4).

We first consider five formulations to define the measurement
distortion matrix (cf. Eq. 4 in Methods, and illustrated in Figure 2),
corresponding to scenarios in which experimental errors arise from
either inefficient mRNA detection, additive false positives, or
combinations. Specifically.

1. The first model supposes that ~y is obtained from a “lossy” spot-
counting process applied on images taken in an smFISH
experiment. We model y|x = j with a binomial distribution
B (pdetect, j), where each spot has a chance pmiss ≔1 − pdetect of
being ignored by the counting algorithm, resulting in
underestimation of the true mRNA copy number. In the
context of optical microscopy, such a distortion might
result from quantifying spots at a single plane, where pdetect
might represent the fraction of the imaged section compared to
the full volume of the cell, but similar error models have also
been proposed in the context of single-cell RNA sequencing
(Larsson et al., 2019; Breda et al., 2021). We call this distortion
“Missing Spots.” Its PDO, CMS is illustrated in Figure 2A for
pmiss ≔0.5 and can be defined:

CMS[ ]i,j � j
i

( ) 1 − pmiss( )ipj−i
miss.

2. The secondmodel is a simple variation of the first model in which
pdetect(j) varies with the number of mRNA molecules j. For
example, the specific formulation, pdetect ≔1.0/(1.0 + 0.01j)
implies that spot detection rate degrades as the number of

TABLE 1 smiFISH probe sequences. Each primary probe has an added common FLAP-Y binding sequence (TTACACTCGGACCTCGTCGACATGCATT).

Probe name Sequence Type

MS2-P1 ATCCGTTCAAAGGCCTATTGGTCCTTTGC Primary

MS2-P2 ATCCTCATGTACTAGCTTCCGAGTAATCT Primary

MS2-P3 AGCTTGGGTTATTACTCCAAGATCACCGC Primary

MS2-P4 TCCTGATAGGCTGTACTCATGCCTAC Primary

MS2-P5 GGGTAATCATTCTAGTGATATGATTCTGTGCC Primary

MS2-P6 GATCATACCGTATTCGTGTATGATTACATGGG Primary

MS2-P7 TAATTGTGCGGTCGCTGACTGATACTTCTA Primary

MS2-P8 TATTTCTCTCTGATACGCTGCGTACTCG Primary

MS2-P9 ACCCTAATGGTGTTTACAAATGGTGGTAGTCC Primary

MS2-P10 TGTTATTCTAATCCGTCACTATTGTTGACGGG Primary

MS2-P11 AAGCCTTACTGATGCTTCCGGTCCATT Primary

MS2-P12 ATCCTCATGTACTAGAGGCTCGGTACTC Primary

FLAP Y-Cy5 AATGCATGTCGACGAGGTCCGAGTGTAA Secondary
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mRNA molecules in the cell increases, which may correspond to
the effect of co-localization and/or image pixelation which could
cause the under-counting of overlapping spots. We call this
model “Missing Spots with Varying Rate,” and CMSVR is
illustrated in Figure 2B and can be expressed:

CMSVR[ ]i,j � j
i

( )pdetect j( )i 1 − pdetect j( )( )j−i.
3. The third model assumes that ~y is the output of a spot-detection

process contaminated by false positives, e.g., due to background
fluorescence noise in the image that can appear to be spots. We
model these false positives by additive Poisson noise, making ~y �
j + ~e where ~e ~ Poisson(λ). We call this model “Poison Noise,”
and CPN, which is illustrated in Figure 2C for λ = 10 and can be
expressed:

CPN[ ]i,j � λj−i exp λ( )
j − i( )! for i≥ j and otherwise zero

4. The fourth model is a simple extension of the third model in which
the number of detected spots given a true number, j, is a Poisson
distribution with a varying mean λ(j). Specifically,
λ(j) ≔ max(0, λ0 + λ1j), where λ0 is Poisson noise, and λ1 is
the Poisson detection rate. We call this model “Poisson
Observation,” and CPO is illustrated in Figure 2D and expressed as:

CPO[ ]i,j � λ j( )i exp λ j( )( )
i!

.

5. The fifth model concerns fluorescent intensity integration
measurements (such as those used in flow cytometry). We use
the model proposed in (Munsky et al., 2009), in which
~y � κ · j + ~ηj + ~εBG, where ~ηj ~ N (0, jσ2probe) models
fluorescent heterogeneity and ~εBG ~ N (μBG, σ2BG) is the
background noise. The PDO is a hybrid matrix with discrete
columns (i.e., its domain are probability vectors over discrete
CME states) and continuous rows (its range consists of
continuous probability density functions over the range of
fluorescence intensities). This PDO, which we label
“Integrated Intensity” and is illustrated in Figure 2E for μBG =
200, σBG = 400, κ � σ2probe � 25, can be expressed:

CII y|j( ) � 1��������������
2π σ2BG + jσ2probe( )√ exp

− y − κj( )2
2 σ2BG + jσ2probe( )⎛⎝ ⎞⎠.

For intensity measurement with finite resolution,CII can be defined
over discrete bins (e.g., (y0, y1], (y1, y2], . . .) by integrating as follows:

CII[ ]i,j � ∫yi

yi−1

1��������������
2π σ2BG + jσ2probe( )√ exp

− y − κj( )2
2 σ2BG + jσ2probe( )⎛⎝ ⎞⎠dy.

We stress that these PDOs are provided as just a few of many
possible distortions that could be modeled using the proposed
framework. Other, more complex distortion operators are
discussed in Supplementary Data Sheet S1, Section 3, including
one where a secondary CME is employed to model the uncertain

chemical kinetics of the measurement process (Supplementary Data
Sheet S1, Section 3.3) and another to describe cell merging due to
image segmentation errors (Supplementary Data Sheet S1,
Section 3.4).

3.1.1 Measurement noise introduces bias and
uncertainty into model identification

To illustrate the impact of measurement distortion on parameter
estimation and our use of the PDO formalism to mitigate these effects,
we begin with an analysis of the random telegraph model (Figure 3A),
one of the simplest, yet most commonly utilized models of bursty gene
expression (Peccoud and Ycart, 1995; Raj et al., 2006; Suter et al., 2011;
Sanchez and Golding, 2013; Senecal et al., 2014; Larsson et al., 2019). In
this model, a gene is either in the inactive or active state, with transition
between states occurring randomly with average rates kON (to activate
the gene) and kOFF (to deactivate the gene). When active, the gene can
be transcribed with an average rate kr to produce mRNA molecules,
each of which degrades with an average rate γ.

To demonstrate how measurement distortions affect parameter
identification, and why explicit measurement error modeling is
necessary, we use the bursting gene expression model to simulate
mRNA expression data where each cell is distorted by the MSVR
effect above (PDO reproduced in Figure 3B). Each data set consists
of five batches of 1,000 independent single-cell measurements that
are collected at five equally-spaced time points jΔt, j = 1, 2, 3, 4, 5
with Δt = 30 min. We considered two methods to fit the telegraph
model to these data based on the Maximum Likelihood Estimator
(MLE): one in which the likelihood function ignores measurement
noise, and one where measurement noise modeled by the PDO is
incorporated into the likelihood function (see Supplementary Data
Sheet S1, Section 2 for their formulations). If one fails to account for
measurement uncertainty, these fits produce strongly biased
estimates for the RNA production and degradation rates as seen
in Figures 3C, D (red). Because this bias is inherent to the
measurement technique, it cannot be corrected simply by
averaging over more experiments. On the other hand, using the
distortion correction method, Figures 3C, D (dark green) shows that
the inaccurate spot counting procedure can be corrected by
explicitly accounting for measurement uncertainty in the
modeling phase. Quantitatively (see Table 2), the MLE fits that
incorporate noise modeling have lower bias (in terms of relative
root-mean-squared errors) for all four parameters compared to the
uncorrected fits.

Figures 3C, D also demonstrate that the Fisher Information
Matrix computed for the noisy measurement (see Eq. 7) produces a
close approximation to the covariance matrix of the MLE (compare
magenta and black ellipses). This suggests that the FIM can provide
a relatively inexpensive means to quantify the magnitude and
direction of parameter uncertainty, a fact that will be helpful in
designing experiments that can reduce this uncertainty, as we will
explore next.

3.1.2 Fisher Informationmatrix analysis reveals how
optimal experiment design can change in response
to different measurement distortions

Having demonstrated the close proximity between our FIM
computation and MLE uncertainty for simulated analyses of the
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bursting gene expression model, we next ask whether the sampling
period Δt could be tuned to increase information but using the same
number of measurements. Recall that our simulated experimental
set-up is such that measurements could be placed at five uniformly-
spaced time points tj = jΔt, j = 1, 2, 3, 4, 5, with the sampling period
Δt in minutes, and that at each time point we collect an equal
number n of single-cell measurements, chosen as n≔1,000. We find
the optimal sampling period Δt for each measurement distortion
(MS, MSVR, PN, PO, and II), and compare the most informative
design that can be achieved for each class. Here, we define “optimal”
in terms of the determinant of the Fisher InformationMatrix, the so-
called D-optimality criterion, whose inverse estimates the volume of
the parameter uncertainty ellipsoid for maximum likelihood
estimation (Atkinson and Donev, 1992). Figures 4A, B shows the
information volume to the five kinds of noisy measurement
described above (Figure 2), in addition to the ideal noise-free
smiFISH, at different sampling rates. We observe that every
probabilistic distortion to the measurement decreases the
information volume (but to different extents), and that each
measurement method results in a different optimal sampling rate.
In Figures 4C, D, we plot the three-sigma (i.e., 99.7%) confidence
ellipsoids of the asymptotic distribution of MLEs projected on the
log10 (kON) − log10 (kOFF) plane and the log10 (kr) − log10(γ) plane.

3.2 FIM and PDO analysis of experimental
measurements for HIV-1 promoter bursting
kinetics

To provide a concrete example for the use of the FIM and PDO
in practice, we performed single-cell measurements to quantify the
relative measurement distortion between different single-mRNA
labeling strategies in HeLa (H-128) cells (see Methods). We
expressed a transcription reporter gene with 128 repeats of the
MS2 hairpin, and we simultaneously used both MCP-GFP (green
labels in Figure 5A) and smiFISH MS2-Cy5 (magenta labels in
Figure 5A) to target the MS2 repeats. In each cell, both approaches
detect similar patterns for the number and spatial locations of
mRNA within the nuclei (Figures 5B–G). For our particular choice
of image processing algorithm (Stringer et al., 2021; Imbert et al.,
2022; Safieddine et al., 2022) and intensity threshold for spot
detection (see Methods) and a two-pixel (x,y,z) Euclidean

distance threshold for co-localization detection, after analyzing
135 cells in steady-state conditions, we found that 46.9% of mRNA
spots (15,258 out of 32,526 total) were detected in both channels
(e.g., spots denoted by white triangles in Figure 5A). However,
many spots (21.3%, 6,913 spots) are detected only using smiFISH
(e.g., those denoted with magenta triangles) and 31.8%
(10,355 spots) are only detected using the MS2-MCP labels
(e.g., green triangles). Due to differences in label chemistry,
background fluorescence, and image analysis errors, the
quantified distribution of mRNA expression depends heavily
upon which assay is utilized (compare Figures 5C–H). For
example, we observed that analyses of cells that have fewer than
10 spots in the smiFISH channel frequently result in large numbers
of spurious spots when the same cells are analyzed in the MCP-
GFP channel (black markers on left limit of Figure 5C and high
density at zero in Figures 5D, E). These differences in measurement
quantification support the need for consideration of measurement
distortions in subsequent analysis.

3.2.1 PDO measurement noise parameters can be
calibrated using single-cell experiments with
multiple measurement modalities

To demonstrate the parameterization and selection of a PDO for
these data, we measured expression using smiFISH or MCP-GFP
spot counts as well as with total integrated fluorescence intensity in
the FISH or GFP channels. These measurements were collected for
135 cells at t = 0 and 62 cells at t = 300 min after transcription
deactivation by 5 μM Trp. We then defined the detected smiFISH
spots as the “true” measurements {x1, . . . , xNc} and considered the
MCP-GFP spot counts, FISH intensity, and GFP intensity values as
three different groups of distorted observations {y1, . . . , yNc}. We
then assumed three possible PDO formulations for each
measurement modality, including the simple “Poisson
Observation” (PO) and “Integrated Intensity” (II) PDOs from
above, as well as an extended “Spurious Gaussian” (SG) PDO
that is formulated starting with the II model but then extended
to allow for a random fraction (f) of cells with a true spot count of
10 or fewer cells to be miscounted as a random observation drawn
from a Gaussian (i ~ N (μ, σ2)) distribution. For all PDOs, we
assumed that distorted quantities would be rounded to their
nearest non-negative integer value (e.g., negative values would be
rounded up to zero). For each PDO and its corresponding parameter

TABLE 2 Performance of the maximum likelihood estimator (MLE) for estimating bursting transcription kinetic parameters. The third and fourth columns
compare the mean and standard deviation of fits with and without PDO correction (labeled Corrected and Uncorrected, respectively). The final two columns
compare the relative root-mean-squared errors (RMSEs) of these fits. For a quantity of interest q and its n estimated values q̂i , i � 1, . . . , n, we define the

relative RMSE as
��������∑n

i�1(q̂i−q)2
√

|q| .

Parameter True MLE fits mean (Std) MLE fits rel. RMSE

Corrected Uncorrected Corrected Uncorrected

log10 (kOFF) −1.30 −1.30 (1.02 × 10−2) −1.27 (1.15 × 10−02) 7.87 × 10−3 2.83 × 10−2

log10 (kON) −1.82 −1.82 (2.16 × 10−2) −2.07 (2.30 × 10−2) 1.18 × 10−2 1.37 × 10−1

log10 (kr) 0.699 0.698 (8.73 × 10−3) 0.526 (9.19 × 10−3) 1.25 × 10−2 2.48 × 10−1

log10(γ) −1.30 −1.30 (1.06 × 10−2) −1.15 (10–2) 8.18 × 10−3 1.14 × 10−1
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set Λ, we calculate the corresponding PDO, C(Λ), and the log-
likelihood to observe {yi} given {xi} is computed as

logL yi{ }|C, xi{ }( ) � ∑Nc

i�1
log C Λ( )[ ]i�yi,j�xi.

We then independently maximize this likelihood function for each
combination of the three different distorted data sets (MCP-GFP spots,
FISH intensity, GFP intensity) and for the three PDO formulations (PO,
II, SG). For each data set, we finally select the PDO formulation that
results in lowest Bayesian Information Criteria (BIC ≡ k log (Nc) − 2 log
L, where k is the number of parameters in the PDO) for the t = 0 and t =
300 min data (Figure 6B). We also verified in all cases that the PDO
selection also maximized the likelihood of the predictions for held-out
data at t = 18 min after Tpt treatment (Figure 6B). Upon fitting and
selection based on either BIC or cross-validation, we found that MCP-
GFP spot count data and GFP intensity distortions were best
represented by the “Spurious Gaussian” PDO (CSG), while the FISH
intensity measurements were best represented by the “Integrated
Intensity” PDO (CII).

Figures 5C, F show the contours of the corresponding PDOs for
the MCP-GFP spot and FISH intensity data, respectively, and
Figures 5D, E, G, H show the PDF and CDF for the “true”
smiFISH mRNA count data at t = 0 (blue lines) compared to the
distorted data (red lines). From the figures, we find the distortion
model does a good job to calibrate between the total mRNA and
MCP-GFP- or smiFISH-detected spot counts (compare blue and
green lines in Figures 5D, E, G, H and the BIC values for (0,300) min
in Figure 5B). We next verified that the PDO remains constant by
showing that the same models and same parameters also accurately
reproduce the difference in total mRNA and MCP-GFP or smiFISH
measurements at a held out time of 18 min after application of 5 μM
Trp (see Figure 6, and BIC values for 18 min in Figure 5B).

3.2.2 The PDO allows estimation of predictive
bursting gene expression model parameters from
distorted data

We next asked if using the estimated PDO while fitting the
MCP-GFP spot data or the total FISH or GFP intensity data would
enable the identification of appropriate model parameters to predict
the smiFISH mRNA counts. Based on previous observations
(Forero-Quintero et al., 2021), we proposed a 3-state bursting
gene expression model (Figure 7A) where each of two alleles can
occupy one of three states: S1 = OFF, where no transcription can
occur; S2 = Poised, where the promoter is ready to begin
transcription; and S3 = Active, where transcripts are produced in
rapid bursts of mRNA expression. The model contains six
parameters: kON and kOFF are the promoter transition rates
between the OFF and Poised states; ω and kEx are the burst
frequency and burst exit rates; and kr and γ are the transcription
and mRNA degradation rates, respectively. Based on previous
observation (Forero-Quintero et al., 2021) that triptolide (Trp)
represses transcription after an average of 5–10 min needed for
diffusion of Trp to the promoter and completion of nascent mRNA
elongation and processing, we model the Trp response as a complete
inactivation of transcription (ω → 0) that occurs at t = 5 min.

To specify a prior guess for the model parameters, we considered
published values from (Forero-Quintero et al., 2021), where we used

live-cell imaging of ON and Poised transcription sites to determine the
burst frequency ω ≈ 0.2 min−1 and that kr and kEx are too fast to be
estimated independently, but are related by a burst size of kr/kEx = β ≈
7.1 mRNA/burst. Also, based on observations in (Forero-Quintero
et al., 2021) that transcription sites remain in the OFF or Poised/Active
states for long periods of 200 min or more, we assumed that kON and
kOFF would be too slow to estimate except under much longer
experiments. We therefore estimated kON = kOFF = 10–4 min−1, but
we sought only to estimate the relative rate for kOFF. We estimated a
typical mammalian mRNA half-life of 60 min yielding a rate γ = 5.8 ×
10−3 min−1.With these baseline values as rough estimates, we assumed a
log-normal prior distribution with a standard log deviation of one order
of magnitude from the literature-based values for parameters {ω, β, γ}
and two orders of magnitude for the more approximate value for kOFF}.
These initial parameter guesses and prior uncertainties are summarized
in Table 3 (column 3).

Having specified parameter priors, we then took single-cell data
for 135 cells at steady state (t = 0) and 62 cells at t = 300 min after
application of 5 μM Trp, and we applied the Metropolis-Hasting
(MH) algorithm (20,000 samples) to estimate rates and uncertainties
for the four free parameters. As above, we assumed that the total spot
count analysis provided the “true” spot count, and we considered
four estimation problems using either the “true” smiFISH mRNA
counts, the MCP-GFP spot count data, the FISH intensity data, or
the GFP intensity data, each using the empirically estimated
distortion operators from before (e.g., Figures 5C, F, I for the
MCP-GFP spots, smiFISH intensity, and GFP intensity data,
respectively). Table 3 presents the MLE parameter values after
this initial stage, and Figure 7B (left two columns) compare the
resulting fits of the model to the data. Figure 7B (right columns)
shows scatter plots of parameter uncertainties for the parameter
identification using either the smiFISH data (top row) or with the
three distortion measurements using the empirical distortion
operator (bottom three rows). From Figure 7B; Table 3, one can
see that all fits do a reasonable job to match their intended data, and
when fit using the PDO parameters, model predictions based only
on the smiFISH and MCP-GFP data match well to the total spot
count analysis (Figure 7B, middle column).

3.2.3 The PDO-corrected FIM accurately estimates
parameter uncertainty after experimental analysis
of the bursting gene expression model

We next used the maximum likelihood models when fit to the
0 and 300 min data to compute the FIM for the corrected MCP-GFP
and smiFISH measurements. Because the parameters cover multiple
orders of magnitude, we transform the FIM to consider the
parameters in log10 space (Eq. 8). To adjust the FIM to consider
the case where there is a prior on the parameters, we add the inverse
of the prior covariance (in logspace) to the calculated FIM:
FIMtotal � FIM + Σ−1

prior. Given that we only collected a single
experimental data set for each time point, it is not possible to
directly compare the FIM to the spread of MLE estimates like we
could for simulated data. However, in Figure 7B (right columns) for
the smiFISH mRNA count and PDO-corrected MCP-GFP spots/
intensity or smiFISH intensity data, we can compare the uncertainty
predicted by the FIM analysis to the posterior uncertainty of our
parameters given our data. This comparison shows that in most
cases the FIM does an excellent job to estimate the direction and
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magnitude of parameter uncertainties (compare overlapping black
and magenta ellipses in Figure 7B and see Table 3 for direct
comparison of estimated standard deviations). However, it is
important to note an exception where the FIM prediction does
not match the MH analysis for the largest distortion (GFP intensity
measurements). In this case, the FIM predicted variance is much
larger than for the other cases [note the change in scales in Figure 7B
(bottom right)], but the posterior found by theMH analysis is clearly
non-Gaussian. As we will see in the next section, the reason for this
failure is likely that the (0,300) min experiment design with this
distortion provides insufficient information to identify the model.

3.2.4 PDO-corrected FIM analysis accurately ranks
designs for most informative transcription-
repression experiment

To demonstrate the practical use of FIM for experiment design,
we next asked what design for a Trp-based transcription repression
experiment would be best to improve our model of mRNA
expression identified in Figure 7. We restricted the set of possible
experiments to the previous data set (135 cells at t1 = 0 min and
62 cells at t2 = 300 min) plus an additional set of 100 cells at a new
time t3 after Trp application, where t3 could be any time in the
allowable set t3 ∈ [0, 6, 12, 18, . . . , 1,200] min.

TABLE 3 Parameter priors, MLE estimates, Uncertainties upon Initial Fit. Initial estimates after fitting to data at t =(0,300) min. MH results are from a chain of
20,000 samples. All parameter values and standard deviations values are shown in log10.

Parameter Quantity Prior smiFISH MCP-GFP spots FISH intens GFP intens

kOFF (min−1) log10(λ) −4.0 −4.215 −3.852 −3.840 −4.619

σp/MH 2.0 0.091 0.083 0.069 1.160

σFIM 2.0 0.071 0.060 0.070 0.308

ω (min−1) log10(λ) −0.70 −2.173 −0.357 −0.505 −1.205

σp/MH 1.0 0.117 0.462 0.559 0.752

σFIM 1.0 0.077 0.356 0.475 0.335

β log10(λ) 0.85 2.110 0.710 0.524 1.262

σp/MH 1.0 0.104 0.451 0.556 0.428

σFIM 1.0 0.069 0.379 0.438 0.307

γ (min−1) log10(λ) −2.2 −2.191 −1.965 −2.283 −2.036

σp/MH 1.0 0.031 0.043 0.053 0.695

σFIM 1.0 0.034 0.028 0.053 0.078

TABLE 4 Parameter priors, MLE estimates, Uncertainties upon Final Fit. Final estimates after fitting to data at t =(0,18,300) min. MH results are from a chain of
20,000 samples. All parameter values and standard deviations values are shown in log10.

Parameter Quantity Prior smiFISH MCP-GFP spots FISH intens GFP intens

kOFF (min−1) log10(λ) −4.0 −4.245 −3.734 −3.711 −4.761

σp/MH 2.0 0.066 0.050 0.063 0.962

σFIM 2.0 0.066 0.045 0.060 0.506

ω (min−1) log10(λ) −0.70 −2.318 −0.105 −0.891 −0.591

σp/MH 1.0 0.066 0.478 0.533 0.396

σFIM 1.0 0.071 0.368 0.373 0.247

β log10(λ) 0.85 2.194 0.453 0.834 1.467

σp/MH 1.0 0.059 0.476 0.522 0.317

σFIM 1.0 0.057 0.427 0.454 0.227

γ (min−1) log10(λ) −2.2 −2.200 −1.980 −2.322 −1.186

σp/MH 1.0 0.035 0.034 0.061 0.101

σFIM 1.0 0.036 0.028 0.062 0.072
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We drew 20 random parameter samples from the previous 20,000-
sample MH chains that were estimated using data at t1 = 0 and
t2 = 300min for each data type. We computed the FIM for each
parameter set and for every potential choice for t3. Figure 8A shows the
determinant of the expected covariance of MLE parameters (Σ ≈
FIM−1, defined in log10 parameter space) versus t3 assuming direct
observation of smiFISH mRNA (left) or distorted observations of
MCP-GFP spots, FISH Intensity, or GFP intensity (right). As expected,
distortion always increases expected uncertainty [compare Figure 8A
(left) to the other columns]. We also find that the optimal time for the
experiment can be highly dependent on the particular assay. In
particular, larger distortions require earlier sampling times to
prevent mRNA expression from falling below the noise introduced
by the distortion.

Although a complete validation of these designs would require a
host of experiments that are beyond the scope of the current
investigation, we analyze a new data set of 96 cells taken at t3 =
18 min to compare experiment designs with time combinations of
(0,18) min, (0,300) min, and (0,18,300) min. Figure 8B shows FIM
predictions of uncertainty using parameters from the original fit to
the (0,300) min data (magenta) compared to the uncertainty
estimate using parameters fit to the final data set with all three
time points (cyan). The original FIM using parameters fit to the
(0,300) min data (Table 3) and the final FIM using parameters fit to
the (0,18,300) min data (Table 4) are in agreement for all
combinations of experiment designs (different groups of magenta
and cyan bars) and for direct observations of smiFISH mRNA (left)
or for any of the distorted data sets. Moreover, upon using theMH to
estimate the posterior parameter distributions, Figure 8C shows that
both the original and the final FIM correctly predict the trend of
parameter uncertainties for each of the different experiment
combinations. For example, the FIM correctly predicts the result
that a set of (135,62) cells at (0,300) min is more informative than the
larger set of (135,96) cells at (0,18) min if one uses the undistorted
data (far left), but the opposite is true if one considers the distortion
due to measurements of GFP intensity (far right). Finally, Figure 8D
shows the variance in each parameter’s estimation for every
measurement type as predicted by the FIM analysis (horizontal
axis) and verified using 20,000 MH samples of the posterior (vertical
axis). The results show a clear correlation between the predicted and
measured uncertainty under either the initial (t = 0,300, magenta) or
the final (t = 0,18,300, cyan) data sets. The analysis also correctly
predicts which parameters are well-identified under which
measurements. For example, the FIM analysis correctly predicts
that the degradation rate γ (triangles) is well identified using just t =
0,300 min data for the undistorted data, the MCP-GFP spot data, or
the FISH intensity data, but requires the t = 18 min data to be
identified using the GFP intensity data. In other words, the FIM
analysis now explains the failure to identify well-constrained
parameters that we observed at the end of the previous section,
and correctly suggests that this failure can be substantially
ameliorated with an additional measurement of at 62 cells at 18 min.

4 Discussion

Parameter estimation is a major step in constructing
quantitative models for all physical or biological processes, and

many such models for gene regulation and cell signaling are now
being inferred from quantitative single-cell imaging experiments.
Such measurements are subject to errors, where different labels or
different image processing can yield different measurement values
(e.g., see Figures 5, 6). We have demonstrated that these
experimental distortions can be mathematically described using a
general class of probability transition kernels that we dub Probability
Distortion Operators (PDOs, Figures 2, 5B, E), and that these PDOs
lead to changes in the estimated parameters that are reflected not
only in the magnitudes but also in the directions of their
uncertainties (Figures 4, 7, 8). We have introduced a new
computational framework to systematically account for these
noise effects and provide a first step toward integrating PDOs
into the interpretation of single-cell experiments (Figures 5–8).
Our results indicate that an appropriate statistical analysis
coupled with a careful tuning of experimental design variables
can meaningfully compensate for measurement noise in the data.
For example, our results indicate that, when used iteratively with
small sets of experimental data (e.g., less than a couple hundred cells
at only two points in time), FIM analysis can correctly predict which
subsequent experiments are most likely to be informative, and which
are unlikely to provide additional insight into model parameters
(Figure 8). Insight provided by such an integration of models and
experiments could allow for better allocation of experimental
resources first by helping to eliminate estimation biases that are
due to experimental noise and second by helping to identify specific
experimental conditions that are less prone to be impacted by those
measurement artifacts.

Although the FIM is a classical tool for optimal experiment
design that has been used extensively in myriad areas of science and
engineering (Pronzato and Walter, 1985; Chaudhuri and Mykland,
1993; Emery and Nenarokomov, 1998; Ruess and Lygeros, 2013;
Chao et al., 2016; Vahid et al., 2019), it has not seen widespread
adoption in the investigation of biological processes, in part because
biological processes are heavily subject to heterogeneities that are
not accounted for in traditional FIM analyses. However, there has
been some progress to extend these tools to the context of gene
expression modeling; for example (Komorowski et al., 2011),
proposes a method to approximate the FIM for single-cell
experiment data based on the Linear Noise Approximation
(LNA). Alternatively, the FIM has been approximated by using
moment closure techniques (Ruess et al., 2013; Ruess and Lygeros,
2013). These approaches work well in the case of high or moderate
molecular copy numbers, but they break down when applied to
systems with low molecular copy numbers (Fox and Munsky, 2019),
and it is not clear how or if such approximations can be modified to
consider measurement noise and data processing noise that are non-
additive, asymmetric, or non-Gaussian as is the case for many
biological distortions. To circumvent these issues, our alternative
framework directly analyses the probability distributions of the
noisy measurements. Explicitly modeling the conditional
probability of the observation given the true cell state allows us
to express the observation distribution as a linear transformation of
the true process distribution that is computable using the finite state
projection. This leads to a systematic way to develop composite
experimental designs that combine measurements at different
fidelity and throughput levels to maximize information given a
budgetary constraint.
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The current investigation provides a few examples and preliminary
experimental data to illustrate the broad potential of the FIM and PDO
formulations to improve the interpretation and design of single-cell
experiments. However, these are limited at present, and there is much
that remains to be done to elucidate the full capabilities for these new
techniques. For example, not only is additional experimental testing
needed to validate the use of FIM-based methods for a broader range of
experiment designs and imaging conditions, but the current analyses
also need further development i) to allow for more complex definitions
of PDOs, ii) to expand the use of FIM and PDO analyses to situations
where prior knowledge andmodels are unavailable or limited, and iii) to
extend the FIM analyses for use in important tasks of model reduction
or model selection. A few of these limitations and future directions are
discussed as follows.

The current investigation uses high- and low-fidelity calibration
experiments to parameterize three different PDOs for different
measurement modalities, selects the PDO that minimizes the
Bayesian Information Criteria in each case, and confirms that
this selection also led to the best prediction of held out data.
However, our search over possible PDOs was far from
exhaustive, and it is almost certain that more accurate PDOs
could be found. Adjustments are easily made so that PDOs can
capture many different aspects of experimental error or so that they
can be applied to many different types of models. For example,
through experimental analysis of mRNA counts using different
modalities (e.g., smiFISH and MCP-GFP labeling), we
demonstrated how one could construct the PDO based on
empirical measurements (Figure 8). Similarly, one could examine
different microscopes, different cameras, different laser intensities,
different image processing pipelines, or any of a number of
permutations to compare and quantify differences between high-
fidelity and noisy measurements of signaling or gene expression
phenomena. In the current work, we have relied on specific
parameterized statistical distributions (e.g., binomial or Poisson
as examined in Figures 3–5 or data binning or categorization in
Supplementary Data Sheet S1, Section 3.2) or mechanistic distortion
models (e.g., integrated fluorescence intensity in Supplementary
Data Sheet S1, Section 3.1, stochastic binding kinetics in
Supplementary Data Sheet S1, Section 3.3, or segmentation errors
in Supplementary Data Sheet S1, Section 3.4) to formulate the PDO.
However, one could also envision parameter-free statistical methods
based on recent probabilistic machine learning methods [e.g.,
normalizing flows (Kobyzev et al., 2021)] for modeling the
conditional distribution p (y|x) of a noisy label y given a vector x
of features. In either case, one would need only to calibrate the PDO
once for each combination of labeling, microscopy, and imaging
techniques and then one could to apply that PDO to many different
biological processes, models, parameter sets or experiment designs.
For simplicity, we have assumed that calibration data is available and
that the PDO is constant in time. However, the formulations of the
PDO and FIM (Eqs 3–7) are sufficiently general such that these
requirements can be relaxed. With these relaxations, the FIM could
be used either to guide experiment designs to aid the simultaneous
identification of both a parameterized PDO and the gene regulation
model itself, or provide clear guidance that such distortions lead to
degeneracy in the FIM and indicate which non-identifiable
parameter combinations (i.e., the null space of the distorted FIM)
are most in need of model reduction.

An important limitation of any model-based experiment design
approach is that to make predictions, one must have some prior
knowledge about the system under investigation. In the
experimental example above, we used insight gathered in a previous
biological context [i.e., live-cell analyses of nascent transcription sites
from Forero-Quintero et al. (2021)] to guess some model parameters
(i.e., the transcription burst sizes and frequencies), and we used general
knowledge of the cell line to guess other parameters (e.g., the half-life for
mammalian mRNA). For many single-cell optical microscopy
investigations, such information is available in advance, due to the
fact that onemust choose which genes or pathways to investigate before
designing smFISH probes or modifying cells and promoters to express
theMS2-MCP reporters, and this choice is typically based on experience
or previous investigations in the literature (e.g., on analyses of related
genes or pathways, in different environmental conditions, or with other
exploratory experimental techniques). However, for earlier stage
exploratory investigations, where such prior knowledge may not be
available, onemay need to collect some preliminary data before building
models (e.g., collect data for a small handful of time points). In this case,
computing the FIM after fitting to the first round of experiments can
help to elucidate which parameter sets of the models are well-identified
(i.e., vectors in parameter space corresponding to large eigenvalues of
the FIM after the initial experiment), which can be improved with
different experiment designs (i.e., vectors in parameter space that
correspond to larger eigenvalues of the FIM for different
experiments), and which cannot be identified for any experiment
(i.e., vectors in parameter space that lie in the null space of the FIM
no matter what experiment is considered).

Although we have only considered one model in the main text
for the current investigation, the insight provided by the FIM could
also be utilized to analyze multiple candidate model structures, an
important task that has previously been explored under the
assumption that smFISH yields exact measurements of mRNA
content Neuert et al. (2013), Kalb et al.( 2021), Kilic et al. (2023).
As discussed above, the FIM is useful to identify and prune highly-
uncertain parameter combinations or remove unidentifiable model
mechanisms. For example, using the distorted FISH intensity
measurements at t = (0,300) min, the FIM analysis clearly shows
that the burst frequency (log10ω) and burst size (log10β) are jointly
uncertain along the negative diagonal (Figure 7B, rightmost
column), meaning that the average total production rate and
standard deviation (ωβ ≈ 1.04 ± 0.16 min−1) could be well
constrained, while the individual parameters β = 5.0 ± 5.8 and
ω = 1.1 ± 2.8 min−1 could not be independently identified. A similar
observation holds using the MCP-GFP spot count data. In both
cases, without the constraint of the prior, this uncertainty would
extend to the limit where β is much less than one, at which point the
proposed 3-state model with parameters [kON, kOFF, ω, β, γ] reduces
to an equivalent 2-state model with parameters [kON, kOFF, kr ≈ ωβ,
γ]. Indeed, Supplementary Data Sheet S1, Supplementary Figure S11
shows that this simpler model (Supplementary Data Sheet S1,
Supplementary Figure S1A) provides nearly (but not quite) as
good fits to the all data types when estimated from the t=(0,300)
min data (Supplementary Data Sheet S1, Supplementary Figure S1B,
left columns, compare fit likelihood and BIC values to Figure 7B),
but these fits have much less parameter uncertainty (Supplementary
Data Sheet S1, Supplementary Figure S1B right columns). Moreover,
for the smiFISH mRNA counts, the MCP-GFP spot counts and the
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MCP-GFP intensity data, the simpler model led to better predictions
for the held out data at t = 18 min (Supplementary Data Sheet S1,
Supplementary Figure S1B, middle columns compare prediction
likelihood values to Figure 7B). Moving forward, if one’s goal were to
differentiate further between these or other competing hypotheses
for model mechanisms, one could use FIM-based experiment design
to suggest conditions that promise strong uncertainty reduction for
several competing models at once. For example, Supplementary
Data Sheet S1, Supplementary Figure S12 shows the variance
reduction predicted for various possible experiment designs for
the reduced model. Comparing FIM analyses of potential
experiment designs to the results to the original model in
Figure 8, we find that for all distortions, experiments that reduce
uncertainty for one model should also be effective for the other.
However, the purpose of the current study is only to introduce the
FIM + PDO formulation, and a complete analysis of the use of FIM
insight for model selection is left for future investigations.

Whether one starts with initial parameter and model structures
guesses from previous experimentation or based on a preliminary
round of experiments, subsequent model identification is most
effective when pursued as an iterative endeavor, requiring evaluation
of uncertainty and model-driven experiment design at each stage. For
example, in our analysis of the HIV-1 reporter gene, initial data at 0 and
300 min after Tpt revealed that the practical identifiability of parameters
depended heavily on which measurement was used. Assuming ideal
measurements (i.e., using smiFISH), Figure 8B shows that the model
with (n = 4) free parameters could be identified to an log10-uncertainty
volume of det (FIM−1) = 1.88 × 10−11 if we include the prior or det
(FIM−1) = 1.91 × 10−11 if we do not include the prior. However, using
total FISH intensity, the model was much less certain at det (FIM−1) =
6.39 × 10−9 with the prior or det (FIM−1) = 1.43 × 10−6 without the prior.
Since the determinant of the n-parameter FIM scales with the number
of cells according to: det (αFIM) = αn det (FIM), it would take a factor of
α � (1.43 × 10−6/1.91 × 10−11)1/4 � 16.6 times as many cells using
FISH-intensity to achieve the same accuracy as with the smiFISH
mRNA data.1 Moreover, we also see that the optimal subsequent
experiment design also depends heavily on which measurement
modality is used. For smiFISH experiments that are assumed to be
free from observation noise, the optimal next time point is very late (t =
696 min), whereas for the distorted observations, measurements should
be taken much earlier (e.g., at t = 138 min for MCP-GFP spots, at t =
0min for FISH intensity, and at t = 42 min for GFP intensity).
Furthermore, in the worst case, choosing the next experiment based
on an incorrect assumption for the PDO could lead to waste of
experimental efforts—e.g., using the long time as suggested by the
smiFISH analysis would be almost entirely worthless if used with one of
the other measurements assays. The current study, which is meant only
to introduce the FIM and its use for experiment design, has limited
availability of experimental data (i.e., one replica with three time points)
and only for an artificial HIV-1 reporter construct. A full examination
for the use of FIM in iterative single-cell experiment design for

endogenous gene regulatory pathways is ongoing and will be
described in future publications.

For themodel under consideration to fit theHIV-1 promoter with the
128XMS2 stem-loop cassette, computing the CME solution took an
average of 1.3 s in Matlab on a 2019 MacBook Pro (2.6 GHz 6-Core
Intel Core i7), computing the FIM took an average of 40s (39.94 s to solve
the sensitivity to all parameters and 0.06 s to compute the FIM), and
running theMH for 20,000 samples took 26,000 s, thus the FIM estimates
uncertainty roughly 650 times faster than the MH. For use in experiment
design, the cost savings provided by the FIM can bemuch higher. Because
one can reuse pre-computed sensitivities, the computational cost is only
0.06 s for eachnew experiment design (e.g., to explore different numbers of
cells, different PDOs, or different time point selections). In contrast, using a
traditional approach of generating and then fitting simulated data (e.g., to
generateMLE scatter plots as shownFigures 3C,Dor SupplementaryData
Sheet S1, Supplementary Figure S5), if one liberally assumed that an
experiment could be evaluated using only Ns = 100 samples and that
adequate fits could be achieved using only Nf = 100 parameter guesses
(usually far more function evaluations are needed), then evaluating each
new experiment design would require one CME solution (1.3 s) to
generate data and 1.3 · Ns · Nf = 13,000 s to fit those data
(217,000 times longer than the FIM approach). Given a priori
uncertainty in the model, in practice one would need to redo both the
FIManalysis (40 s + 0.6 s per experiment) or the simulation-based analysis
(13,000 s per experiment) for many different parameter sets or model
structures (e.g., we show results from 20 parameter combinations in
Figures 8A, Supplementary Data Sheet S1, Supplementary Figure S12A),
and the savings provided by the FIM becomes even more important.

Finally, although the presented approach is versatile and can in
principle be applied to any stochastic gene regulatory network, its
practical use depends on the ability to compute a reasonable
approximation to the solution of the chemical master equation
(CME) as well as its partial derivatives with respect to model
parameters. Fortunately, there are now many relevant stochastic
gene expression models for which exact or approximate analytical
expressions for the CME solution are available (Peccoud and Ycart,
1995; Singh and Bokes, 2012; Thomas and Grima, 2015; Cao and
Grima, 2020; Ham et al., 2020; Vastola, 2021). Furthermore, the FSP
and similar approaches have been used successfully to solve the CME
for many non-linear and time-inhomogeneous regulatory models for
which closed-form solutions do not exist (Skupsky et al., 2010; Lou et al.,
2012; Earnest et al., 2013; Neuert et al., 2013; Sepúlveda et al., 2016;
Skinner et al., 2016). For example, Supplementary Data Sheet S1,
Section S4 analyzes a model of the nonlinear genetic toggle switch,
and the FIM and PDO analysis is used to ask which species should be
measured and for how many cells in order to best identify model
parameters. As another example, Supplementary Data Sheet S1, Section
S5 analyzes a spatial stochastic model with a four-state gene expression
model under time varying MAPK activation signal and nucleus to
cytoplasmic transport Munsky et al. (2018). Admittedly, given the
complexity of gene regulatory networks in single cells, there will always
be stochastic gene regulatory models whose direct CME solutions are
beyond reach. Nevertheless, continued advancements in computational
algorithms (Kazeev et al., 2014; Cao et al., 2016; Gómez-Schiavon et al.,
2017; Lin and Buchler, 2019; Catanach et al., 2020; Gupta et al., 2021;
Öcal et al., 2022) are enlarging the set of tractable CME models, which
in turns can help accelerate the cycling between data acquisition, model
identification, and optimal experiment design in single-cell studies.

1 We note that total intensity is much easier to compute than spot detection
and could in principle bemeasured at lowermicroscope resolution or even
with flow cytometry. Depending upon available equipment, collecting
16.6 times as many cells could potentially be achieved at a lower
overall experimental cost!
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