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With the rapid development of computer technology, the application of artificial
intelligence (AI) in ophthalmology research has gained prominence in modern
medicine. Artificial intelligence-related research in ophthalmology previously
focused on the screening and diagnosis of fundus diseases, particularly
diabetic retinopathy, age-related macular degeneration, and glaucoma. Since
fundus images are relatively fixed, their standards are easy to unify. Artificial
intelligence research related to ocular surface diseases has also increased. The
main issue with research on ocular surface diseases is that the images involved are
complex, with many modalities. Therefore, this review aims to summarize current
artificial intelligence research and technologies used to diagnose ocular surface
diseases such as pterygium, keratoconus, infectious keratitis, and dry eye to
identify mature artificial intelligence models that are suitable for research of
ocular surface diseases and potential algorithms that may be used in the future.

KEYWORDS

artificial intelligence, deep learning, machine learning, ocular surface diseases,
convolutional neural network

1 Introduction

Artificial intelligence (AI) is a frontier field of computer science whose goal is to use
computers to solve practical issues (Rahimy, 2018). The concept was introduced at a
workshop at Dartmouth College in 1956 (Lawrence et al., 2016). The conference
discussed the relevant theories and principles of machine simulation intelligence. Since
then, the development of AI has been unstable due to limited technical conditions and levels.
Nevertheless, with the rapid development of computer technology, the application of AI in
medical research has become a hot topic in modern technology. Recently, healthcare has
become one of the frontiers of AI applications, particularly for image-centric subspecialties
such as ophthalmology (Ting et al., 2019), cardiology (Dey et al., 2019), radiology (Saba et al.,
2019), and oncology (Niazi et al., 2019), among others. They adopt big data technology to
collect massive clinical data and images and apply big medical data to AI to guide or assist
doctors in clinical decision-making through the supercomputing power and data mining
ability of cloud computing. AI can obtain disease characteristics from the training set and
apply them to a verification or test set to diagnose the corresponding disease. AI can segment
anatomical structures such as abnormal shapes in the images. AI can also classify images into
different types according to the characteristics of diseases. The algorithms of AI include
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traditional machine learning (ML) algorithm and deep learning
(DL) algorithm. The traditional ML algorithms mainly include
linear regression, logical regression, support vector machine
(SVM), decision tree and random forest (RF) algorithms, and
usually do not involve large-scale neural networks. DL algorithm
mainly uses multimedia data sets (such as images, videos, and
sounds), and usually involves the application of large-scale neural
networks, including artificial neural network (ANN), convolutional
neural network (CNN), and recurrent neural network (RNN).

Previously, most studies on the application of AI in
ophthalmology focused on glaucoma (Devalla et al., 2018;
Kucur et al., 2018; Asaoka et al., 2019; Wang M. et al.,
2019), fundus diseases (Gulshan et al., 2016; Burlina et al.,
2017; Ting et al., 2017; Venhuizen et al., 2018; Nagasato et al.,
2019), and cataracts (Gao et al., 2015; Yang et al., 2016; Long
et al., 2017; Wu et al., 2019; Xu et al., 2020). Compared to
diagnosing retinal diseases, which largely depend on fundus
images acquired from ophthalmoscopy or fundus
photography, multiple examinations are required to
diagnose ocular surface diseases, considering the complexity
of their structural and physiological functions. In recent years,
with the expansion of AI in ophthalmology, increasing
research has applied AI to ocular surface diseases such as
pterygium, keratoconus (KC), infection keratitis, and dry

eye. Herein, we reviewed research on the application of AI
in the field of ocular surface-related diseases to guide clinical
work. The remainder of this paper consists of the following:
Sections 2–7 provides the efficiency of AI in diagnosing ocular
surface diseases, pterygium, KC, infectious keratitis, dry eye,
and other ocular surface diseases.

The image examples of ocular surface diseases and image
modalities to diagnose each corneal disease is presented in
Figure 1. The main image modalities of ocular surface diseases
include anterior segment photograph, pentacam, slit-lamp images
and Keratograph 5M, etc.

2 Search methods

A systematic literature search was performed in PubMed and
Web of science. The goal was to retrieve as many studies as possible
applying ML to ocular surface disease related data. The following
keywords were used: All combinations of “ocular surface,”
“pterygium,” “keratoconus,” “keratitis,” “dry eye,” and
“meibomian gland dysfunction (MGD)” with “artificial
intelligence,” “machine learning,” “deep learning,” “convolutional
neural network,” “decision tree.” No time period limitations were
applied for any of the searches.

FIGURE 1
Ocular surface diseases and image modalities. (A) The main imaging modality of pterygium is anterior segment photograph. (B) The main imaging
modality of keratoconus is pentacam. (C) Themain imagingmodality of infectious keratitis is slit-lamp images. (D) Themain imagingmodality of dry eye is
Keratograph 5M.
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3 AI application in pterygium

Pterygium is a common eye disorder in which abnormal
fibrovascular tissue protrudes from the inner side of the eyes
toward the corneal area (Zulkifley et al., 2019). Since it is
directly linked to excessive exposure to ultraviolet radiation,
farmers and fishermen are the two high-risk groups (Gazzard
et al., 2002; Abdani et al., 2019). This condition can be better
managed when patients know about this disease early.
Moreover, pterygium tissues or lesions encroach on the pupil
area at the latter stage, possibly causing vision impairment
(Tomidokoro et al., 2000; Clearfield et al., 2016; Wang F.
et al., 2021). Currently, the grading of pterygium is mainly
based on the subjective evaluation of doctors. Therefore, AI can
be used to develop an efficient automatic grading system for
pterygium (Hung et al., 2022). In vast rural and remote areas
that lack professional medical resources for ophthalmology, AI
diagnostic technology can provide local patients with a
convenient pterygium screening method, prevent the rush of
patients to county or prefectural hospitals for medical care, and
reduce the burden on patients. Furthermore, it suggests
treatment methods, clarifies the indications for further
surgical treatment, facilitates the timely referral of patients
needing surgery at the grassroots level, and rationally
allocates medical resources. Table 1 mainly reviews AI
applications for the diagnosis of pterygium.

In 2012, Gao et al. (2012) proposed a pterygium detection
system based on color information. Interestingly, the pupil
detection technique, which uses corneal images, achieved 85.38%
accuracy. Similarly, Mesquita and Figueiredo (2012) applied a circle
hough transform to segment the iris. Subsequently, a region-
growing algorithm based on Otsu’s algorithm is applied to the
iris’s segmented area to segment the pterygium tissue. Wan Zaki
et al. (2018) developed an image-processing method based on ASP
using the following four modules to differentiate pterygium from
normal: preprocessing, corneal segmentation, feature extraction,
and classification. Image-processing method performance was
evaluated using a SVM and an ANN. The performance of the
proposed image-processing method generated results of 88.7%,
88.3%, and 95.6% for sensitivity, specificity, and area under the
curve (AUC), respectively. However, the imperfect image setup
should also be noted as a limitation. Abdani et al. (2020) and
Abdani et al. (2021) proposed an automatic pterygium tissue
segmentation using CNN. This is useful for detecting pterygium
from the early stage to the late stage. The overall accuracy of both
studies is high [92.20% (Abdani et al., 2020), 93.30% (Abdani et al.,
2021)].

Zhang et al. (2018) also used a deep DL diagnosis system that
can automatically diagnose various eye diseases based on the
patient’s ASP and provide diagnosis-based targeted treatment
recommendations. Specifically, the last stage provides treatment
advice based on medical experience and AI strictly associated

TABLE 1 Summary of studies focused on computer-aided pterygium diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

2018 Wan Zaki
et al. (2018)

ASP 3,017 Normal and
pterygium

SVM/ANN 95.60 91.27 88.70 88.30 —

2018 Zhang et al.
(2018)

ASP 1,513 Normal, pterygium,
keratitis,

subconjunctival
hemorrhage, and

cataract

CNN/Faster-
RCNN

95.95 >95.00 97.45 71.15 —

2019 Zulkifley
et al. (2019)

ASP 120 Normal and
pterygium

FCNN 97.0 81.10 95.0 98.3 —

2020 Abdani
et al. (2020)

ASP 328 Ranging from early to
late stage of
pterygium

CNN — 92.02 — — 92.02

2021 Xu W. et al.
(2021)

ASP 1,220 Normal, observation
(pterygium) and

operation (pterygium)

DL
(EfficientNet-

B6)

>93.00 94.68 >90.00 >95.00 —

2021 Abdani
et al. (2021)

ASP 328 Ranging from early to
late stage of
pterygium

CNN — 93.30 — — 86.40

2021 Fang et al.
(2022)

ASP 9,443 Pterygium and
referable pterygium

CNN ≥98.50 ≥95.2 ≥94.0 ≥95.30 —

2022 Hung et al.
(2022)

SLI 237 Normal, primary and
recurrent pterygium

DL — 80.00 66.67 81.82 —

2022 Wan et al.
(2022)

ASP 489 Normal, observation
(pterygium) and

operation (pterygium)

DL(U-Net++) 95.86 92.37 90.24 93.51

>86.40 AUC, area under the curve; IoU, intersection over union; ASP, anterior segment photograph; SVM, support vector machine; ANN, artificial neural networks; CNN, convolutional

neural network; Faster-RCNN, faster-region based convolutional neural network; FCNN, fully convolutional neural networks; DL, deep learning; SLI, slit-lamp images.
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with pterygium (accuracy, >95%). Zulkifley et al. (2019)
proposed a DL approach (Pterygium-Net) based on fully
convolutional neural networks (FCNN) with the help of
transfer learning to detect and localize the pterygium
automatically. Pterygium-Net produces high average detection
sensitivity and specificity of 0.95 and 0.983, respectively. As for
pterygium tissue localization, the algorithm achieves
0.811 accuracies with a meager failure rate of 0.053. Xu W.
et al. (2021) developed a unique intelligent diagnosis system
based on DL to diagnose pterygium (Figure 2 depicts the
architectural diagram of EfficientNet-B6, created by Xu et al.).
Experts and the AI diagnosis system categorized the images into
the following three categories: normal, pterygium observation,
and pterygium surgery. Moreover, the accuracy rate of the AI
diagnostic system on the 470 tested images was 94.68%,
diagnostic consistency was high, and kappa values of the three
groups were above 85%. The AI, pterygium diagnosis system, can
not only judge the presence of pterygium but also classify the
severity of pterygium. Fang et al. (2022) evaluated the
performance of a DL algorithm for the detection of the
presence and extent of pterygium based on ASP taken from

slit-lamp and handheld cameras. The AI algorithm could
detect the presence of referable-level pterygium with optimal
sensitivity and specificity. A handheld camera might be a simple
screening tool for detecting reference pterygium.

Hung et al. (2022) proposed a DL system to predict pterygium
recurrence. The AI algorithm shows high specificity (80.00%) but
low sensitivity (66.67%) in predicting pterygium recurrence.
Wan et al. (2022) proposed a DL system for measuring the
pathological progression of pterygium. These are essential for
achieving accurate medical diagnosis and can conveniently assist
ophthalmologists in timely detecting pterygium status and
arranging surgery strategies. In addition to the
abovementioned application of AI to the segmentation and
diagnosis of pterygium, Kim et al. (2022) developed AI
software for quantitative analysis of the immunochemical
image of pterygium. They concluded that the AI software
might improve the reliability and accuracy of evaluating
histopathological specimens obtained after ophthalmological
surgery. The above research shows that the AI model can
achieve satisfactory results in the diagnosis and classification
prediction of pterygium.

FIGURE 2
Architectural diagram of EfficientNet-B6 (Xu W. et al., 2021). (A) Basic architecture. (B) Structure of block 1. (C) Structure of blocks 2–7.
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TABLE 2 Summary of studies focused on computer-aided KC diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

1997 Smolek and Klyce
(1997)

TMS-1 300 KC, KCS, and
others

CNN — 100.00 100.00 100.00 —

2002 Accardo and
Pensiero (2002)

EyeSys 396 Normal, KC, and
others

CNN — 96.70 94.10 97.60 —

2005 Twa et al. (2005) Keratron 244 Normal and KC MLC 97.00 92.00 92.00 93.00 —

2010 Souza et al. (2010) Orbscan II 318 Normal,
astigmatism, KC,

and PRK

SVM/MLP/
RBFNN

>98.00 — 100.00 98.00 —

2012 Arbelaez et al.
(2012)

Sirius 3,502 Normal, SKC,
KC and PRK

SVM — 98.20 95.00 99.30 —

2013 Smadja et al.
(2013)

Galilei 372 Normal, FFKC,
and KC

MLC — — 99.50 100.00 —

2016 Ruiz Hidalgo et al.
(2016)

Pentacam 860 Normal,
astigmatism,
FFKC, KC,
and PRK

SVM/MLC 99.80 98.90 99.10 98.50 —

2016 Kovács et al.
(2016)

Pentacam 135 Normal fellow
eyes with

unilateral KC,
bilateral KC,
and PRK

CNN/MLC 99.00 — 100.00 95.00 —

2018 Yousefi et al.
(2018)

CASIA
AS-OCT

3,156 Normal, FFKC,
mild KC, and
advanced KC

Unsupervised
ML

— — 97.70 94.10 —

2019 Zou et al. (2019) Pentacam 2018 Normal, SKC,
and KC

SVM-RFE/
GBDT

99.82 98.91 76.92 100 —

2019 Dos Santos et al.
(2019)

UHR-OCT 20,160 Normal and KC CNN
(CorneaNet)

— 99.56 >99.30 — >98.50

2019 Issarti et al. (2019) Pentacam 838 Normal and KCS
and mild-

moderate KC

FFN — 96.56 97.78 95.56 —

2019 Kamiya et al.
(2019)

CASIA
AS-OCT

304 Normal and
grade 1–4 KC

CNN — 99.10 100 98.40 —

2019 Lavric and
Valentin (2019)

SyntEyes 400 Normal and KC CNN — 99.33 — — —

2020 Kuo B. I et al.
(2020)

TMS-4+
Pentacam +
Corvis ST

354 Normal, SKC,
and KC

CNN 99.50 95.80 94.40 97.20 —

2020 Abdelmotaal et al.
(2020)

Pentacam 3,218 Normal, SKC,
and KC

CNN/SVM — >95.50 >92.00 >92.00 —

2020 Shi et al. (2020) Pentacam +
UHR-OCT

121 Normal, SKC,
and KC

MLC 100 — 100 100 —

2020 Xie et al. (2020) Pentacam 6,465 Normal,
suspected

irregular cornea,
early KC, KC,
and PRK

CNN/TL 99.90 95.0 97.80 99.20 —

2020 Cao et al. (2020) Pentacam 88 Normal and SKC RF 96.00 87.00 88.00 85.00 —

2021 Cao et al. (2021) Pentacam 267 Normal and SKC RF — 98.00 97.00 98.00 —

2021 Al-Timemy et al.
(2021)

Pentacam 3,794 Normal, KCS,
and KC

CNN/SVM 99.00 97.70 — — —

(Continued on following page)
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4 AI application in KC

KC is a non-inflammatory, asymmetric, ectatic corneal disorder
characterized by progressive thinning and impaired vision (Henein
and Nanavaty, 2017; Mas Tur et al., 2017). Since the signs of
intermediate and advanced KC are quite common, clinical
diagnosis is straightforward (Gomes et al., 2015). Atypical KC
includes KC suspect (KCS), forme fruste KC (FFKC), and
subclinical KC (SKC). Unfortunately, these atypical KC
symptoms and signs are not obvious and are difficult to diagnose
based on general examination results. However, most of the KC
studies analyzed the corneal morphological metrics from Pentacam.
AI-based corneal morphological metrics can provide early KC
detection. Moreover, early AI research on KC relied on corneal

topography data for neural network training to distinguish KC from
other corneal abnormalities such as astigmatism, corneal
transplantation, and post-photorefractive keratectomy (PRK).
Table 2 mainly reviews AI applications for the diagnosis of KC.

The advantage of these AI algorithms lies in the potential to help
clinicians differentiate between KC and normal eyes. In 1997,
Smolek and Klyce (1997) designed a classification neural network
for KC screening to detect the existence of KC or KCS. In total,
10 topographic indices were used as the network inputs. The AI
model showed 100% accuracy, specificity, and sensitivity for the test
set. Accardo and Pensiero (2002) proposed an ANN method to
identify KC from corneal topographies. The results showed a global
sensitivity and specificity of 94.1% (with a KC sensitivity of 100%)
and 97.6% (98.6% for KC alone) in the test set, respectively. This

TABLE 2 (Continued) Summary of studies focused on computer-aided KC diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

2021 Herber et al.
(2021)

Pentacam +
Corvis ST

434 Normal, mild,
moderate, and
advanced KC

eyes

RF 97.00 93.00 91.00 94.00 —

2021 Castro-Luna et al.
(2021)

Pentacam +
Corvis ST

81 Normal and SKC RF — 89.00 86.00 93.00 —

2021 Kamiya et al.
(2021a)

TMS-4 349 Normal and
grade 1–4 KC

CNN 99.70 96.60 98.80 94.40 —

2021 Chen et al. (2021) Pentacam 1926 Normal and
grade 1–4 KC

CNN 94.23 97.85 98.46 90.00 —

2021 Malyugin et al.
(2021)

Pentacam 800 Normal and
grade 1–4 KC

ML/QDA 97.00 97.00 — — —

2021 Ghaderi et al.
(2021)

Pentacam 450 Normal and
grade 1–3 KC

MLP/ANFIS — 98.20 99.10 96.20 —

2021 Kamiya et al.
(2021b)

CASIA
AS-OCT

218 Non-progressive
and

progressive KC

CNN — 84.90 95.50 58.10 —

2021 Kato et al. (2021) Pentacam 274 Non-progressive
and

progressive KC

CNN 81.40 — 77.80 69.60 —

2021 Kundu et al.
(2021)

MS-39 1,122 Normal, VAE,
and KC

RF/ZP 99.70 99.10 98.70 — —

2021 Aatila et al. (2021) CASIA
AS-OCT

12, 242 Normal, FFKC,
mild KC, and
advanced KC

RF 100 98.00 98.00 — —

2022 Mohammadpour
et al. (2022)

Pentacam,
Sirius and
OPD-
Scan III

212 Normal, SKC,
and KC

MLC — 91.24 80.00 96.60 —

2022 Tan et al. (2022) Corvis ST 354 Normal and KC FFN — 99.60 99.30 100 —

2022 Ahn et al. (2022) Pentacam 1,246 Normal, SKC,
and KC

Ensemble — 85.40 96.40 83.10 —

2022 Xu et al. (2022) Pentacam 1,108 Normal, AKC,
and KC

CNN 100 98.77 98.48 98.96 —

KC, keratoconus; KCS, keratoconus suspect; MLC, machine learning classification; PRK, photorefractive keratectomy; MLP, multi-layer perceptron; RBFNN, radial basis function neural

network; SKC, subclinical keratoconus; FFKC, forme fruste keratoconus; AS-OCT, anterior segment optical coherence tomography; ML, machine learning; RFE, recursive feature elimination;

GBDT, gradient boosting decision tree; UHR-OCT, ultra-high-resolution optical coherence tomography; FFN, feedforward neural network; TL, transfer learning; RF, random forest; QDA,

quadratic discriminant analysis; ANFIS, adaptive network-based fuzzy inference system; VAE, very asymmetric ectasia; ZP, zernike polynomials; AKC, asymmetric keratoconus. TMS: A

computer-assisted videokeratoscope (Tomey Corporation, Nagoya, Japan). MS-39: A hybrid tomographer (CSO, Florence, Italy).
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study elevates the potential of AI for the automatic screening of early
KC, pointing out that simultaneously using the topographic
parameters of both eyes improves the discriminative capability of
the ANN. Twa et al. (2005) described applying decision tree
induction, an automated machine learning classification (MLC)
approach, to objectively and quantitatively differentiate between
normal and KC corneal shapes. The results showed an accuracy of
92% and an area under the receiver operating characteristic (ROC)
curve of 0.97. Arbelaez et al. (2012) employed the SVM algorithm to
integrate data from the corneal surfaces and pachymetry into the
model. Interestingly, precision was improved the most when
posterior corneal surface data were included, particularly in SKC
cases. Additionally, this AI approach increases its sensitivity from
89.3% to 96.0%, 92.8% to 95.0%, 75.2% to 92.0%, and 93.1% to 97.2%
in abnormal eyes, eyes with KC, those with SKC, and normal eyes,

respectively. Therefore, the diagnostic accuracy of the AI approach
was further improved by including the posterior corneal surface and
corneal thickness data. Smadja et al. (2013) applied an MLC to
discriminate between normal eyes and KC with 100% sensitivity and
99.5% specificity and between normal and FFKC with 93.6%
sensitivity and 97.2% specificity. The MLC showed excellent
performance in discriminating between normal eyes and FFKC,
thus providing a tool closer to automated medical reasoning. This AI
might undoubtedly enable clinicians to detect FFKC before
refractive surgery. However, its effect requires further validation
since only 372 eyes of 197 patients were included. Similarly, Ruiz
Hidalgo et al. (2016) classified 860 eyes into five groups by
combining 22 parameters obtained from Pentacam measurements
and conducted MLC training. Consequently, the accuracy of the
FFKC versus normal task was 93.1%, with 79.1% sensitivity and

FIGURE 3
Using CorneaNet, the thicknesses of the epithelium, stroma, and Bowman’s layer were computed in a normal and a KC case (Dos Santos et al., 2019).
The healthy case shows close to uniform thicknesses for all three layers. In contrast, for the KC case, the epithelium and stroma are thinner in a specific
region of the cornea, and Bowman’s layer is thicker. (A–C) Thickness calculation in one tomogram. (A)UHR-OCT tomogram of a keratoconus patient, (B)
corresponding labels map computed using CorneaNet. (B) Thicknesses of the three corneal layers computed using the label maps. (D–F) Thickness
maps in a healthy subject case. (G–I) Thickness maps in a keratoconus case. The thickness scale bar is shared by the maps horizontally. Scale bar: 1 mm.
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97.9% specificity for the FFKC discrimination. Considering the
difference between eyes, Kovács et al. (2016) included a “bilateral
data” parameter and used a neural network algorithm for modeling.
This system on bilateral data of the index of height decentration had
a higher accuracy than a single unilateral parameter in
differentiating the eyes of all patients with KC from control eyes
(area under ROC, 0.96 versus 0.88). Yousefi et al. (2018) developed
an unsupervised ML algorithm and applied it to identify and
monitor KC stages. Four hundred and twenty corneal
topographies, elevations, and pachymetric parameters were also
measured. Notably, the specificity of this AI method for
identifying normal eyes from those with KC was 94.1%, and the
sensitivity for identifying KC in normal eyes was 97.7%. Therefore,
this technique can be adopted in corneal clinics and research settings
to better diagnose and monitor changes and improve our
understanding of corneal changes in KC. Zou et al. (2019) also
investigated the diagnosis of healthy corneas, SKC, and KC through
ML modeling using Pentacam data of participants in 2018. The
diagnostic accuracy of this model for SKC and normal corneas was
95.53% and 96.67%, respectively, and the AUC of the validation set
was 99.36%. Conversely, the accuracy of diagnosis of KC and normal
corneas was 98.91%, and the AUC of the validation set was 99.82%.
The diagnostic accuracy of the model was 95.53%, which was
significantly better than the resident’s with 93.55%. Dos Santos
et al. (2019) employed a custom-built ultra-high-resolution OCT
(UHR-OCT) system to scan 72 and 70 normal and KC eyes,
respectively. Overall, 20,160 images were labeled and used for
training in a supervised learning approach. A custom neural
network architecture, CorneaNet [Figure 3 depicts CorneaNet,
created by Dos Santos et al. (2019)], was designed and trained.
This study revealed that CorneaNet could segment both normal and
KC images with high accuracy (validation accuracy, 99.56%).
Interestingly, CorneaNet could detect KC early and, more
generally, examine other diseases that change corneal
morphology. Issarti et al. (2019) established a stable, low-cost
computer-aided diagnosis (CAD) system for early KC detection.
CAD combines a custom-made mathematical model, feedforward
neural network (FFN), and Grossberg-Runge Kutta architecture to
detect and suspect KC clinically. The final diagnostic accuracy
was >95% for KCS, mild KC, and moderate KC. The algorithm
also provides a 70% reduction in computation time while increasing
stability and convergence regarding traditional ML techniques.

Some studies have focused on staging KC severity. Kamiya et al.
(2019) applied the DL of color-coded maps, measured using swept-
source AS-OCT, to evaluate the diagnostic accuracy of KC. They
included a total of 304 eyes [grades 1 (108 eyes), 2 (75 eyes), 3
(42 eyes), and 4 (79 eyes)] according to the Amsler–Krumeich
classification and 239 age-matched healthy eyes. This AI system
effectively discriminated KC from normal corneas (99.1% accuracy)
and further classified the grade of the disease (87.4% accuracy). Two
studies used topography images to detect and stage KC (Kamiya
et al., 2021a; Chen et al., 2021). Both studies had high overall
accuracies [78.5% (Kamiya et al., 2021a), 93% (Chen et al.,
2021)], with better performance on color-coded maps than the
raw topographic indices. Malyugin et al. (2021) trained an ML
model using topography images and visual acuity to classify KC
stages based on the Amsler–Krumeich classification system. The
model’s overall classification accuracy was 97%, highest for stage

4 KC and lowest for FFKC. Another study trained an ensemble CNN
on Pentacam measurements to differentiate between normal eyes
and early, moderate, and advanced KC with a staging accuracy of
98.2% (Ghaderi et al., 2021). Other studies have focused on detecting
KC progression, though each study had varying definitions of
disease progression. The first study trained a CNN model on AS-
OCT images, achieving an 84.9% accuracy in discriminating KC
with and without progression (Kamiya et al., 2021b). Another study
trained an AI model to predict KC progression and the need for
corneal crosslinking using tomography maps and patient age with
an AUC of 0.814 (Kato et al., 2021).

Lavric and Valentin (2019) proposed a corneal detection
algorithm using CNN to analyze and detect KC and obtained an
accuracy rate of 99.33%. Kuo B. I et al. (2020) developed a DL
algorithm for detecting KC based on a computer-assisted
videokeratoscope (TMS-4), Pentacam and Corvis ST. The AI
model has high sensitivity and specificity in identifying KC.
Abdelmotaal et al. (2020) used a domain-specific CNN to
implement DL. The CNN performance was assessed using
standard metrics and detailed error analyses, which include
network activation maps. Accordingly, the CNN categorized four
map-selectable display images, with average accuracies of 0.983 and
0.958 for the training and test sets, respectively. Furthermore, Shi
et al. (2020) created an automated classification system that used
MLC to distinguish clinically unaffected eyes in patients with KC
from a normal population by combining Scheimpflug camera
images and UHR-OCT imaging data. Interestingly, this AI model
dramatically improved the differentiable power to discriminate
between normal eyes and those with SKC (AUC = 0.93). The
epithelial features extracted from the OCT images were the most
valuable for the discrimination process. Cao et al. (2021) developed a
new clinical decision-making system based on ML, automatically
detecting SKC with high accuracy, specificity and sensitivity.
Mohammadpour et al. (2022) developed a classifier based on AI,
which can help detect early keratoconus. Al-Timemy et al. (2021)
trained a hybrid-CNN model to identify features and then used it to
train an SVM to detect KC. The final AI model had a 97.70%
accuracy in differentiating normal from KC eyes and 84.40% in
differentiating normal, KCS, and KC based on the merged
development subset and independent validation subset. Kundu
et al. (2021) established a universal architecture of combining
AS-OCT and AI. It achieves an excellent classification of normal
and KC. This AI model effectively classified very asymmetric ectasia
(VAE) eyes as SKC and FFKC. Tan et al. (2022) developed a novel
method based on biomechanical parameters calculated from raw
corneal dynamic deformation videos to quickly and accurately
diagnose KC using ML (99.6% accuracy). Ahn et al. (2022)
developed and validated a novel AI model to determine a
diagnosis of KC based on basic ophthalmic examinations,
including visual impairment, best-corrected visual acuity,
intraocular pressure (IOP), and autokeratometry. Xu et al. (2022)
developed a deep learning-derived classifier (KerNet) that is helpful
for distinguishing clinically unaffected eyes in patients with
asymmetric keratoconus (AKC) from normal eyes.

Other studies have compared AI algorithms to detect KC. Souza
et al. (2010) used three algorithms: SVM, multi-layer perceptron,
and radial basis function neural networks. Notably, the three
selected classifiers performed optimally, with no significant
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differences between their performance. Cao et al. (2020) found the
RF model outperformed other ML algorithms using tomographic
and demographic data. Herber et al. (2021) found that the RF model
had good accuracy in predicting healthy eyes and various stages of
KC. The accuracy was superior to that of the linear discriminant
analysis model. Castro-Luna et al. (2021) also found that the RF
outperformed the decision tree model (89% accuracy vs. 71%,
respectively), while Aatila et al. (2021) found the RF model to
have the highest accuracy when compared with other ML models
in detecting all classes of KC.

AI has been used to screen potential candidates for refractive
surgery besides detecting KC. For example, Xie et al. (2020)
established a system centered on the AI model Pentacam
InceptionResNetV2 Screening System (PIRSS) to screen normal
corneas, suspected irregular corneas, early stage KC, KC, and PRK
corneas. The PIRSS system achieved an overall detection accuracy
of 95%, similar to that of specialists who were refractive surgeons
(92.8%). Recently, Hosoda et al. (2020) have identified KC-
susceptibility loci by integrating genome-wide association study
(GWAS) with AI, demonstrating that computational techniques
combined with GWAS can help identify hidden relationships

between disease susceptibility genes and potential susceptibility
genes. The above research shows that the AI model is close to an
experienced ophthalmologist in the classification and grading
of KC.

5 AI application in infectious keratitis

Infectious keratitis is one of the most common corneal diseases
that significantly causes visual impairment (Papaioannou et al.,
2016; Austin et al., 2017; Flaxman et al., 2017; Ung et al., 2019).
The disease can be categorized into different types, such as bacterial
keratitis (BK) (Tuft et al., 2022), fungal keratitis (FK) (Sharma et al.,
2022), herpes simplex virus stromal keratitis (HSK) (Banerjee et al.,
2020), or Acanthamoeba keratitis (AK) (de Lacerda and Lira, 2021).
Early detection and timely medical intervention of keratitis can
prevent the disease progression, thus attaining a better prognosis
(Austin et al., 2017; Lin et al., 2019). However, if not diagnosed and
treated promptly, keratitis may lead to significant vision loss and
corneal perforation (Watson et al., 2018). The diagnosis of infectious
keratitis mostly depends on discriminatively identifying the visual

TABLE 3 Summary of studies focused on computer-aided infection keratitis diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

2003 Saini et al.
(2003)

Clinical data 63 Fungal ulcers/
Bacterial ulcers

ANN — 90.70 76.47/100.00 100.00/76.47 —

2017 Sun et al.
(2017)

FSI 48 Corneal ulcers DCNN — 86.00 (Dice) 82.00 99.00 —

2018 Wu et al.
(2018)

CM 378 Normal and FK ARBP/SVM 99.01 99.74 100.00 99.45 —

2019 Liu et al.
(2020)

CM 1,213 Normal and FK DCNN/HMF — 99.95 99.90 100.00 —

2020 Lv et al.
(2020)

CM 2088 Normal and FK ResNet 97.69 93.64 82.56 98.89 —

2020 Kuo M. T
et al. (2020)

SLI 288 FK and others CNN
(DenseNet)

65.00 69.40 71.10 68.40 —

2021 Mayya et al.
(2021)

SLI 540 FK, BK, HSK,
AK, and others

MS-CNN — 88.96 90.67 87.57 —

2021 Xu F. et al.
(2021)

CM 1,089 FK and BK CNN 98.30 94.20 92.70 95.50 —

2021 Xu Y. et al.
(2021)

SLI 115, 408 FK, BK, HSK,
and others

CNN/TL ≥92.00 80.00 — — —

2021 Li Z. et al.
(2021)

SLI 13, 557 Normal, keratitis,
and others

DL
(DenseNet121)

99.80 98.0 97.70 98.20 —

2021 Hung et al.
(2021)

SLI 1,330 FK and BK CNN
(DenseNet161)

85.00 78.60 65.80 87.3 —

2021 Koyama et al.
(2021)

SLI/FSI 4,306 FK, BK, HSK,
and AK

DL/GBDT ≥94.60 ≥90.7 — — —

2022 Zhang et al.
(2022a)

SLI 4,830 FK, BK, HSK,
and AK

CNN ≥86.00 ≥70.27 ≥70.00 — —

2022 Ghosh et al.
(2022)

SLI 2,167 FK and BK CNN 90.40 83.00 77.00 — —

FSI, fluorescein staining image; DCNN, deep convolutional neural network; CM, confocal microscopy; FK, fungal keratitis; ARBP, adaptive robust binary pattern; HMF, histogram matching

fusion; SLI, slit-lamp images; BK, bacterial keratitis; HSK, herpes simplex virus stromal keratitis; AK, acanthamoeba keratitis; MS-CNN, multi-scale convolutional neural network.
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features of the infectious lesion in the cornea by a skilled
ophthalmologist. AI analysis has been introduced into the field of
keratitis diagnosis for automatic real-time identification of abnormal
components in corneal images, thereby assisting ophthalmologists
in rapidly diagnosing infectious keratitis. Table 3 mainly reviews AI
applications for the diagnosis of infectious keratitis.

In 2003, Saini et al. (2003) assessed the usefulness of ANN for
classifying infective keratitis. The trained ANN correctly classified
all 63 and 39 of 43 corneal ulcers in the training and test sets,
respectively. Specificity for bacterial and fungal categories was
76.47% and 100%, respectively. The accuracy of the ANN was
90.7% and was significantly better than that of the
ophthalmologist’s predictions (62.8%). These preliminary results
suggest that using neural networks to interpret corneal ulcers
requires further development. In 2017, Sun et al. (2017)
established a new technique to automatically identify corneal
ulcer sites using fluorescein staining images based on a CNN
that labels each pixel in the staining image as an ulcer or a
non-ulcer. The AI method had a mean Dice overlap of
0.86 compared with the manually delineated gold standard. In
2018, Patel et al. (2018) evaluated the variability of corneal ulcer
measurements between cornea specialists and reduced clinician-
dependent variability using semi-automated segmentation of
ulcers from photographs. Wu et al. (2018) classified normal and
FK images based on the newly proposed texture analysis method,
adaptive robust binary pattern (ARBP), and the SVM,
preprocessed abnormal images to enhance targets and employed
the line segment detector algorithm to detect hyphae. Interestingly,
it could perfectly separate abnormal from normal corneal images
with an accuracy of 99.74%. Liu et al. (2020) proposed a new CNN
framework for automatically diagnosing FK using data
augmentation and image fusion. This study indicated that the
accuracy of conventional AlexNet and VGGNet were 99.35% and
99.14%, those of AlexNet and VGGNet based on mean fusion were
99.80% and 99.83%, and those of AlexNet and VGGNet based on
histogram matching fusion (HMF) were 99.95% and 99.89%.
Additionally, this novel CNN framework perfectly balances

diagnostic performance and computational complexity and can
improve real-time performance in diagnosing FK.

Lv et al. (2020) developed an AI system based on the DL
algorithm for the automated diagnosis of FK in IVCM images.
The AI system exhibited satisfactory diagnostic performance
(93.64% accuracy) and effectively classified FK in various IVCM
images. Xu F. et al. (2021) established an interpretable AI (XAI)
system based on Gradient-weighted Class Activation Mapping
(Grad-CAM) and Guided Grad-CAM and used IVCM images for
FK detection. With better interpretability and explainability, XAI-
assistance assistance increased the accuracy (94.2%) and sensitivity
(92.7%) of competent and novice ophthalmologists significantly
without reducing specificity (95.5%). Two studies used SLI
images to detect FK (Kuo M. T et al., 2020; Mayya et al., 2021).
The diagnostic rate of FK in one study is 69.40% (Kuo M. T et al.,
2020), while that of the other study is 88.96% (Mayya et al., 2021).
Xu Y. et al. (2021) designed a sequential-level deep model to
discriminate infectious corneal diseases effectively by classifying
clinical images based on more than 1,10,000 SLI. The model
achieved a diagnostic accuracy of 80%, much better than the
49.27% diagnostic accuracy of 421 ophthalmologists.
Furthermore, Li Z. et al. (2021) developed an AI system for the
automated classification of keratitis, other corneal abnormalities,
and normal corneas based on 6,567 SLI (Figure 4 depicts the
workflow of the DL system in clinics, which was created by Li
et al.). This AI system showed remarkable performance in cornea
images captured by different digital slit-lamp cameras and a
smartphone with the super macro mode (all AUCs >0.96).
Additionally, the system performed similarly to that of
ophthalmologist specialists in classifying keratitis, cornea with
other abnormalities, and normal corneas.

Furthermore, Hung et al. (2021) applied different CNN to
differentiate between BK and FK using SLI. The DL algorithm
achieved an average accuracy of 80.0%. Additionally, the
diagnostic accuracy for BK and FK ranged from 79.6% to 95.9%
and 26.3% to 65.8%, respectively. Koyama et al. (2021) adopted a DL
architecture for facial recognition and applied it to determine the

FIGURE 4
Workflow of the DL system in clinics for detecting abnormal cornea findings (Li Z. et al., 2021).
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probability score for specific pathogens that cause keratitis. 4,306 SLI
were studied, including 312 images from internet publications on
keratitis caused by bacteria, fungi, acanthamoeba, and HSV. The
developed algorithm had a high overall accuracy; for diagnosis, the
accuracy/AUC for AK, BK, FK, and HSK was 97.9%/0.995, 90.7%/
0.963, 95.0%/0.975, and 92.3%/0.946, respectively. Zhang et al.
(2022a) constructed an early IK-aided diagnosis model
(KeratitisNet) based on DL. The accuracy of KeratitisNet for
diagnosing BK, FK, AK, and HSK was 70.27%, 77.71%, 83.81%,
and 79.31%, and AUC was 0.86, 0.91, 0.96, and 0.98, respectively.
Ghosh et al. (2022) found that compared with the single architecture
model, the CNN with ensemble learning performs best in
distinguishing FK from BK.

In addition to the abovementioned discrimination between
different keratitis types, there is also a study of a fully-automatic
DL-based algorithm for segmenting ocular structures and microbial
keratitis biomarkers on SLI (Loo et al., 2021). Tiwari et al. (2022)

trained a CNN to differentiate active corneal ulcers from healed
scars from SLI. The AI model was tested on internal (India) and
external (the United States) data sets and achieved high performance
(AUCs > 0.94). Koo et al. (2021) reported that the model detects
hyphae more quickly, conveniently, and consistently through DL
using CM images in real-world practice. The performance of this AI
model showed high sensitivity and specificity. The above research
shows different performances in the diagnosis and classification of
different keratitis by AImodel, but basically the accuracy is gradually
improving.

6 AI application in dry eye

Dry eye is one of the most common ocular surface diseases in
clinical practice, characterized by a loss of homeostasis of the tear
film and accompanied by ocular abnormalities, such as tear film

TABLE 4 Summary of studies focused on computer-aided dry eye diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

2017 Peteiro-Barral
et al. (2017)

Tearscope
plus

105 Tear film
classification

SVM/MLC ≥92.00 ≥94.00 ≥84.00 ≥96.00 —

2018 Su et al. (2018) Digital
camera

80 Break-up, non-
break-up, eyelid,
eyelash, and
sclera (TBUT)

DCNN 96.00 98.00 83.00 95.00 —

2019 Wang J. et al.
(2019)

Keratograph
5M

706 MG trophy area CNN — 97.60 — — 95.40

2020 Maruoka et al.
(2020)

CM 137 Normal and
obstructive MGD

Ensemble DL 98.10 — 92.10 98.80 —

2020 Stegmann et al.
(2020)

OCT 6,658 Tear meniscus
segmentation

DCNN — ≥99.20 ≥96.36 ≥99.86 ≥93.16

2021 Chase et al.
(2021)

AS-OCT 27,180 Normal and
dry eye

CNN — 84.62 86.36 82.35 —

2021 Deng et al.
(2021)

Keratograph
5M

528 Tear meniscus
segmentation

FCNN — — ≥84.40 — 82.50

2021 Zhang et al.
(2021)

CM 8,311 Normal,
obstructive and
atrophic MGD

CNN ≥97.30 ≥97.30 ≥88.80 ≥95.40 —

2021 Setu et al.
(2021)

Keratograph
5M

728 MG
segmentation and

morphology
assessment

DL/TL 96.00 84.00 (Dice) 81.00 — —

2021 Wang J. et al.
(2021)

Keratograph
5M

1,443 MG
segmentation and

ghost glands
assessment

DL — — 84.40 71.70 63.00

2021 Dai et al. (2021) Keratograph
5M

120 MG morphologic CNN — — — — 90.77

2022 Zhang et al.
(2022b)

Keratograph
5M

4,006 MG density and
meiboscore

Mask
R-CNN/TL

90.00 — 88.00 81.00 93.00

2022 Vyas et al.
(2022)

TOPCON
DV3 camera

30 Normal, break-
up, blink, or noise

(TBUT)

CNN/TL 80.00 83.00 87.00 89.00 —

TBUT, tear film break-up time; MG, meibomian gland; MGD, meibomian gland dysfunction; FCNN, fully convolutional neural networks. Keratograph 5M: (OCULUS, Arlington, WA), a

clinical instrument that uses an infrared light with wavelength 880 nm for MG imaging.
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instability and hyperosmolarity, ocular surface inflammation and
damage, and neurosensory abnormalities (Craig et al., 2017a; Craig
et al., 2017b; Stapleton et al., 2017). As the most common trigger of
dry eye (Craig et al., 2017b), MGD is associated with many other
ocular diseases (Sullivan et al., 2018; Lekhanont et al., 2019; Llorens-
Quintana et al., 2020) and systemic factors (Arita et al., 2019; Sandra
Johanna et al., 2019; Wang et al., 2020), which affect patients’ quality
of life, causing ocular irritation, ocular surface inflammation, and
visual impairment (Sabeti et al., 2020). Therefore, evaluating the
function of meibomian glands (MGs) in patients with dry eyes is
essential. Furthermore, MG morphology is closely associated with
the severity of MGD, and the MG image index indicates their health
(Giannaccare et al., 2018). Recently, researchers have started
employing image processing and image analysis software such as
ImageJ to perform morphological analysis of the structure of MGs.
However, semi-quantitative analysis requires manual labeling of
each image, which is labor-intensive and inefficient. The efficiency of
AI technology in image recognition is much higher than that of
manual analysis, and the cost is significantly reduced. Table 4 mainly
reviews AI applications for the diagnosis of dry eye.

In 2019, Wang J. et al. (2019) established a DL approach to
digitally segment the MG atrophy area and compute the percentage
atrophy in meibography images. In total, 497 meibography images
were used to train and adjust the DL model, while the remaining
209 images were applied for evaluation. The AI algorithm achieves
95.6% meiboscore grading accuracy on average, significantly

outperforming the specialist by 16.0% and the clinical team by
40.6%. This study presents an accurate and consistent gland atrophy
evaluation method for meibography images based on deep neural
networks and may contribute to an improved understanding of
MGD. However, this AI system could only predict the MG atrophy
region rather than individual MG morphology. In 2020, Maruoka
et al. (2020) evaluated the ability of DL models to detect obstructive
MGD using in vivo confocal microscopy (IVCM) images. For the
single DL model, the AUC, sensitivity, and specificity of diagnosing
obstructive MGD were 0.966%, 94.2%, and 82.1%, respectively, and
for the ensemble DL model, 0.981%, 92.1%, and 98.8%, respectively.
Zhang et al. (2021) developed a DL algorithm to check and classify
IVCM images of MGD automatically. By optimizing the AI
algorithm, the classifier model displayed excellent accuracy. The
sensitivity and specificity of the AI model for obstructive MGD were
88.8% and 95.4%, respectively, and for atrophic MGD, 89.4% and
98.4%, respectively. Furthermore, Zhou et al. (2020) used the
transfer-learning mask R-CNN to build a model. The model
evaluated each image in 0.499 s, whereas the average time for
clinicians was more than 10 s. This study also included
2,304 MG images to construct an MG image database. The
proportion of MGs marked by the model was 53.24% ± 11.09%,
and the artificial marking was 52.13% ± 13.38%. Therefore, this
model can improve the accuracy of examinations, save time, and be
used for clinical auxiliary diagnosis and screening of diseases related
to MGD. Prabhu et al. (2020) proposed an automated algorithm

FIGURE 5
Network structure (Zhang et al., 2022b). (A) The network structure of themodifiedU-netmodel as we reported previously; (B) The network structure
of the ResNet50_U-net model in this study.
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based on DL to segment MGs and evaluated various features for
quantifying these glands. This study also analyzed five clinically
relevant metrics in detail and found that they represented changes
associated with MGD.

In 2021, we proposed a novel MGs extraction method based on
CNN (Dai et al., 2021) with an enhanced mini U-Net. Consequently,
the IoU achieved 0.9077, and repeatability was 100%. The processing
time for each image was 100 ms. We identified a significant and

linear correlation between MG morphology and clinical parameters
using this method. This study provided a new method for
quantifying morphological features of MG obtained by
meibography. Furthermore, we used an advanced AI system
based on ResNet_U-net (Figure 5 depicts the network structure
created by Zhang et al.) to assess the effect of MG density in
diagnosing MGD (Zhang et al., 2022b). The updated AI system
achieved 92% accuracy (IoU) and 100% repeatability in MG

TABLE 5 Comparison table of MG density and meiboscore (Zhang et al., 2022b).

MG density

Upper eyelid (1,620) Lower eyelid (2,386)

Median (IQR) H-value P Median (IQR) H-value P

Meiboscore 0 0.30 (0.25–0.33) 882.932 <0.001 0.19 (0.14–0.23) 596.815 <0.001

Meiboscore 1 0.25 (0.21–0.29) 0.17 (0.13–0.21)

Meiboscore 2 0.15 (0.12–0.18) 0.13 (0.10–0.17)

Meiboscore 3 0.10 (0.06–0.12) 0.07 (0.04–0.11)

MG, meibomian gland; IQR, interquartile range.

FIGURE 6
Overview of the approach (Yeh et al., 2021). The NPID is applied to learn a metric by feeding unla-beled meibography images and then to
discriminate them according to their visual similarity. This approachmeasures atrophy severity and discovers subtle relationships betweenmeibogra-phy
images. There is no required image labeling, serving as ground truth for training.
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segmentation. The AUC was 0.900 for MG density in all eyelids.
Sensitivity and specificity were 88% and 81%, respectively, at a cutoff
value of 0.275. We compared the correspondence between MG
density andmeiboscore, as shown in Table 5. Thus, MG density is an
effective index for MGD, particularly supported by the AI system,
which could replace the meiboscore.

In 2021, Khan et al. (2021) established a model based on
adversarial learning, a conditional generative adversarial network
(C-GAN), to accurately detect, segment, and analyze MG. This
technique significantly improved the inability of existing methods to
quantify irregularities in infrared images of the MG regions.
Additionally, this technique outperformed state-of-the-art results
for detecting and analyzing the dropout area of the MGD. Setu et al.
(2021) proposed an automatic infrared MG segmentation method
based on DL (U-Net). The model was trained and evaluated using
728 anonymized clinical meibography images. The average
precision, recall, and F1 scores were 83%, 81%, and 84% on the
testing dataset, with an AUC value of 0.96, based on the ROC curve
and the Dice coefficient of 84%. Single-image segmentation and
morphometric parameter evaluations had an average of 1.33 s.
Wang J. et al. (2021) developed an automated AI method to
segment individual MG regions in an infrared meibography
image and analyzed their morphological features. The AI
algorithm, on average, achieved 63% mean IoU in segmenting
glands, 84.4% sensitivity and 71.7% specificity in identifying
ghost glands. Yeh et al. (2021) established an unsupervised
feature learning method based on non-parametric instance
discrimination (NPID) to automatically measure MG atrophy
(Figure 6 illustrates an overview of the approach created by Yeh
et al.). 497 meibography images were used for network learning and
tuning, and the remaining 209 images were applied for network
model evaluations. The proposed NPID achieved an average 80.9%
meiboscore grading accuracy, outperforming the clinical team by
25.9%. Therefore, this method may aid in diagnosing and managing
MGD without prior image annotations, which require time and
resources.

Dry eye is complicated to diagnose since there is no single
characteristic symptom or diagnostic measure. Other studies have
employed AI to detect tear film, tear meniscus height (TMH),
corneal morphology and blinking to diagnose dry eye besides the
abovementioned assessment of dry eye by AI detection of MGs
morphology. Diego et al. (Peteiro-Barral et al., 2017) proposed a
method that automatically assessed tear film classification and
demonstrated its effectiveness. This method applied class
binarization and feature selection for optimization purposes. Su
et al. (2018) proposed an automatic method to detect the fluorescent
tear film break-up area using a CNN model and to define its
appearance as CNN-BUT. The sensitivity and specificity of
CNN-BUT in screening patients with dry eye were 0.83 and 0.95,
respectively. Vyas et al. (2022) proposed a tear film break-up time
(TBUT) -based dry eye detection method that detects the presence/
absence of dry eye from TBUT video. This AI system exhibits high
performance in classifying TBUT frames, detecting dry eye, and
severity grading of TBUT video with an accuracy of 83%.

Further, Stegmann et al. (2020) evaluated lower TMH using
OCT by automatically segmenting the image data using AI
algorithms. The AI segmentation times were approximately two
orders of magnitude faster than the previous algorithms.

Chase et al. (2021) developed a CNN algorithm to detect dry eye
using AS-OCT images with good performance (accuracy = 84.62%,
sensitivity = 86.36%, specificity = 82.35%). The epithelial layer and
tear film were the learned areas of the AS-OCT images that
differentiated images with dry eye from normal. The AI model
had a significantly higher accuracy detecting dry eye than corneal
staining, conjunctival staining, and Schirmer’s testing. Deng et al.
(2021) established a method for the automatic quantitation of lower
TMH with FCNN. These neural networks have high performance
owing to the modified encoder with a residual block, which has
better feature extraction than the original U-Net. Additionally, the
overall average IoU for tear meniscus segmentation was 82.5%.
Therefore, the algorithm results of the TMHhad a higher correlation
with the ground truth than manually obtained results. Su et al.
(2020) proposed training a deep CNN model to detect superficial
punctate keratitis (SPK) automatically, and this AI method can be
used to reliably grade the severity of SPK to improve the efficiency
(97% accuracy) of dry eye diagnosis. Through AI analysis, Jing et al.
(2022) have found a significant correlation between corneal nerve
morphological changes in patients with dry eyes and intrinsic
corneal aberrations, particularly higher-order aberrations. Zheng
et al. (2022) established a blink analysis model using AI to generate a
blink profile, which provides a new method for evaluating
incomplete blinking and diagnosing dry eye. The above research
shows that the AI model has achieved remarkable results in the
segmentation of MG morphology in patients with dry eye.

7 AI application in other ocular surface
diseases

AI has also led to many achievements in the auxiliary diagnosis
and treatment of corneal edema, corneal endothelial dystrophy,
corneal nerves, corneal epithelial defects, posterior elastic layer
detachment, corneal perforation, corneal foreign bodies, and
other ocular surface diseases. Veli and Ozcan (2018) established a
cost-effective and portable platform based on contact lenses for the
non-invasive detection of Staphylococcus aureus using a three-
dimensional (3D) holographic reconstruction combined with an
SVM-based ML algorithm. Interestingly, the method is
characterized by low cost and portability, although the study did
not include participants for clinical trials. Eleiwa et al. (2020) created
and validated a DL model based on VGG19 and transferred learning
to diagnose Fuchs endothelial corneal dystrophy. Additionally, Wei
et al. (2020) proposed a DL model for automated sub-basal corneal
nerve fiber segmentation and evaluation using IVCM). The model
achieved an AUC, sensitivity, and specificity of 0.96, 96%, and 75%,
respectively. However, this AI model had limitations in that it was
not externally validated and could consider all parameters in the
IVCM images. Zéboulon et al. (2021) established and verified a novel
automated tool for detecting and visualizing corneal edema using
OCT. This study trained a CNN to classify each pixel in the corneal
OCT images as “normal” or “edema” and to generate colored heat
maps of the result. Additionally, the optimal threshold for
differentiating normal from edematous corneas was 6.8%, with
an accuracy, sensitivity, and specificity of 98.7%, 96.4%, and
100%, respectively. However, the AI model could not
quantitatively analyze the severity of edema, and the principle of
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the model training process output results remains invisible. Li D. F
et al. (2021) developed an image analysis system for AS-OCT
examination results based on DL technology and evaluated its
influence on identifying various corneal pathologies and
quantified indices. Furthermore, the labeled AS-OCT images
were used to train corneal pathology detection and stratification
models based on the deep CNN algorithm. Interestingly, the average
sensitivity and specificity of the corneal pathology detection model
were 96.5% and 96.1%, compared with the results of manual
labeling. Additionally, the average Dice coefficients of the corneal
stratification model for the corneal epithelium and stroma were
0.985 and 0.917, respectively. Deshmukh et al. (2021) developed an
automated segmentation DL algorithm for corneal stromal deposits
in patients with corneal stromal dystrophy. Segmentation on corneal
deposits was accurate via the DL algorithm in the well-controlled
dataset and showed reasonable performance in a real-world setting.
Yoo et al. (2021) developed an AI model to detect conjunctival
melanoma using a digital imaging device such as smartphone
camera. It showed an accuracy of 94.0% using 3D melanoma
phantom images captured using a smartphone camera.

8 Discussion

With the development of modern society and the economy,
people’s health awareness is gradually improving, and the pressure
on ophthalmologists to diagnose and treat will increase. However,
although over 2,00,000 ophthalmologists exist worldwide, there is
currently a severe shortfall in developing countries (Resnikoff et al.,
2012). Furthermore, the number of ophthalmologists is declining in
12% of low-income countries with the lowest ophthalmologist densities
and highest population growth rates (Resnikoff et al., 2020). The timely
emergence of AI has given rise to optimism in the field of
ophthalmology, particularly in areas involving big data and image-
based analysis. DL is a branch of ML that employs multi-layer neurons
with high-dimensional non-linear transformations in performing high-
dimensional data abstraction to extract hidden features (Lecun et al.,
2015). Therefore, with the help of DL, we can input many images as
samples to the computer and allow the computer to automatically learn
the high-dimensional features of the images to determine the intrinsic
relationship between the images and the results. DL establishes an
intrinsic relationship between input and output through multi-layer
CNNmapping, similar to the human learning process. Thus far, various
AI models have been developed, such as CNN, deep neural networks,
deep belief networks, and RNN. These models have been applied in
computer vision, speech recognition, natural language processing, audio
recognition, and bioinformatics with excellent results (Lecun et al.,
1998; Taigman et al., 2014; He et al., 2016). Additionally, using DL to
process and analyze images of ocular surface diseases can significantly
improve accuracy and efficiency, reduce manual analysis costs, and
overcome errors between different experienced annotators. Currently,
different AI models are used for AI applications for different ocular
surface diseases. Among them, CNNmodel accounts for themajority of
the AI applications for pterygium, keratitis and dry eye, while RFmodel
has good accuracy in predicting healthy eyes and KC in all stages in the
AI application for KC.

DL established a method for computers to automatically learn
the hidden features in images and integrate feature learning into

building models, thereby reducing the incompleteness caused by
artificially designed features. Patterns that are invisible to the naked
eye can be picked out. For example, Kermany et al. (2018) trained a
DL system to identify retinal OCT images of patients. Surprisingly,
the system also accurately identified several other characteristics,
including risk factors for heart disease, age, and sex. No one had
previously noticed sex variations in the human retina. However, we
cannot fully understand its feature extraction logic, leading to the AI
“black box” since the DL neural network is very complex and has
poor interpretability challenges (Ahuja and Halperin, 2019).
Therefore, Kermany et al. (2018) used “occlusion testing” in their
study of AI recognition of OCT retinopathy images to study the logic
of AI diagnosis. This involved occluding different parts of OCT
images of the fundus of patients with retinopathy. The AI
erroneously categorized the lesion image as normal after
considering the features of a specific section, implying that these
features are the basis for the AI’s judgment. Similarly, in analyzing
ocular surface diseases using DL models, we can also use occlusion
testing to learn the judgment basis of AI to discover new
morphological evaluation indicators of ocular surface diseases.
An ophthalmic multi-modal diagnostic platform using multiple
modules for targeted examination of target tissues has been
established and applied clinically. With advances in technology, it
may be possible in the future to acquire global three-dimensional
data of the eye simultaneously. Correct reading, analysis and
diagnosis of acquired data require a more comprehensive and in-
depth knowledge base. Compared with human beings, AI has
absolute superiority in integrating information, processing data,
diagnosis speed, etc.

At present, AI still has certain limitations. 1) Most ML methods
have insufficient training and validation sets; therefore, more image
data training is needed to improve accuracy, sensitivity, and
specificity further. 2) The inspection equipment used by different
countries, regions, and medical institutions differ, as do the images
obtained by different inspection equipment regarding color and
resolution, which will inevitably affect image acquisition and
diagnostic accuracies. 3) Current ML methods cannot explain
disease diagnosis, of which the output results are learned only
from the training set. 4) AI cannot learn effectively for some
difficult and rare ocular surface diseases with insufficient data.
Therefore, it is difficult to obtain an effective and correct
diagnosis rate. Although AI still faces certain challenges in model
building, it can assist doctors with objective clinical decisions and lay
the foundation for the accurate treatment of patients. These issues
must be adequately addressed before AI can be translated into
clinical applications in ophthalmology.

In conclusion, AI has great potential to improve the diagnostic
efficiency of ocular surface diseases. The novelty of this study is
evidenced by its contribution to the existing literature, as it is one of
the studies to provide information on research hotspots and trends
in the application of AI in diagnosing ocular surface diseases.
Furthermore, the results reveal that although AI still faces certain
challenges in model building, it can assist doctors with objective
clinical decisions and lay the foundation for the accurate treatment
of patients. Ultimately, AI algorithms and tools in development for o
ocular surface disease are helping us to understand disease
pathogenesis, identify disease biomarkers, and develop novel
treatments for ocular surface disease.
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