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Human Usher syndrome (USH) is the most common form of hereditary combined
deaf-blindness. USH is a complex genetic disorder, and the pathomechanisms
underlying the disease are far from being understood, especially in the eye and
retina. The USH1C gene encodes the scaffold protein harmonin which organizes
protein networks due to binary interactions with other proteins, such as all USH
proteins. Interestingly, only the retina and inner ear show a disease-related
phenotype, although USH1C/harmonin is almost ubiquitously expressed in the
human body and upregulated in colorectal cancer. We show that harmonin binds
to β-catenin, the key effector of the canonical Wnt (cWnt) signaling pathway. We also
demonstrate the interaction of the scaffold protein USH1C/harmonin with the
stabilized acetylated β-catenin, especially in nuclei. In HEK293T cells,
overexpression of USH1C/harmonin significantly reduced cWnt signaling, but a
USH1C-R31* mutated form did not. Concordantly, we observed an increase in
cWnt signaling in dermal fibroblasts derived from an USH1CR31*/R80Pfs*69 patient
compared with healthy donor cells. RNAseq analysis reveals that both the
expression of genes related to the cWnt signaling pathway and cWnt target
genes were significantly altered in USH1C patient-derived fibroblasts compared
to healthy donor cells. Finally, we show that the altered cWnt signaling was
reverted in USH1C patient fibroblast cells by the application of Ataluren, a small
molecule suitable to induce translational read-through of nonsense mutations,
hereby restoring some USH1C expression. Our results demonstrate a cWnt
signaling phenotype in USH establishing USH1C/harmonin as a suppressor of the
cWnt/β-catenin pathway.
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Introduction

The human Usher syndrome (USH) is the most common form of inherited combined deaf-
blindness with a prevalence of 1:6,000 to 1:10,000 in human (Kimberling et al., 2010; Friedman
et al., 2011). USH is revealed as a ciliopathy presenting defects in ciliary processes (Bujakowska
et al., 2017; May-Simera et al., 2017; Samanta et al., 2019). USH disease is clinically and
genetically complex and is subdivided into three clinical subtypes (USH 1–3) that are caused by
mutations in at least 10 genes (https://databases.lovd.nl/shared/genes/USH1C) (Fuster-Garcia
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et al., 2021; Delmaghani and El-Amraoui, 2022). USH1 is the most
severe type featured by congenital deafness, vestibular function
defects, and prepuberty onset of retinitis pigmentosa (RP). So far,
six USH1 genes have been identified, namely MYO7A (USH1B),
USH1C, CDH23 (USH1D), PCDH15 (USH1F), USH1G, and CIB2
(USH1J). These USH1 genes encode for proteins of diverse protein
families such as motor proteins, transmembrane proteins, and scaffold
proteins (Fuster-Garcia et al., 2021; Delmaghani and El-Amraoui,
2022), which are often ubiquitously expressed in the human body,
organs, tissues and cells (Reiners et al., 2006).

The scaffold protein harmonin is encoded by the USH1C gene
(ENSG00000006611; OMIM 276904) (Bitner-Glindzicz et al., 2000;
Verpy et al., 2000) which consists of 28 exons, and alternative splicing
of USH1C results in numerous splice variants, which are grouped
based on their domain composition into three major splice groups a, b,
and c (Nagel-Wolfrum et al., 2022). Although USH1C/harmonin is
almost ubiquitously expressed in humans, it functions as a key
organizer of USH protein networks predominantly in the
mechanosensitive hair cells of the inner ear and in retinal cells,

namely photoreceptor cells and Müller glia cells, but also in brush
border microvilli of intestinal epithelia (Wolfrum, 2011; Crawley et al.,
2016; Li et al., 2016; Nagel-Wolfrum et al., 2022). Harmoninmolecules
can harbor up to three PDZ (named after PSD-95, DLG, and ZO-1)
domains (Figure 1A) that are capable of binding of all other known
USH proteins, but also other proteins which are often associated with
membrane proteins and cytoskeletal proteins, such as JAM-B,
rhodopsin or filamin-A (Reiners et al., 2006; Wolfrum, 2011;
Nagel-Wolfrum et al., 2022). Recently, we also confirmed the
interaction of harmonin with β-catenin via binding of β-catenin´s
type-I PDZ binding motif (DTDL = PBM) at the end of the C-terminal
domain to the PDZ1 and PDZ3 domains of harmonin (Figure 1A;
Nagel-Wolfrum et al., 2022) as previously suggested (Johnston et al.,
2004). When USH1C is truncated due to the R31* or the R80Pfs*69
(Figure 1A) this particular interaction should be lost.

β-catenin is a multitasking and evolutionary conserved protein
with dual major functions: it is not only an essential component of
cadherin-based cell-cell adhesion complexes in adherent junctions
(AJ) but also the key effector of canonical Wnt (cWnt) signaling in the

FIGURE 1
In vitro and in situ interaction of harmonin with β-catenin. (A) Schematic representations of the domain structures of the scaffold protein USH1C/
harmonin (isoform a) and β-catenin (β-cat). Pathogenic USH1C mutations c.91C>T; p.(R31*) and c.238dupC; p.(R80Pfs*69) are highlighted. Twoheaded
arrows indicate that the C terminal PDZ (PDZ; PSD-95, DLG, and ZO-1) The pathogenic nonsense mutations c.91C>T; p.(R31*) and c.238dupC; p.(R80Pfs*69)
inUSH1C referred to in the Study are highlighted. Bindingmotif (PBM) of β-catenin is capable to bind to the PDZ1 and PDZ3 of harmonin. (B)Western blot
analysis of a representative GFP-Trap

®
demonstrates interaction between harmonin a1-GFP (Harm-GFP) and β-catenin (β-cat) from lysates of HEK293T cells

transfected with β-cat and Harm-GFP, or GFP, respectively. Harm-GFP but not GFP alone pulled down β-catenin; N = 3 experiments. (C) Representative
fluorescence image of PLA signals (red, left) in HEK293T cells demonstrates interaction of intrinsic harmonin (Harm) and β-cat (upper panel). Signal is
significantly decreased in the control using only β-cat antibody (lower panel). Cell nuclei aremarkedwith DAPI (blue). (D) Statistical analysis reveals an increase
in number of signals of 4-fold in the PLA compared to all three controls (Supplementary Figure S1). Two-tailed Student’s t-test, ***p ≤ 0.001; N =
3 experiments.
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nucleus (Valenta et al., 2012). In the cadherin-catenin core complex of
AJs β-catenin bridges the p120 catenin, which binds to the cytoplasmic
C-terminus of cadherins, to α-catenin and thereby to the actin
cytoskeleton (Takeichi, 2014). We have recently shown that
harmonin and β-catenin interact in the specialized cell-cell
adhesion complexes between photoreceptor cells and Müller glia
cells in the outer limiting membrane of the human retina (Nagel-
Wolfrum et al., 2022).

In the cWnt signaling pathway, in the absence of the Wnt ligands,
the levels of β-catenin in the cytoplasm are kept low by the destruction
complex which is composed of the scaffold proteins axin and APC
(adenoma polyposis coli), two kinases, GSK3b (glycogen synthase
kinase 3b) and CK1 (casein kinase 1), and the protein phosphatase
PP2A. Cytoplasmic β-catenin molecules are phosphorylated by the
activity of the destruction complex and subsequently targeted for
ubiquitination and proteosomal degradation (Kimelman and Xu,
2006) (see below summary Figures 8A, B).

Binding of Wnt ligands to Fz (Frizzled) receptors and the co-
receptors LRP5/6 (low density lipoprotein receptor-related protein) at
the plasma membrane triggers molecular events leading to inhibition
of the destruction complex. Activated receptor complexes recruit Dvl
(dishevelled) through direct binding which induces formation of the
LRP-associated Wnt signalosomes (Bilic et al., 2007). Dvl, in turn,
recruits conductin/axin and GSK3 kinase, destabilizing the β-catenin
destruction complex and subsequently blocks the phosphorylation of
β-catenin by GSK3 kinase activity (Zeng et al., 2008).
Unphosphorylated β-catenin resists degradation, accumulates in the
cytoplasm, and translocates into the nucleus. Nuclear β-catenin binds
to transcription factors of the TCF/LEF (T cell factor/lymphoid
enhancer factor) family. TCF/LEF proteins (hereafter referred to as
TCF) bind to DNA but have a limited ability to activate transcription
by their own. Binding of β-catenin leads to the formation of two-
membered TCF/β-catenin transcriptional activators that convert Wnt
signals into transcription of specific cWnt target genes (Archbold
et al., 2012).

However, the cWnt signaling pathway and its regulation by β-
catenin is much more complex, as briefly described above (Valenta
et al., 2012). The function of β-catenin in cWnt is not only regulated by
phosphorylation but can also be controlled by acetylation or by the
binding of protein inhibitors. For example, the acetylation at lysine
residue 49 (K49) of β-catenin can inhibit its degradation promoting
the translocation of β-catenin into the nucleus and transcription of
cWnt target genes (Ge et al., 2009; Liu et al., 2020). Binding of proteins
like chibby (CBY1) and YWHAE (14-3-3ε) to the C-terminal domain
of β-catenin blocks the β-catenin activation (Takemaru et al., 2009).
Failure to suppress cWnt signaling often leads to developmental
dysfunction and carcinogenesis, highlighting the important role of
suppressor loops in cWnt signaling pathway (Kumar and Tanwar,
2017).

Here, we provide several lines of evidence that the USH1C protein
harmonin is a suppressor of the cWnt signaling pathway by interacting
with β-catenin. We demonstrate that overexpression of harmonin in
HEK293T cells significantly reduces cWnt activation while a truncated
form of harmonin does not. Furthermore, we found that cWnt
signaling activity is significantly increased and that the expression
of target genes and genes related to cWnt pathway are differentially
expressed in harmonin-deficient USH1C patient-derived fibroblasts.
Finally, the application of a translational read-through drug restores
the cWnt signaling phenotype in USH1CR31*/R80Pfs*69 (USH1C) patient-

derived cells. Conclusively, we provide first molecular and functional
evidence for a role of cWnt signaling in the development in
human USH.

Material and methods

Antibodies

The following primary antibodies were used: mouse monoclonal
anti-β-catenin (Santa Cruz, CA, United States; cs-7963; WB 1:500, IF
1:100), rabbit polyclonal anti-harmonin (H3) (custom-made Reiners
et al., 2003); WB 1:1,000, IF 1:500), rabbit polyclonal anti-GFP (gift
fromDr.W. Clay Smith; WB 1:500, IF 1:200), rabbit polyclonal Histon
H3 (Cell Signaling Technology, Danvers, MA, United States; CST
4499T; WB 1:1,000), mouse monoclonal α-tubulin (Sigma-Aldrich, St
Louis, MO, United States; T9026; WB 1:8,000, IF 1:800). We
additionally used a rabbit monoclonal anti-β-catenin_K49 (lys49)
(Cell Signaling Technology, Danvers, MA, United States; CST
D7C2, Rabbit mAb #9030; WB 1:1,000, IF 1:200) commonly used
for the analyses of β-catenin specifically acetylated at the residue 49
(e.g., Patnaik et al., 2019; Yamada et al., 2022). Secondary antibodies
were conjugated to Alexa 488, Alexa 555, Alexa 568, or Alexa 647,
respectively, purchased from Molecular Probes (Life Technologies,
Darmstadt, Germany) or from Rockland Inc. (Gilbertsville, PA,
United States). Nuclear DNA was stained with DAPI (4′,6-
diamidino-2-phenylindole; 1 mg/mL) (Sigma-Aldrich, St Louis,
MO, United States).

DNA constructs

For transfection of HEK293T cells, a pcDNA-Dest47 vector (GFP
at C-terminal) was used expressing the human harmonin a1 isoform
or a mutant harmonin R31* cDNA. The nonsense mutation R31* was
introduced into the wild-type construct by in vitro mutagenesis. The
empty vector served as a control for all experiments except for the
GFP-Trap. Here, an empty pcDNA-Dest53 (GFP at N-terminal) was
used as a control. The pMS`BC-β-catenin plasmid was used for the
expression of human β-catenin (Miyatani et al., 1992).

Translational read-through inducing drugs
(TRIDs)

Ataluren (PTC124; Absource Diagnostics GmbH, Munich,
Germany) was dissolved in dimethyl sulfoxide (DMSO; Sigma-
Aldrich, St Louis, MO, United States). For treatment, 5 μg/mL and
10 μg/mL of Ataluren were used. DMSO (0.2%) served as control.

Cell culture of HEK293T cells

HEK293T cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) with Glutamax containing 10% heat-inactivated
fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA,
United States) at 37°C in 5% CO2. Transfection of cells was performed
using GeneJuice® (Merck Millipore, Darmstadt, Germany) according
to manufacturer’s instructions. Ataluren was applied 6 h after
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transfection. Cells were used for luciferase assays 48 h after Ataluren
treatment.

Human primary fibroblast and cultures

Dermal primary fibroblast lines were expanded from skin biopsies
of human subjects (ethics votume: Landesärztekammer Rhineland-
Palatinate to KNW). We analysed dermal fibroblasts of a male patient
genetically diagnosed for USH1 with biallelic USH1C mutations
c.91C>T; p.(R31*) and c.238dupC; p.(R80Pfs*69)
(USH1CR31*/R80Pfs*69) (Nagel-Wolfrum et al., 2022), as well as
control fibroblasts from a healthy proband. Cells were cultured in
DMEM containing 10% heat-inactivated FBS (Thermo Fisher
Scientific, Waltham, MA, United States) at 37°C in 5% CO2.
Ataluren was applied for 24 h in the appropriate medium.

Stimulation of Wnt signaling pathway

For activation of the Wnt signaling pathway, HEK293T and
fibroblasts were either stimulated by overexpression of β-catenin
[β-cat-stimulation (β-catS)] (Lin et al., 2006; Liu et al., 2020)
transfecting β-catenin (pMS`BC_β-catenin human) or alternatively,
by culturing cells for 24 h in Wnt conditioned media [Wnt medium
stimulation (WMS)] (Cruciat et al., 2010; Patnaik et al., 2019). Wnt
conditioned medium was collected from L Wnt-3A cells according to
manufacturer’s protocol (CRL-2647 ATCC, Manassas, VA,
United States). It should be noted that in β-catS the overexpression
of β-catenin increases cytoplasmic β-catenin, which saturates the β-
catenin destruction complex, and that the large pool of free β-catenin
activates the cWnt pathway far more effectively than Wnt ligands in
Wnt conditional medium. This is due to the fact that β-catS activation
is independent of the concentration of Wnt ligands, the number of
available endogenous β-catenin molecules in the cell, and the number
of Wnt surface receptor complexes at the plasma membrane.

Luciferase assay

Analysis of the Wnt/β-catenin signaling pathway activity was
performed using the Dual-Glo® Luciferase Assay System (Promega,
Madison, WI, United States) according to the manufacturer’s
protocol. Briefly, HEK293T cells were seeded into a 96-well plate
and after 24 h co-transfected with TopFlash (Firefly luciferase) for
determining the activity of TCF/LEF dependent Firefly luciferase
expression, and pRL-TK (Renilla luciferase) for normalization of
the transfection efficacy, pcDNA-Dest47 vectors, namely pcDNA-
Dest47-Harm_a1_GFP, pcDNA-Dest47-Harm_R31*_GFP, pcDNA-
Dest47_GFP and additionally β-catenin (pMS`BC_β-catenin human)
for stimulation. Alternatively, cells were stimulated with Wnt
conditioned media 24 h post-transfections (Cruciat et al., 2010;
Patnaik et al., 2019). Luciferase activity was measured after 24 h in
a Varioskan Flash plate reader (Thermo Fisher Scientific, Waltham,
MA, United States). Firefly luciferase activity was normalized to
Renilla luciferase activity in each well. Background subtraction was
done using values of medium only.

Immunocytochemistry

HEK293T cells as well as human fibroblasts were washed with
PBS prior to fixation with 2% paraformaldehyde (PFA) for 15 min
(Samanta et al., 2019). Fixed cells were washed twice with
phosphate-buffered saline (PBS) and permeabilized with 0.1%
TritonX-100 for 10 min. After short washing with PBS,
specimens were incubated for at least 45 min in blocking
solution (0.5% cold-water fish gelatin, 0.1% ovalbumin in PBS).
Incubation with primary antibodies was done overnight at 4°C. The
next day, after washing with PBS, samples were incubated with
secondary antibodies and DAPI for 2 h in the dark at room
temperature. After washing, coverslips were mounted in Mowiol
(Roth, Karlsruhe, Germany).

Western blot analysis

For lysis, cells were incubated with Triton X-100 lysis buffer
(50 mM Tris–HCl pH 7.5, 150 mM NaCl, and 0.5% Triton X-100)
containing protease inhibitor cocktail (PI mix; Roche, Basel,
Switzerland) and sonified. Cell lysates samples were mixed with
SDS-PAGE loading buffer (10% glycerin, 250 mM Tris-base, 2%
SDS, 0.5 mM EDTA, 0.001% bromophenol blue, HCL pH 8.5) and
separated on self-made 12% or 15% polyacrylamide gels, first for 5 min
at 110 V, then at least for 60 min at 180 V using the Mini-PROTEAN
System (Bio-Rad Laboratories, Feldkirchen, Germany). For Western
blot (WB) analyses, proteins were transferred to polyvinylidene
difluoride membranes (Millipore, Schwalbach, Germany) in
blotting buffer (25 mM TRIS, 192 mM glycine, 0.025% (v/v) SDS,
20% (v/v) methanol) for 75 min at 100 V using the Mini Trans-Blot
Electrophoretic Transfer Cell (Bio-Rad Laboratories, Feldkirchen,
Germany). After blocking the membrane with Applichem blocking
reagent (Applichem, Darmstadt, Germany) for 1–2 h at room
temperature, immunoreactivities were detected by applying primary
and appropriate secondary antibodies, Alexa Flour 680 (Invitrogen) or
IR Dye 800 (Rockland, Gilbertsville, United States), employing the
Odyssey infrared imaging system (LI-COR Biosciences, Lincoln, NE,
United States) and processed via Fiji.

GFP-Trap
®

Magnetic GFP-Trap® agarose beads (Chromotek, Planegg, Germany;
gtma-20) were used for immunoprecipitation assays according to the
manufacture’s protocol. In brief, GFP-tagged USH1C/harmonin proteins
aswell asβ-cateninwere expressed inHEK293T cells for 48 h. For lysis, cells
were incubated with Triton X-100 lysis buffer (50mM Tris–HCl pH 7.5,
150 mM NaCl, and 0.5% Triton X-100) containing protease inhibitor
cocktail (PI mix; Roche, Basel, Switzerland) and sonified. Cells were
lysed as described above and 10% of total cell lysate was separated for
input fraction. Beads were equilibrated with 10mM Tris-HCl pH 7.5,
150 mM NaCl, 0.5 mM EDTA dilution buffer and incubated with
remaining lysates of β-catenin and GFP-tagged harmonin or GFP only
for 2 h at 4°C under constant rotation. After washing of beads with dilution
buffer, precipitated proteins were eluted with Laemmli buffer and analyzed
on SDS-PAGE (12% polyacrylamide gels) followed byWestern blot (WB).
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Proximity ligation assay (PLA)

PLAs were performed in HEK293T cells using the in-situ
proximity ligation assay Duolink PLA probes anti-rabbitPLUS,
anti-mouseMINUS, and Detection Reagent Red (Sigma-Aldrich, St
Louis, MO, United States) as previously described in (Sorusch et al.,
2017; Yildirim et al., 2021). Briefly, cells were fixed and incubated with
primary antibodies overnight at 4°C. After washing, samples were
incubated with oligonucleotide-labelled secondary antibodies (“PLA
probes”) for 1 h at 37°C. Several washing steps were followed by
ligation for 30 min at 37°C using hybridizing connector
oligonucleotides. After washing, samples were incubated with
amplification reagents for 100 min, followed by addition of
fluorescent-labelled oligonucleotides. For the negative controls only
one protein specific antibody was used or none of them. Coverslips
were mounted in Mowiol (Roth, Karlsruhe, Germany).

Microscopy and image processing

Immunofluorescence staining was documented and analyzed on a
Leica DM6000Bmicroscope using LAS-AF software (Leica, Bensheim,
Germany). Objectives used were ×40 and ×63. Western blots were
analyzed using the Odyssey infra-red imaging system (LI-COR
Biosciences, Lincoln, NE, United States). Image processing was
done with ImageJ/Fiji software (Schindelin et al., 2015).

Statistical analysis and quantifications

Analysis of β-catenin_K49 intensity in immunofluorescence
staining in fibroblasts was performed using a script in ImageJ/Fiji
software (Schindelin et al., 2015). Briefly, the nucleus area was
identified by DAPI staining followed by a measurement of β-
catenin_K49 intensity in this area (µm2). PLA signals were
identified with an ImageJ Fiji script by measuring the number of
particles in the region of interest (ROI) processed picture. Pearson
correlation coefficient was defined via Fiji using the colocalization
Coloc 2 plugin (https://imagej.net/plugins/coloc-2). For Western blot
analysis, relative band intensities were normalized to the relative band
intensities of the corresponding control. Quantification of results was
performed in MS-Excel using Student’s t-test (unpaired, two-tailed,
assuming equal variance). Error bars are represented as standard
deviation. At least three independent experiments were performed.
The significance levels were set when p < 0.05 (*), p < 0.01 (**), p < 0.
001 (***).

Fiji/ImageJ script: Fluorescence intensity
analysis

open(“...”);
run(“Set Scale...”, “distance = 0.495 known = 1 unit = µm global”);
selectWindow(“Image001DMEM_ctr_ch03.tif”); run(“8-bit”);
setAutoThreshold(“Default dark no-reset”);
setOption(“BlackBackground”, false);
run(“Convert to Mask”); run(“Watershed”);
run(“Analyze Particles...”, “size = 2000-Infinity pixel circularity =
0.50–1.00 show = Overlay display exclude clear summarize add”);

close(); selectWindow(“Image001DMEM_ctr_ch01.tif”);
roiManager(“Show None”);
roiManager(“Show All”);
roiManager(“Measure”);
run(“Flatten”);

Fiji/ImageJ script: Analysis of fluorescent PLA
signals

open(“...”);
run(“8-bit”);
run(“Bandpass Filter...”, “filter_large = 40 filter_small =
3 suppress = None tolerance = 5 autoscale saturate”);
//run(“Brightness/Contrast...”);
run(“Apply LUT”);
setAutoThreshold(“Otsu dark no-reset”);
//run(“Threshold...”);
//setThreshold(89, 255);
setOption(“BlackBackground”, false);
run(“Convert to Mask”);
run(“Analyze Particles...”, “ circularity = 0.20–1.00 show = Overlay
display exclude clear summarize add”);
run(“Flatten”);

Fractionation of cell compartments

The isolation of cytosol and nucleus fractions was performed as
described for the first steps by (Yildirim et al., 2021). Briefly,
HEK293T cells were transfected using GeneJuice® (Merck
Millipore, Darmstadt, Germany). After 24 h medium was
changed to fresh DMEM or Wnt medium. The next day, cells
were harvested and centrifuged in PBS. Cell pellets were
resuspended in 1.25 packed cell volume of hypotonic MC buffer
(10 mM HEPES pH 7.6, 5 mMMgAc2, 10 mM KAc, 1 mM DTT, 1x
protease inhibitor) and left on ice for 15 min. For lysis, a 1-mL
syringe with G25 needle was used. For separation of nucleus and
cytosol, lysed cells were centrifuged at 1,500 g for 5 min. The
supernatant was taken (cytoplasmic fraction) and the nucleus
pellet was incubated in Triton X-100 lysis buffer (50 mM
Tris–HCl pH 7.5, 150 mM NaCl, and 0.5% Triton X-100)
containing protease inhibitor cocktail (PI mix; Roche, Basel,
Switzerland) and sonified. Protein lysates were separated by
SDS-PAGE gel electrophoresis (15% polyacrylamide gels),
followed by Western blotting as described above. Before
blocking, blots were incubated and stained with Revert 700 total
protein Stain pack (LI-COR Biosciences, Lincoln, NE,
United States) for visualizing of total protein amount.

RNA-Sequencing

For RNAseq analysis human USH1CR31*/R80Pfs*69 (USH1C)
patient-derived and healthy control fibroblast cell lines were
used. Human fibroblasts were maintained in either DMEM 10%
FBS (Thermo Fisher Scientific, Waltham, MA, United States) or
Wnt-3A conditioned medium (ATCC, Manassas, VA,
United States) for 24 h at 37°C, 5% CO2 before RNA isolation.

Frontiers in Cell and Developmental Biology frontiersin.org05

Schäfer et al. 10.3389/fcell.2023.1130058

https://imagej.net/plugins/coloc-2
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1130058


RNA isolation was performed using the RNeasy Mini Kit by
following the manufacturer’s instructions (Qiagen, Hilden,
Germany). Subsequent RNA library preparation and whole
transcriptome RNAseq were conducted by Novogene using the
Illumina NovaSeq 6000 Sequencing System (Novogene,
Cambridge, UK). Following quality control, genes with an
adjusted p-value <0.05 were considered as significantly
differentially expressed (Novogene, Cambridge, UK).
Differentially expressed Wnt signaling pathway and Wnt target
genes were identified by manual literature research (Herbst et al.,
2014; Ramakrishnan and Cadigan, 2017; Ghahramani et al., 2018;
Lecarpentier et al., 2019; Boonekamp et al., 2021) and expanded by
Gene Ontology annotations from the EBI’s GOA database (https://
www.ebi.ac.uk/QuickGO/, query 07.09.2022 with the gene
ontology (GO)-terms Wnt pathway (GO:0016055) and canonical
Wnt pathway (GO:0060070) (Binns et al., 2009). For those genes,
the transformed FPKM-values were clustered in a heatmap for each
cellular treatment. Heatmaps were generated by using Heatmapper
(http://www.heatmapper.ca/08.12.2022) (Ashburner et al., 2000;
Mi et al., 2019; Gene Ontology Consortium, 2021). Additional GO
Enrichment Analysis was conducted for the previously identified
Wnt target genes using ClueGO v2.3.3.

In silico missense variant analysis of USH1C
nonsense mutation

In silico prediction tools were used to assess whether amino
acid substitutions after translational read-through of the R31*-
mutant USH1C/harmonin protein are expected to have an impact
on the protein. All variants were denoted based on the NCBI
reference sequence for USH1C (NM_153676.4; GRCh38 and
ENSG00000006611.11). Variant classification was assessed
using the following computational in silico tools: PolyPhen-2
and tools integrated into Alamut Visual Plus v.1.1 (Sophia
Genetics) using default settings. PolyPhen-2 (Polymorphism
Phenotyping v2) was used, which predicts the possible impact
of an amino acid substitution on the structure and function of a
human protein using straightforward physical and comparative
considerations (Adzhubei et al., 2010), and scores range from 0
(benign) to 1 (probably damaging). PhyloP determines the
evolutionary conservation and acceleration of a given
nucleotide, and positive scores are assigned to sites predicted
to be conserved whereas negative scores indicate a fast-evolving
site (Pollard et al., 2010). The Grantham distance scores missense
substitutions regarding the physicochemical difference between
the exchanged amino acids with scores ranging from 0 to 215
(Grantham, 1974). Align-GVGD (v2007) provides prediction
classes defining a spectrum of classifications with
C0 suggesting least likely to interfere with protein function to
C65 being most likely to affect functionality of the protein
(https://agvgd.iarc.fr/index.php) (Tavtigian et al., 2006). SIFT
(Sorting Intolerant From Tolerant, v4.0.3/v6.2.0) applies a
score range of 0.0 for a deleterious effect to 1.0 for the
substitution being tolerated (http://sift.bii.a-star.edu.sg/)
(Kumar et al., 2009). MutationTaster (v2013) classifies the
variants either as “disease-causing” or as a “polymorphism”

with the p-value indicating the certainty of the prediction
(http://www.mutationtaster.org/) (Schwarz et al., 2010).

Results

Harmonin (USH1C) interacts with β-catenin
in vitro and in situ in cells

The binding of harmonin and β-catenin has been identified in a
yeast two-hybrid screen by (Johnston et al., 2004) but could not be
validated by in vitro interaction assays at that time. More recently, we
have shown in in vitro GST pull-down experiments applying
bacterially expressed proteins that β-catenin can bind via its PDZ
binding motif (PBM) in its very C-terminal tail to the PDZ1 and
PDZ3 domains of harmonin (Nagel-Wolfrum et al., 2022). Here, we
tested the interaction of harmonin with β-catenin by complementary
GFP-Trap immunoprecipitation assays from lysates of mammalian
HEK293T cells expressing GFP-tagged harmonin_a1 and untagged β-
catenin (Figure 1B). Western blots showed that β-catenin was
recovered in the GFP-Traps with harmonin-GFP, but not with
GFP alone.

To proof whether these interactions can also occur between the
endogenous proteins in situ in cells, we performed proximity ligation
assays (PLAs) in HEK293T cells. Fluorescence microscopy revealed
positive harmonin-β-catenin PLA signals in the cytoplasm and the
nucleus indicating close proximity of both proteins (Figure 1C).
Quantification of PLA signals demonstrated that the harmonin-β-
catenin PLA signals were 3-4-fold higher when compared to all control
PLAs (Figure 1D; Supplementary Figure S1).

Harmonin also interacts with the acetylated
form of β-catenin

β-catenin is a transcriptional coactivator of TCF/LEF target genes
in the canonical Wnt (cWnt) signaling pathway and its transcriptional
activity is highly regulated by the formation of the β-catenin
destruction complex (Valenta et al., 2012). The acetylation at the
lysin 49 residue stabilizes β-catenin (β-catenin_K49) and inhibits the
formation of the β-catenin destruction complex and its degradation.
Moreover, the acetylation promotes the nuclear translocation of β-
catenin_K49 and thereby the activation of the cWnt signaling pathway
(Liu et al., 2020). To test whether harmonin also binds to the acetylated
β-catenin we probed Western blots of harmonin GFP-Traps with pan
β-catenin and β-catenin_K49 specific antibodies (Figure 2A). Both, β-
catenin and β-catenin_K49 were recovered in GFP-Traps with
harmonin-GFP, but not with GFP alone indicating that harmonin
also binds the acetylated β-catenin.

Acetylated β-catenin recruits harmonin into
the nucleus after cWnt pathway stimulation

Next, we investigated whether the stimulation of cWnt pathway
affects the subcellular distribution of β-catenin_K49 and harmonin.
For this, we stimulated harmonin a1-GFP transfected HEK293T cells
applying Wnt conditional medium [Wnt medium stimulation
(WMS)] (Patnaik et al., 2019) or by overexpression of β-catenin
[β-cat-stimulation (β-catS)] (Lin et al., 2006; Liu et al., 2020). We
subsequently analyzed the localization of harmonin and β-catenin_
K49 in the cells by immunocytochemistry in situ and biochemically by
Western blots of cell fractions (Figures 2B–E). Confocal analysis of β-
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FIGURE 2
Harmonin interaction with acetylated β-catenin_K49 in the nucleus. (A) Western blot analysis of a representative GFP-Trap

®
pull down shows the

interaction between harmonin a1-GFP (Harm-GFP) and acetylated β-catenin_K49 (β-cat_K49). HEK293T cells were transfected with β-cat and Harm-GFP or
GFP alone, respectively. Harm-GFP but not GFP alone was able to precipitate β-catenin (β-cat) as well as β-cat_K49; 12% polyacrylamide gel; N =
3 experiments. (B) Immunofluorescence localization of Harm-GFP (green) and β-cat_K49 (red) under different stimulation. HEK293T cells were
transfected with Harm-GFP and stimulated for Wnt signaling with Wnt medium (Wnt) or transfection of β-cat. DAPI (blue) marks the nucleus. In unstimulated
(control) state (left panel) (Pearson correlation coefficient: Harm-GFP and β-cat_K49: R = 0.29; n = 136 cells; N = 3 experiments) and after Wnt stimulation
(middle panel) (Pearson correlation coefficient: Harm-GFP and β-cat_K49: R = 0.39; n= 134 cells; N = 3 experiments), Harm-GFP is distributed in nucleus and
cytosol of the cell. The β-cat_K49 staining is almost absent in the unstimulated state, however, there is an increase in anti-β-cat_K49 fluorescence in the
nucleus after Wnt stimulation. Additional transfection with β-cat (left panel) results in β-cat_K49 bundles in the nucleus with which Harm-GFP colocalizes.
Analysis of Pearson correlation coefficient (lowest panel) reveals strong interaction between Harm-GFP and β-cat_K49 with value of R = 0.78 (n = 169 cells;
N = 3 experiments). (C–E)Western blot analysis of cell fractions (30 μg total protein loaded), separated from homogenate (homo) in cytosol (cyto) and nucleus
(nuc). HEK293T cells were transfected with Harm-GFP and stimulated for Wnt signaling withWntmedium or transfection of β-cat. Unstimulated HEK293 cells
served as control. (C) Staining of total protein amount was compared to (D) Harm-GFP staining in the fractions; α-Tubulin marks the cytosol fraction and
histon H3 the nucleus fraction (15% polyacrylamide gel). Statistical analysis (E) reveals a non-significant increase of 1.4-fold of harmonin in unstimulated cells
(control) but a significant increase of 1.5-fold comparing nuclear to cytosolic harmonin (set to 1) inWnt stimulated cells. Co-transfection with β-cat results in a
significant increase of 3-fold of nuclear harmonin. Two-tailed Student’s t-test, **p ≤ 0.01; N = 3 experiments.
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catenin_K49 in unstimulated state (control) was almost absent due its
degradation by the activity of the β-catenin destruction complex
(Kimelman and Xu, 2006). However, after stimulation of Wnt
pathway, especially after β-catenin transfections, acetylated β-
catenin immunofluorescence was found in the nucleus (Figure 2B,
upper panel) (see, Liu et al., 2020). Anti-GFP immunofluorescence
staining showed that harmonin a1-GFP was mostly localized in the
cytoplasm in cells cultured in normal culturing medium (Figure 2B,
control, left panel). After the application of WMS in addition to the
cytoplasmic localization some harmonin was also found in the nucleus
(Figure 2B, Wnt, middle panel). In contrast, after β-catenin co-
transfection nearly all harmonin translocated into the nucleus.
Nuclear harmonin co-localized with β-catenin_K49 at filamentous
structures (Figure 2B, β-cat, right panel). Such β-catenin filament
bundles have been described previously in nuclei of MDKC cells
overexpressing β-catenin (Simcha et al., 1998). Analysis of Pearson
correlation coefficient in cells co-transfected with harmonin and β-
catenin revealed an average positive value of 0.78 and therefore, a
strong linear relation between β-catenin_K49 and harmonin
indicating the interaction of both proteins at the nuclear filament
bundles.

Translocation of harmonin into the nucleus caused by Wnt
stimulation was also confirmed in cellular fractions. To this end,
Western blots were first stained for total protein (Figure 2C) and
subsequently for harmonin by the H3 antibody against harmonin

(Figure 2D). We found harmonin under all conditions (unstimulated
control, WMS and β-catS) in both the cytosol and the nucleus
fractions. However, when we calculated the ratio of harmonin in
cellular fractions and total protein, we observed significantly more
harmonin in the nuclear fraction after Wnt stimulation, via WMS as
well as β-catS (Figure 2E). Especially in β-catS stimulated cells the
amount of harmonin was increased more than 3-fold in the nuclear
fraction when compared to the cytosolic fraction.

In summary, these results showed that harmonin translocates
together with β-catenin/β-catenin_K49 into the nucleus when the
availability of β-catenin and/or the activity of cWnt signaling is
increased.

Harmonin expression decreases Wnt
signaling activity

Next, we tested whether USH1C/harmonin expression alters the
activation cWnt signaling pathway. For this, we overexpressed GFP-
tagged human harmonin a1 (Harm-a1) in HEK293T cells in which the
cWnt signaling was stimulated by overexpression of β-catenin (β-
catS). The quantification of Western blots revealed that the ratio of β-
catenin_K49/β-catenin was significantly reduced in harmonin
overexpressing cells compared to control transfected cells (Figures
3A, B). This weak, ~0.23-fold reduction was not observed in parallel

FIGURE 3
Harmonin overexpression leads to the decrease in Wnt signaling activity (A) Representative Western blot analysis of β-catenin (β-cat) expression in
HEK293T cells transfected with harmonin a1-GFP (Harm-a1), truncated harmonin a1_R31*-GFP (Harm-R31*), or GFP (control) and β-catenin (β-cat). (B)
Quantification reveals that the expression of full length harmonin a1 significantly decreases β-cat_K49/β-cat ratio (−0.2) while the expression of truncated
harmonin a1-R31* did not alter the β-cat_K49/β-cat ratio when compared to control transfected HEK293T cells; 12% polyacrylamide gel. Two-tailed
Student’s t-test, **p ≤ 0.01; N = 5 experiments. (C)Wnt response in transfected HEK293T cells measured by TCF/LEF luciferase activity assay. In unstimulated
condition (control, left) luciferase activity is significantly decreased in Harm-a1 and Harm-R31* transfected cells compared to empty vector control.
Stimulation with Wnt conditioned medium leads to an increase in luciferase activity for all, whereby control as well as Harm-R31* show significantly more
cWnt signaling activity than Harm-a1 (Wnt, middle). Addition of β-cat results in the highest Wnt activity and reveals the largest difference of luciferase activity
between Harm-a1 to control and Harm-R31* (β-cat, right). cWnt signaling is significantly decreased in Harm-a1 transfected cells. Two-tailed Student’s t-test,
**p ≤ 0.01, **p ≤ 0.001; N = 3 experiments (three triplicates each condition).
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experiments overexpressing the truncated harmonin a1_R31* version
(Harm-R31*) with a disease-causing nonsense mutation that results in
the expression of a severely truncated harmonin a1 protein
(Goldmann et al., 2010; Goldmann et al., 2011; Goldmann et al.,
2012). These results indicated a negative regulation of cWnt signaling
by harmonin.

To verify these promising results, we next analyzed cWnt activity
using a cWnt signaling luciferase assay sensing of TCF/LEF
transcription factor activity (see Material and Methods). For this
HEK293T cells were transfected with Dual-Glo® Luciferase vectors
and GFP-tagged human harmonin a1 (Harm-a1), its harmonin a1_
R31* (Harm-R31*) version or GFP alone, respectively and the relative
firefly luciferase activity was determined (Figure 3C). Without Wnt
stimulation the expression of both Harm-a1 and Harm-R31* led to a
significant decrease in the luciferase activity compared to the mock
transfections (Figure 3C, left panel). In mock transfected cells, the
stimulation of the cWnt pathway by both Wnt conditional medium
(Wnt medium stimulation (WMS)) or by overexpression of β-catenin
(β-catS) led to drastic increases of the relative firefly luciferase activity,
~10-fold and over 40-fold, respectively, indicating the high sensitivity
of the assay and strong cWnt pathway activations under both
stimulation conditions. Harm-a1 overexpression completely
extinguished the relative firefly luciferase activity under conditions
of stimulation by Wnt medium and significantly reduced the increase
from 40-fold to less than 3-fold when cWnt signaling was stimulated
by β-catenin. In contrast, the truncated Harm-R31* version reduced
the relative firefly luciferase activity nearly to half under conditions of
stimulation by Wnt medium compared to the GFP control and no
significant difference in the relative luciferase activity between Harm-
R31* and GFP controls was observed when cWnt signaling was
stimulated by β-catenin. Taken together, our results obtained with
the cWnt luciferase assay confirm that USH1C/harmonin suppresses
cWnt signaling in HEK293T cells.

The expression of cWnt target genes and
cWnt pathway genes in USH1C patient-
derived fibroblasts

Next, we aimed to validate our results obtained in HEK293T cells
in USH1C patient-derived dermal fibroblasts cells, which have
recently been established as a cellular model of USH disease for
translational research (Grotz et al., 2022; Nagel-Wolfrum et al.,
2022). In human dermal fibroblasts, Wnt signaling is important for
the cellular function related to hair follicle development, regional cell
identity, and wound healing, and its dysregulation can lead to skin
fibrosis or wound healing defects (Enzo et al., 2015; Griffin et al.,
2022). We cultivated dermal fibroblasts from a clinically characterized
USH1C patient withUSH1CR31*/80Pfs*69 (hereafter referred to as USH1C
fibroblasts) and a healthy control individual (healthy fibroblasts) in
control medium and Wnt conditioned medium (WMS), respectively,
and examined their transcriptomes by RNAseq.

Principal Component Analysis (PCA) revealed a large distance in
clustering of healthy and USH1C fibroblasts (Pearson correlation
coefficient 0.865) indicating a great transcriptomic difference
(Supplementary Figure S2A). Interestingly, WMS had a greater
effect on the USH1C fibroblast transcriptome (Pearson correlation
coefficient 0.796), as they clustered farther apart from each other when
compared to their healthy counterparts (Pearson correlation

coefficient 0.869). The greater transcriptomic difference of WMS
on USH1C fibroblasts was further observed by differential
expressed gene (DEG) analysis. For USH1C fibroblasts, WMS
resulted in 5,303 DEGs when compared to their untreated
counterparts (Supplementary Figure S2B; Supplementary Tables S1,
S2), thereby including 23 genes that have been previously identified as
Wnt targets (Herbst et al., 2014; Ramakrishnan and Cadigan, 2017;
Ghahramani et al., 2018; Lecarpentier et al., 2019; Boonekamp et al.,
2021) (Figure 4A, column 2 and 4). For healthy fibroblasts, WMS
revealed only 2,590 DEGs (Supplementary Figure S2B; Supplementary
Tables S1, S3) when compared to the untreated ones, comprising
16Wnt target genes (Figure 4A, column 1 and 3). To further assess the
consequence of the USH1CR31*/80Pfs*69 mutations on transcriptome
level, we additionally examined DEGs of healthy and USH1C
fibroblasts. Consistent with the previous findings, WMS led to an
increased amount of DEGs. Specifically, we were able to identify
3,265 DEGs (1,583 upregulated and 1,682 downregulated in
USH1C + Wnt), including 31 Wnt target genes when comparing
healthy and USH1C Wnt stimulated fibroblasts [Figure 4A, column
3 and 4, (Supplementary Figure S2B; Supplementary Tables S1, S4)],
whereas untreated fibroblasts showed 2,229 DEGs (1,171 upregulated
and 1,058 downregulated in USH1C), including 32 Wnt target genes
[Figure 4A column 1 and 3, (Supplementary Figure S2B;
Supplementary Tables S1, S5)]. Next, we performed Gene Ontology
(GO) enrichment analysis to assess biological processes in which the
identified dysregulated Wnt target genes are participating in. In total,
differential expressed Wnt target genes were enriched for
126 biological processes (Supplementary Table S6). Of those,
11 GO terms revealed changes in “development and differentiation
of neurons” (Figures 4B, C, green), “development and differentiation
of the inner ear” (Figures 4B, C, orange), as well as “stem cell
development” (Figures 4B, C, grey) when comparing healthy and
USH1C fibroblasts and their WMS counterparts. Interestingly, SOX9,
which is also known to be a regulator of retinogenesis and homeostasis
in the adult retina, accounts for all three developmental GO terms
regardless of whether fibroblasts were Wnt stimulated or not (Poche
et al., 2008; Wu et al., 2022). DEG analysis also revealed SOX9 to be
dysregulated when comparing untreated and Wnt treated USH1C
fibroblasts, healthy and USH1C fibroblasts, as well as Wnt treated
healthy and USH1C, but not for untreated and Wnt treated healthy
fibroblasts.

As we were able to observe substantial dysregulation, particularly
of the expression of Wnt target genes, we next sought to elucidate the
Wnt signaling pathway itself. To do so, differential gene expression of
Wnt pathway genes was examined in unstimulated and Wnt
stimulated healthy and USH1C fibroblasts, respectively. Wnt
pathway genes were defined as those associated to the GO terms
Wnt pathway (GO:0016055) and canonical Wnt pathway (GO:
0060070). In total, we were able to identify and cluster 74 DEGs
(Figure 5A). Categorization according to the site of action of gene
products within the Wnt signaling pathway revealed five distinct
categories (Figure 5B), namely Wnt ligands (Figure 5B, green,
seven genes), secreted antagonists (pink, nine genes), Wnt related
membrane receptors (Figure 5B, purple, 13 genes), β-catenin
destruction complex (brown, nine genes) and transcriptional
regulators (Figure 5B, blue, nine genes). Additional 27 genes are
marked in black as these could not be clearly assigned or have a
more indirect influence on the signal pathway. Nevertheless,
categorization revealed dysregulation of Wnt signaling genes that
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effects the entire pathway indicating extensive alterations compared to
the healthy state. Especially, clustering of the major Wnt pathways
initiators, such as Wnt10b, Wnt4, Wnt11 as well as Wnt16, Wnt5a,

and Wnt2 appears to be striking. These Wnt ligands are highly
upregulated in untreated and Wnt treated USH1C fibroblast when
compared to their healthy counterparts (Figure 5A). A second cluster

FIGURE 4
RNAseq analysis uncovers differential expression of Wnt target genes in USH1CR31*/R80Pfs*69 patient-derived fibroblasts. (A) Heatmap shows transformed
FPKM-values scaled by z-score identifying 40 differentially regulated Wnt target genes in unstimulated and Wnt stimulated healthy (column 1 and 3) and
USH1CR31*/R80Pfs*69 patient-derived (USH1C) fibroblasts (column 2 and 4). Red areas correspond to a relative downregulation in gene expression, whereas
green areas represent a relative upregulation. (B) GO enrichment analysis showing dysregulated Wnt target genes to be critical for distinct biological
processes, such as “development and differentiation of neurons,” “development and differentiation of the inner ear,” as well as “stem cell development.” (C)
Detailed description of GO terms summarized in (B).
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can be observed for several Wnt signaling related receptors and co-
receptors of the plasma membrane, such as LRP5, FZD2, LRP6, PKD1,
FZD4, and FZD1, which showed increased expression in untreated
USH1C fibroblasts compared to healthy fibroblasts.

Overall, analysis of RNAseq data revealed aberrant transcriptomic
patterns of several Wnt target and Wnt pathway genes in patient-
derived USH1C fibroblasts, thereby strengtheningUSH1C/harmonin’s
role for a functional Wnt signaling pathway.

FIGURE 5
RNAseq reveals differential expression of Wnt signaling pathway genes in USH1CR31*/R80Pfs*69 patient-derived fibroblasts. (A) Heatmap showing
transformed FPKM-values scaled by z-score identifying 74 differentially regulated Wnt signaling pathway genes in unstimulated and Wnt stimulated healthy
(column 1 and 3) and USH1CR31*/R80Pfs*69 patient-derived (USH1C) fibroblasts (column 2 and 4). Red areas correspond to a relative downregulation in gene
expression, whereas green areas represent a relative upregulation. (B) Log2 transformed FPKM-values show the expression levels of Wnt pathway genes
blotted due to their area of action within the Wnt signaling pathway for unstimulated and Wnt stimulated healthy and USH1CR31*/R80Pfs*69 (USH) fibroblasts,
respectively.
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The translocation of β-catenin_K49 in human
USH1C patient-derived cells

To monitor cWnt signaling activation in human fibroblasts in situ,
we stained acetylated β-catenin_K49 by immunocytochemistry in human
healthy control fibroblasts and USH1CR31*/R80Pfs*69 patient-derived
fibroblasts. In healthy control fibroblasts and USH1C fibroblasts the
intensities of the β-catenin_K49 immunofluorescence was significantly
increased in the nuclei of fibroblasts cultured in Wnt conditioned

medium (1.74-fold and 1.34-fold, respectively), when compared to
fibroblasts cultured in control medium (Figures 6A, B). These
comparisons indicated that the culturing in Wnt conditioned medium
stimulated cWnt in both healthy and USH1C fibroblasts.

A comparison of the β-catenin_K49 immunofluorescence
intensity between healthy and USH1C fibroblasts revealed that the
intensities were significantly higher in USH1C fibroblasts under both
conditions, unstimulated and stimulated conditions (Figure 6C).
Taken together our data demonstrate that the activation of the

FIGURE 6
Harmonin leads to a decrease in Wnt signaling activity in patient-derived USH1C fibroblasts baering the patogenic USH1CR31*/R80Pfs*69 mutations (A)
Immunofluorescence analysis shows an increase of β-catenin_K49 (β-cat_K49) intensity (green) in Wnt stimulated human healthy fibroblasts. The nucleus is
marked with DAPI (blue). Quantification reveals an increase of β-cat_K49 (1.74-fold) after stimulation with Wnt medium. Two-tailed Student’s t-test, **p ≤
0.01; N = 12 experiments, cell number: Wnt- n = 1,219; Wnt+ n = 1,276. (B) Immunofluorescence analysis shows an increase of β-cat_K49 intensity
(green) in Wnt stimulated USH1CR31*/R80Pfs*69 patient derived fibroblasts. The nucleus is marked with DAPI (blue). Quantification reveals an increase of β-cat_
lys49 (1.34-fold) after stimulation withWntmedium. Two-tailed Student’s t-test, *p ≤ 0.05; N = 12 experiments, cell number: Wnt-, n = 1,282; Wnt+, n = 1,140.
(C) Unstimulated USH1CR31*/R80Pfs*69

fibroblasts show even higher levels of β-cat_K49 in stimulated healthy cells (unstimulated healthy = 1). Two-tailed
Student’s t-test, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001; N = 12 experiments.
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cWnt signaling pathway is higher in cells lacking USH1C/harmonin
suggesting USH1C/harmonin as negative regulator of in the cWnt-
signaling pathway.

Ataluren rescues the cWnt signaling
phenotype in USH1C-deficient cells

Next, we aimed to test whether the monitoring of the phenotype in
cWnt signaling in cells can serve as a readout of therapeutic efficacy.
The current hypothesis for the molecular mechanism of translational
read-through is that in presence of TRIDs a near-cognate tRNA binds
to the ribosomal A site and subsequently incorporates an amino acid
into the nascent polypeptide at the position of the nonsense mutation
(Figure 7A) (Roy et al., 2016). Consequently, the resulting restored
proteins have insertion biases at the site of the nonsense mutation that
might have an impact on the functionality of the protein and
subsequently the therapeutic outcome. In our USH1C patient-
derived cell line the p.R31* is due to a point mutation altering the
triplet CGA, coding for arginine into the TGA stop mutation. In case
of the present TGA nonsense mutation in USH1C, the amino acids

leucine (L), serine (S), tryptophan (W), cysteine (C), glycine (G) and
arginine (R) being the wild-type amino acid residue are predicted to be
incorporated (Table 1). In silico tools, were used to predict whether the
possible amino acid substitionsare expected to be tolerated. Of note,
one missense variant c.92G>A p.Arg31Gln has been associated with
USH1C-type USH (Zwaenepoel et al., 2001). However, in silico
prediction programs are still erroneous in determining the specific
effect of a likely pathogenic variant (Pater et al., 2019). Therefore, they
should be interpreted with caution and should not be taken as a
definitive approach (Matalonga et al., 2015; Samanta et al., 2019).
Since our in silico analysis gave majoritarian damaging results, we
extended our research and analysed the functionality of the recovered
USH1C/harmonin protein.

We transfected HEK293T cells with Dual-Glo® Luciferase cWnt
reporters, GFP-tagged human harmonin a1 isoform with the R31*
nonsense mutation (Harm-R31*), and with β-catenin for cWnt
stimulation. After treatment with Ataluren (PTC124) (5 and 10 μg/
mL in DMSO) the relative firefly luciferase activity was determined
which demonstrates a doses-depended read-through efficacy of
Ataluren: in the lower dose (5 μg/mL) Ataluren leads to a slight
decrease in cWnt activity but the higher dose (10 μg/mL)

FIGURE 7
Treatment with Ataluren rescues cWnt in USH1C/harmonin-deficient cells. (A) Scheme of translational read-through of premature termination codons.
Ataluren (blue asterisk) enhances translational read-through of the premature stop codon UGA (red) resulting in expression of full-length harmonin. (B) cWnt
response in harmonin a1_R31*-GFP (Harm-R31*) and β-catenin (β-cat) transfected HEK293T cells measured by TCF/LEF luciferase activity. Treatment with
5 μg/mL and 10 μg/mL Ataluren shows significant reduction of cWnt response in Harm-R31* transfected cells. DMSO in all cells at 0.2%. Two-tailed
Student’s t-tests, ***p ≤ 0.001; N = 3 experiments (three triplicates each condition). (C) Immunofluorescence analysis reveals significant decrease of β-cat_
K49 (green) in Wnt stimulated USH1C (USH1CR31*/R80Pfs*69) patient-derived fibroblasts after treatment with Ataluren (5, 10 μg/mL). The nucleus is marked with
DAPI (blue). (D) Levels of β-cat_K49 were decreased by 0.3 (5 μg/mL) and 0.2 (10 μg/mL) in Ataluren treated cells. DMSO in all cells at 0.2%. Two-tailed
Student’s t-tests, *p ≤ 0.05; N = 3 experiments, cell number: untreated, n = 246; Ataluren 5 μg/mL, n = 349 cells; 10 μg/mL, n = 277.

Frontiers in Cell and Developmental Biology frontiersin.org13

Schäfer et al. 10.3389/fcell.2023.1130058

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1130058


TABLE 1 In silicomissense variant assessment on potential disease-association of the predicted amino acid substitions resulting from translational read-through of USH1C c.91C>T; p.R31* nonsense mutation (i.e., wild-type codon
-“-CGA-” to mutant premature termination codon “-TGA-”).

Codon position
altered
from PTC

Possible
mispairing

Amino acid
substitution

dbSNP Polyphen-
2 [0–1]

phyloP
[−19.0; 10.9]

Grantham
dist. [0–215]

Align GVGD
[GV:353.86 -
GD:0.00]

SIFT (score: 0.
Median: 3.71)

MutationTaster
(probability 1)

gnomAD
MAF %

UGA CGA p.Arg31Arg (=wild-
type)

— — — — — — —

AGA

GGA p.Arg31Gly rs121908370 Probably
damaging; 1

phyloP:
9.17 [−19.0,

11.0]

125 [0–215] Class C0 (GV:
241.31—GD: 24.28)

DELETERIOUS
(score: 0, median: 4.32)

Disease-causing; 1 0.00398

10 het in
251248 alleles

UGA UUA p.Arg31Leu — Probably
damaging; 1

— 102 [0–215] Class C0 (GV:
241.31—GD: 90.63)

DELETERIOUS
(score: 0, median: 4.32)

Disease-causing; 1 —

UCA p.Arg31Ser — Probably
damaging; 1

— 110 [0–215] Class C0 (GV:
241.31—GD: 21.04)

DELETERIOUS
(score: 0, median: 4.32)

Disease-causing; 1 —

UGA UGU p.Arg31Cys Probably
damaging; 1

180 [0–215] Class C0 (GV:
241.31—GD: 80.92)

DELETERIOUS
(score: 0, median: 4.32)

Disease-causing; 1 —

UGC

UGG p.Arg31Trp Probably
damaging; 1

— 101 [0–215] Class C0 (GV:
241.31—GD: 94.79)

DELETERIOUS
(score: 0, median: 4.32)

Disease-causing; 1 —
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significantly reduced cWnt signaling in Harm-R31* HEK293T cells
when compared to DMSO treated control cells (Figure 7B).

Read-through efficacy strongly depends on the type of nonsense
mutation as well as up- and downstream sequences and should be
analysed on the patient specific background. Here, we analyzed the
Ataluren´s translational read-through efficacy in human
USH1CR31*/80Pfs*69 patient-derived (USH1C) fibroblasts. We treated
the fibroblasts stimulated in Wnt conditioned medium with
Ataluren in two doses (5 μg/mL and 10 μg/mL) and subsequently
monitored the nuclear localization of β-catenin_K49 by
immunofluorescence microscopy (Figure 7C). We observed a
significant reduction of β-catenin_K49 (~20%–30%) in the nuclei
of USH1C fibroblasts after treatment with Ataluren in both
concentrations, 5 and 10 μg/mL in DMSO, compared to DMSO
treated controls (Figure 7D).

In summary, our results show that hyperactivation of the cWnt
pathway in the presence of Harm-R31* HEK293T cells or in skin
fibroblasts from USH1CR31*/R80Pfs*69 patients was corrected by
administration of Ataluren. Thus, monitoring of cWnt signaling
phenotype in cells may serve as an indicator of therapeutic efficacy
in USH1C treatment.

Discussion

cWnt signaling is highly regulated by several molecular network
circles and its dysregulation can results in a multitude of diseases such
as cancer or severe developmental defects (Ng et al., 2019). In
particular, failure in downregulating cWnt signaling results in
malfunctions highlighting the important role of suppressors of the
pathway (Kumar and Tanwar, 2017). There are several modes of cWnt
suppression: Suppression of cWnt signaling was found to be mediated

by binding of secreted Wnt antagonists, such as Dickkopf-1 protein
(DKK1) and sclerostin (SOST) to the LRP5/6 co-receptor (Mao et al.,
2001; Delgado-Calle et al., 2017). Alternative mechanisms for the
suppression of cWnt signaling in the cytoplasm were described in
osteoblasts in which excessive activation of cWnt signaling
downstream substrates is prevented by Schnurri-3 (SHN3), which
attenuates ERK activity and thereby suppresses GSK3β (Delgado-Calle
et al., 2017) and for the feedback suppressor axin which binds β-
catenin for the recruitment to the destructor complex for proteasomal
degradation (Fearon, 2011). Here, we show that the USH1C protein
harmonin is also a potent regulator of cWnt signaling suppressing β-
catenin transcriptional activity (Figure 8C).

The suppression of the cWnt signaling by harmonin is most
probably achieved by direct binding of harmonin to β-catenin. We
show this with the present interaction assays in mammalian cells and
in situ by PLAs, confirming previous in vitro data (Johnston et al.,
2004; Nagel-Wolfrum et al., 2022). The binary interaction of
harmonin and β-catenin is mediated by binding of the C-terminal
tail of β-catenin with its type I PBM (DTDL) (DuChez et al., 2019) to
PDZ domains 1 and 3 on harmonin, with a slight preference for PDZ3
(Nagel-Wolfrum et al., 2022). Binding of the C-terminal PBM of β-
catenin to PDZ domains has been previously described for interactions
with other PDZ domain-containing proteins such as MAGI-1 and
LIN7 (Dobrosotskaya and James, 2000; Perego et al., 2000). Such PDZ-
mediated interactions are mostly related to the β-catenin’s function in
cell-cell adhesions (Valenta et al., 2012), as we have recently shown for
β-catenin-harmonin interaction in the human retina (Nagel-Wolfrum
et al., 2022).

However, recent studies have further indicated that PBM-
mediated interactions of β-catenin are also essential for its role as a
coactivator in the cWnt pathway (DuChez et al., 2019). The
interaction of the small PDZ protein EBP50 with the PBM of β-

FIGURE 8
Schematic drawing of involvement of harmonin in cWnt signaling pathway. (A) In the inactive cWnt signaling pathway, absence of Wnt ligands leads to
phosphorylation (P) of β-catenin (β-cat) by the destruction complex (grey and white circles) followed by protein degradation. (B) In presence of Wnt ligands,
the pathway is activated by binding ofWnt to the receptor Frizzled (Fz), preventing the formation of the destruction complex. β-catenin can then be acetylated
at K49 (β-cat_K49) resulting in its stabilization and nuclear translocation where it serves as transcriptional coactivator of TCF/LEF (T cell factor/lymphoid
enhancing factor) Wnt target genes. (C) Harmonin (Harm) as negative regulator of cWnt signaling, suppresses the pathway by binding to β-cat_K49. The
protein complex can still translocate to the nucleus but further transcription of cWnt target genes is blocked. Fz (Frizzled), LRP5/6 (lipoprotein receptor-
related protein), Dvl (Dishevelled), APC (adenomatosis polyposis coli), axin, Ck1 (casein kinase 1α), GSK3 (glycogen synthase kinase 3).
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catenin potentiates its transcriptional activity in liver cancer cells
(Shibata et al., 2003). In contrast, the binding of Tax-interacting
Protein-1 (TIP-1) or Sorting Nexin 27 SNX27 via their PDZ
domains with β-catenin’s PBM inhibits its transcriptional activity
(Kanamori et al., 2003; DuChez et al., 2019). This is exactly what we
also found for the harmonin-β-catenin interaction. Mechanistically,
harmonin could influence the stability or subcellular localization of β-
catenin or, alternatively, the formation of the TCF/β-catenin
transcriptional activator complex or association of β-catenin with
its transcriptional co-activators in the nucleus (Tago et al., 2000;
Valenta et al., 2011; Valenta et al., 2012). Our data demonstrate that
harmonin does not induce or increase the degradation nor alters the
translocation of β-catenin into the nucleus as indicated by the results
which we achieved by Western blots and cytochemistry, respectively
(Figures 2B, 3A).

The ARM repeats R11–R12 and the C-terminal domain (CTD) of
β-catenin recruits a multitude of transcriptional co-activators
(Mosimann et al., 2009). In addition, conformational changes in
the relative flexible CTD of β-catenin have been proposed to fold
back on the central region affecting the binding of TCF and the
formation of the TCF/β-catenin transcriptional activator complex
(Castano et al., 2002; Solanas et al., 2004). Binding of harmonin
may interfere with both, the binding of transcriptional co-
activators and/or the fold back the CTD onto the central ARM
repeats of β-catenin resulting in the repression of the β-catenin
transcriptional activation.

Our present data consistently reveal that harmonin regulates cWnt
signaling by the suppressing β-catenin transcriptional activity. In
HEK293T cells, the overexpression of harmonin represses the
transcriptional activity of β-catenin (Figure 3). We confirmed these
findings in human primary dermal fibroblasts in which previously the
activation of cWnt signaling by Wnt3a stimulation has been reported
(Klapholz-Brown et al., 2007). The cWnt signaling was significantly
increased in harmonin-deficient USH1C patient-derived fibroblasts
(Figure 6), suggesting that WT harmonin also serves as a repressor of
cWnt signaling in human fibroblasts. Such a suppressor function of
harmonin is also reflected in the transcriptome of USH1C-deficient
cells assessed by RNAseq analyses. The transcriptomes of both, Wnt
stimulated and unstimulated USH1C cells are significantly different
from the Wnt stimulated and unstimulated healthy controls
(Supplementary Figure S2A; Figures 4, 5). USH1C/harmonin
deficiency triggers extensive alterations in the transcriptome of
cWnt signaling, consistent with defects found for the
downregulation of other cWnt suppressors, such as the scaffold
protein, axin (Wu et al., 2012). In particularly, the expression of
numerous Wnt target genes is substantially altered in the absence of
USH1C/harmonin further supporting an important role of USH1C/
harmonin in the regulation of cWnt/β-catenin/TCF signaling gene
expression program. In addition, we observed that harmonin
deficiency has a direct impact on the expression of several genes
enrolled in different levels of the cWnt signaling cascade and β-
catenin/TCF transcriptional regulation, such as significant differential
expression of genes forWnt ligands,Wnt receptors andWnt co-receptors
as well as components of the β-catenin destruction complex and nuclear
cWnt transcription factors and regulators. It will be interesting for future
studies to decipher how these feedback loops are regulated.

Before designated as a gene causative of USH1C (Bitner-Glindzicz
et al., 2000; Verpy et al., 2000), theUSH1C gene product harmonin was
first identified as an autoimmune antigen, synonymously named PDZ-

73 and AIE-75, being upregulated in colorectal carcinomas and in
cases of autoimmune enteropathy (AIE) (Kobayashi et al., 1999;
Scanlan et al., 1999; Hirai et al., 2004). There is long standing
evidence for an impact of cWnt signaling on cancer development
especially for colorectal cancers (Klaus and Birchmeier, 2008). In
colorectal cancers the cWnt signaling cascade is activated, e.g., by
upregulation of Wnt ligands, and in turn cWnt pathway suppressors,
such as axin2, are upregulated (Fearon, 2011;Wu et al., 2012; Nie et al.,
2020), which is coincident with the present and previous findings for
USH1C/harmonin (Kobayashi et al., 1999). Our results show that
harmonin has a similar function to axin2 in the canonical cWnt
signaling cascade in the normal cell under physiological conditions
and acts as a negative regulator or suppressor of cWnt signaling (Wu
et al., 2012). Accordingly, like axin2, USH1C/harmonin may be a
potential target for colorectal cancer therapy (Chen et al., 2009;
Novellasdemunt et al., 2015).

Numerous pathologic variants (mutations) in USH1C gene are
causative for Usher syndrome type 1 (https://databases.lovd.nl/
shared/genes/USH1C), characterized by congenital profound
deafness and vestibular dysfunction, combined with visual loss
before puberty (Fuster-Garcia et al., 2021; Delmaghani and El-
Amraoui, 2022), affecting the sensory epithelia in both the inner
ear and the eye. In the inner ear, both the non-canonical Wnt (PCP)
and the cWnt signaling pathway are important, first during the early
development and later during the differentiation of the
mechanosensitive hair cells (Jacques et al., 2012). The USH1C
protein harmonin is essential for the correct differentiation of the
stereocilia bundles of hair cells (Boeda et al., 2002; Johnson et al.,
2003). In its absence the arrangement of the hair bundles is disturbed,
a phenotype which can be also found in deregulated cWnt signaling
(Jacques et al., 2012; Deng et al., 2021). However, present GO term
analysis categorized differentially expressed genes in USH1C-deficient
fibroblasts to “early neural differentiation” and “early inner ear/
cochlear development” (Figure 4B), which points to an additional
role of harmonin during early development in particular in the
inner ear.

Dynamic activation of the cWnt signaling pathway has been
described throughout retinal development, suggesting a role in
multiple aspects of retinal development and homeostasis (Liu et al.,
2006). Considering the late onset of the retinal degeneration in
USH1 we do not expect the regulation of the cWnt signaling by
USH1C/harmonin to play a role during retinal development. In the
adult mammalian retina cWnt signaling regulates the proliferation
and neurogenic potential of Müller glial cells (Angbohang et al., 2016;
Yao et al., 2016). Given its high expression in theMüller glia cells of the
human retina (Cowan et al., 2020; Nagel-Wolfrum et al., 2022),
harmonin may also serve as a suppressor of cWnt signaling and
proliferation of the Müller glial cells in the retina. A regulatory role of
harmonin in Müller glial cells is supported by data of our recent study
revealing increased expression of glial fibrillary acid protein (GFAP) in
the USH1C/harmonin deficient retina of a humanized USH1C porcine
model (Grotz et al., 2022).

We have previously shown that patient-derived dermal fibroblasts
are suitable to test potential treatment options for human hereditary
retinal disorders (Samanta et al., 2019; Grotz et al., 2022; Nagel-
Wolfrum et al., 2022). A query and comparison of variants listed in the
disease-associated mutation database HGMDpro and variant database
gnomAD (https://gnomad.broadinstitute.org/gene/
ENSG00000006611) identified 87 disease-associated variants and
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only 22 missense mutations (25%). In contrast, gnomAD lists
2,105 variants, of which 978 are exonic and 637 are accounted by
missense variants (637/978, 65%). This might support the notion, that
disease-associated variants inUSH1C are mostly deleterious if they are
null alleles (i.e., nonsense, frame-shift, splicing), while USH1C is
tolerant to missense mutations. This may indicate that USH1C/
harmonin protein tolerates amino acid substitutions, and thus
read-through is a very promising approach for patients with a
nonsense variant. Present results further highlight the great
potential of translational read-through therapy for defects caused
by nonsense mutations confirming our previous data [summarized
in (Nagel-Wolfrum et al., 2016)]. Moreover, the cellular disease
models have also great potential to screen and test candidate drugs
for treatments associated with altered cWnt activity, including
colorectal cancer.

Conclusion

In conclusion, we provide several lines of evidence that the USH1C
protein harmonin is a potent suppressor of cWnt pathway by
interacting with the cWnt pathway coactivator β-catenin. We
demonstrate that USH1C/harmonin deficiency in USH1C patient-
derived fibroblasts significantly alters not only the expression of
Wnt target genes but also of genes related to cWnt signaling
pathway. Finally, we proof that the transitional read-through drug
Ataluren restores the cWnt phenotype in HEK293T cells and patient-
derived fibroblasts bearing an early nonsense mutation inUSH1C. The
novel role of USH1C/harmonin in the control of cWnt signaling
identified here opens new avenues of research to unravel the
pathomechanism of USH, identify new therapeutic targets, and
evaluate treatment options in patient-derived cell models.
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Glossary

Ac acetate

AIE autoimmune enteropathy

AJ adherent junctions

APC adenomatosis polyposis coli

CBY1 chibby

CK1 casein kinase 1

CTD C-terminal domain

cWnt canonical Wnt signaling

DAPI 4′,6-diamidino-2-phenylindole

DEG differential expressed gene

DKK Dickkopf

DMD Duchenne muscular dystrophy

DMEM Dulbecco’s modified Eagle’s medium

DTDL PDZ binding motif of β-catenin

Dvl dishevelled

FBS fetal bovine serum

FDR false discovery rate

FPKM fragments per kilobase per million mapped fragments

Fz frizzled

GFAP glial fibrillary acid protein

GFP green fluorescent protein

GO gene ontology

GSK3 glycogen synthase kinase 3

h hour

Harm harmonin

HEK human embryonic kidney

LRP5/6 lipoprotein receptor-related protein

PBM PDZ binding motif

PBS phosphate-buffered saline

PCA principal component analysis

PDZ PSD-95, DLG, and ZO-1

PFA paraformaldehyde

PLA proximity ligation assay

PolyPhen-2 polymorphism phenotyping v2

PP2 protein phosphatase

ROI region of interest

RP retinitis pigmentosa

SHN3 Schnurri 3

SOST sclerostin

SIFT sorting intolerant from tolerant

TCF/LEF T cell factor/lymphoid enhancing factor

TRID translational read-through inducing drug

USH Usher syndrome

USH1C fibroblasts dermal fibroblasts derived from skin
biopsies of USH1C patient with confirmed USH1CR31*/80Pfs*69

mutations

WB Western blot

WMS Wnt medium stimulation of Wnt signaling pathway

β-cat_K49 β-catenin acetylated at lysin residue K49

β-catS stimulation of Wnt signaling pathway by overexpression of β-
catenin

β-cat β-catenin
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