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Background: Retinitis pigmentosa (RP) is a group of progressive inherited retinal
dystrophies characterized by the primary degeneration of rod photoreceptors and the
subsequent loss of cone photoreceptors because of cell death. It is caused by different
mechanisms, including inflammation, apoptosis, necroptosis, pyroptosis, and autophagy.
Variants in the usherin gene (USH2A) have been reported in autosomal recessive RPwith or
without hearing loss. In the present study, we aimed to identify causative variants in a Han-
Chinese pedigree with autosomal recessive RP.

Methods: A six-member, three-generation Han-Chinese family with autosomal
recessive RP was recruited. A full clinical examination, whole exome sequencing,
and Sanger sequencing, as well as co-segregation analysis were performed.

Results: Three heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*),
c.4745T>C (p.L1582P), and c.14740G>A (p.E4914K), were identified in the proband, which
were inherited from parents and transmitted to the daughters. Bioinformatics analysis
supported the pathogenicity of the c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P)
variants.

Conclusions: Novel compound heterozygous variants in the USH2A gene, c.3304C>T
(p.Q1102*) and c.4745T>C (p.L1582P), were identified as the genetic causes of autosomal
recessive RP. The findings may enhance the current knowledge of the pathogenesis of
USH2A-associated phenotypes, expand the spectrum of the USH2A gene variants, and
contribute to improved genetic counseling, prenatal diagnosis, and disease management.

KEYWORDS

compound heterozygous variants, retinitis pigmentosa, usherin gene, whole exome
sequencing, photoreceptor cell death

Introduction

Retinitis pigmentosa (RP, MIM #268000) is one of the most severe hereditary retinal
disorders and a major cause of visual disability and blindness (Taghipour et al., 2019; González-
Del Pozo et al., 2020). It has wide phenotypic and genetic heterogeneity with numerous gene
defects (Ávila-Fernández et al., 2010; Gao et al., 2019; Karali et al., 2019). The disorder is
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typically characterized by progressive degeneration of rod
photoreceptors, cone photoreceptors, and retinal pigment
epithelium, leading to night blindness, restricted peripheral vision
(tunnel vision), and reduction of central vision (Hartong et al., 2006;
Verbakel et al., 2018; Koyanagi et al., 2020). The estimated prevalence
of the disorder is about 0.025%, and there are more than 1.5 million
reported patients worldwide (de Castro-Miró et al., 2014; Menghini
et al., 2020; Sharon et al., 2020). Affected individuals usually present
difficulty with dark adaptation in adolescence, tunnel vision in young
adulthood, and central vision loss in elder age, with a varying onset age
(Jinda et al., 2014; Verbakel et al., 2018). RP may be inherited in three
patterns: autosomal recessive RP (ARRP), autosomal dominant RP
(ADRP), and X-linked RP (XLRP), which account for 50%–60%, 30%–
40%, and 5%–15% of patients, as well as some non-Mendelian
inheritance traits (Hartong et al., 2006; Ferrari et al., 2011; Chen
et al., 2020; Dan et al., 2020). To date, at least 44 genes causing ARRP
have been recorded in the Retinal Information Network (https://web.

sph.uth.edu/RetNet/, updated on 10 January 2023) (Méndez-Vidal
et al., 2013; Caruso et al., 2020; Koyanagi et al., 2020). Among them,
the usherin gene (USH2A) was reported to be responsible for 10%–
15% of ARRP. Variants in at least 23 different genes have been
identified in ADRP, and there are two causative genes for XLRP
(Dias et al., 2018). In the recent decade, high-throughput DNA
sequencing such as the whole exome sequencing (WES) has
increased the identification of the causative genes in RP patients.

In RP, early studies considered that different mechanisms were
involved in photoreceptor cell death (Chang et al., 1993).
Inflammation is proposed to be a result of the photoreceptor
degeneration induced by the genetic defects, and meanwhile,
inflammation can promote the cell death (Zhao et al., 2015).
Apoptosis is known as a main mechanism for rod degeneration,
and necroptosis mediates cone degeneration at later stages, which
remain controversial (Murakami et al., 2012; Olivares-González
et al., 2020). The nucleotide-binding oligomerization domain-like

FIGURE 1
Fundus photographs and visual field tests from the proband. (A, B) The fundus examinations demonstrate pigmentary deposits, attenuated vessels, and
waxy optic discs. (C, D) Visual field assessments reveal peripheral vision loss in the proband. OS, oculus sinister (left eye); OD, oculus dexter (right eye).
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receptor family pyrin domain containing 3 (NLRP3)
inflammasome activation and pyroptosis were reported in RP
models (Olivares-González et al., 2020; Olivares-González et al.,
2021). Excessive autophagy may induce cone cell death
(Murakami et al., 2012). Although it is clear that gene variants
can disrupt photoreceptor function, the exact mechanism leading
to photoreceptor cell death is still poorly understood.

The present study was aimed at identifying the pathogenic variants
accounting for ARRP in a Han-Chinese pedigree by WES and Sanger
sequencing. The clinical characteristics and potential genetic variants
were evaluated, and the novel USH2A compound heterozygous
variants, c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P), may

be responsible for ARRP phenotype in this family. Our results
expand the gene variant spectrum and will serve as an efficient
reference for genetic diagnostic testing for patients with suspected
ARRP, which will be useful for clinical management and prognosis.

Materials and methods

Subjects and clinical evaluation

A three-generation Han-Chinese family with a suspected autosomal
recessive inherited retinal disease was recruited for genetic analysis from

FIGURE 2
The optical coherence tomography (OCT) and electroretinography (ERG) of the proband. (A–F)OCT showed thinning of retinal nerve fiber layer. (G, H)
ERG showed significantly reduced scotopic and photopic responses, with extinguished decrease of a and b waves. ILM, internal limiting membrane; RNFL,
retinal nerve fiber layer; BM, Bruch’s membrane; OS, oculus sinister (left eye); OD, oculus dexter (right eye).
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Changsha, Hunan province, China. Peripheral blood samples of the
family were collected from six members. Written informed consents
were signed by all the enrolled individuals or guardians before their
participation, and the possible consequences were explained. The study
was conducted in accordance with the Declaration of the Helsinki and
approved by the Institutional Review Board of the Third Xiangya
Hospital, Central South University (Changsha, China). Ophthalmic
evaluations of patient were comprehensively performed, including
best corrected visual acuity (BCVA), intraocular pressure, slit-lamp
biomicroscopy, fundus photograph, visual field, optical coherence
tomography (OCT), electroretinography (ERG), and fundus
fluorescein angiography (FFA). Pure-tone audiometry was carried
out to determine hearing thresholds at different frequencies, and the
normal hearing can be defined when the loudness is lower than 20 dB.
The videonystagmography (VNG) was employed to evaluate vestibular
function.

Whole exome sequencing and bioinformatics
analysis

Genomic DNA was obtained from peripheral blood samples
by QIAamp DNA Mini Kit (QIAGEN, Venlo, Netherlands).
Three samples of members (the patient and his parents) were

submitted to KingMed Diagnostics (Changsha, China) for exome
capture and sequencing. Library preparation was performed
using QIAseq FX DNA Library Kit (QIAGEN), according to
manufacturer’s protocols, and the targeted regions were
captured by xGen Exome Research Panel v1.0 (Integrated DNA
Technologies, Inc., Coralville, Iowa, United States). The
sequencing was performed on an Illumina NovaSeq platform.
The primary data were obtained using Bcl2fastq (v2.0.1) analysis.
Trimmomatic (version 0.36) was processed to obtain the clean
data by removing low quality reads, bases, adaptors, etc. The clean
data were aligned with the human genome reference sequence
(GRCh37/hg19) using the Burrows-Wheeler Aligner software,
and variants were called by Genome Analysis Toolkit. The
ANNOVAR tool was used to annotate and identify genetic
variants. The candidate variants were filtered by the following
databases, including the 1000 Genomes Project, Single Nucleotide
Polymorphism database (version 154), National Heart, Lung, and
Blood Institute-Exome Sequencing Project 6500, Exome
Aggregation Consortium, Genome Aggregation Database,
China Metabolic Analytics Project, the Human Gene Mutation
Database (HGMD), and ClinVar database. Variant pathogenicity
was predicted by MutationTaster2021 (https://www.genecascade.
org/MutationTaster2021/), Protein Variation Effect Analyzer
(PROVEAN, https://provean.jcvi.org/), the Sorting Intolerant

FIGURE 3
Fundus fluorescein angiography (FFA) and pure-tone audiograms of the proband. (A–F) Bilateral fluorescein leakage on FFA. (G, H) Audiograms showed
no hearing loss in both ears. OS, oculus sinister (left eye); OD, oculus dexter (right eye).
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from Tolerant (SIFT), the Polymorphism Phenotyping v2
(Polyphen-2, http://genetics.bwh.harvard.edu/pph2), and
MutationAssessor (http://mutationassessor.org/r3/) (Xiang
et al., 2019a; Wu et al., 2021; Xiong et al., 2021; Yu et al., 2022).

Sanger sequencing

For the potential pathogenic variants identified by WES,
Sanger sequencing was applied to test the variants in the
available family members, and the segregation of candidate
variants with the phenotype was analyzed in the view of
inheritance pattern. Primer3 (https://primer3.ut.ee) was used
to design PCR amplification primers and sequencing primers
for detecting the candidate variants according to the human
gene reference sequences (http://genome.ucsc.edu). Three pairs
of primer sequences are as follows: 5′-TAGCTCCATTCCAGC
AACCT-3′ and 5′-CAGAGGAAACCACAACAGCA-3′, 5′-TTC
GAACAAAAGTGCCTGAA-3′ and 5′-AGCTGAGGGCAAGTC
ACATT-3′, 5′-ACTCAGCCCTCCCCTGTACT-3′ and 5′-AGT
GGCTTCTCCGAGTTTCA-3′. The Chromas software (v2.01,

Technelysium Pty Ltd., South Brisbane, Australia) was applied
to analyze the sequencing results.

Variant evaluation, conservative analysis, and
structure modeling

The American College of Medical Genetics and Genomics (ACMG)
guidelines for variant interpretation were utilized following the terms,
“pathogenic”, “likely pathogenic”, “uncertain significance”, “likely
benign”, and “benign” (Richards et al., 2015). Multiple sequence
alignments for eleven species were conducted using Basic Local
Alignment Search Tool of National Center for Biotechnology
Information (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The detailed
information of protein was accessed from the Universal Protein
Resource (UniProt, https://www.uniprot.org/). The wild-type and
variant protein structures were predicted by the online CPHmodels-
3.2 (https://services.healthtech.dtu.dk/service.php?CPHmodels-3.2).
The three-dimensional structures were shown by PyMOL software
(v2.3, Schrödinger, Inc., New York, United States) (Xiang et al.,
2019b; Wu et al., 2019; Huang et al., 2021; Yuan et al., 2021).

FIGURE 4
Pedigree of the family with autosomal recessive retinitis pigmentosa and analysis of the usherin gene (USH2A) variants. (A) Pedigree figure. The squares
and the circles symbolizemales and females, respectively. Filled symbol represents the patient, and empty symbols represent unaffectedmembers. The arrow
indicates the proband. N1, allele withUSH2A c.3304C; V1, allele withUSH2A c.3304T; N2, allele withUSH2A c.4745T; V2, allele withUSH2A c.4745C; N3, allele
with USH2A c.14740G; V3, allele with USH2A c.14740A. (B–D) Patient (II:1) with variants c.3304C>T, c.4745T>C, and c.14740G>A in the USH2A gene. (E)
Conservation analysis of the USH2A p.Leu1582 and p.Glu4914 residues.
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Results

Clinical data

The proband, a 34-year-old male, complained of night blindness,
constricted vision field, and reduced vision. The BCVA test results were
0.6 in both eyes. The intraocular pressure and anterior segment
examination were normal. The fundus photographs revealed waxy-
pale appearance of the discs, attenuated retinal arteries, and pigment
deposits (Figures 1A,B). The visual field test indicated peripheral vision
loss in both eyes (Figures 1C,D). TheOCT revealed that the retinal nerve
fiber layer wasmarkedly thinned (Figures 2A–F). Full-field ERG showed
significantly decreased scotopic and photopic responses, with
extinguished decrease of a and b waves (Figures 2G,H). FFA showed
hyperfluorescence and hypofluorescence areas and attenuated vessels in
both eyes (Figures 3A–F). Hearing examination was normal by pure-
tone audiometry test (Figures 3G,H). Vestibular assessments showed
intact vestibular function according to the VNG test (Supplementary
Table S1). The patient matched the clinical diagnostic criteria of RP.
Parental consanguineous marriage was denied.

Whole exome sequencing and identification
of pathogenic variants

WES of three individuals (I:1, I:2, and II:1, Figure 4A) generated a
total of 239.41 million (84.24 million, 73.67 million, and 81.50 million)

clean reads, and the target region with a mean coverage of 99.86%
(99.91%, 99.74%, and 99.92%) was mapped to the human reference
genome. The mean depth of target region was 162.72-fold (174.23-fold,
149.84-fold, and 164.08-fold). A total of 51,803 single nucleotide
polymorphisms (SNPs) and 8,129 insertions-deletions (indels) were
found in the father (I:1), and a total of 52,281 SNPs and 8,028 indels
were found in the mother (I:2). There were a total of 51,919 SNPs and
8,042 indels in the proband (II:1). Three heterozygous variants
(c.3304C>T, p.Q1102*; c.4745T>C, p.L1582P; c.14740G>A, p.E4914K)
in the USH2A gene (NM_206933.4), a causative gene for ARRP, were
identified in the proband. The two variants c.3304C>T and c.14740G>A
were inherited from his father, and the c.4745T>C variant was originated
from his mother. The nonsense variant, c.3304C>T (p.Q1102*), was
predicted to be deleterious byMutationTaster2021. The missense variant,
c.4745T>C (p.L1582P), was predicted to be deleterious by
MutationTaster2021, PROVEAN, SIFT, and PolyPhen-2. The
c.14740G>A (p.E4914K) variant was predicted to be benign (Table 1).
Sanger sequencing confirmed the heterozygous variants in the five family
members (Figures 4A–D). Co-segregation analysis supported that
compound heterozygous variants (c.3304C>T and c.4745T>C) were
responsible for the disease phenotype. The c.3304C>T variant was
classified as “likely pathogenic” variant, and the c.4745T>C and
c.14740G>A variants were classified as “uncertain significance”
variants according to the comprehensive analysis of ACMG
guidelines. Conservative analysis of the USH2A protein from zebrafish
to human showed that leucine at variant site (p.Leu1582) was highly
conserved and glutamic acid at variant site (p.Glu4914) was conserved

TABLE 1 Identification of USH2A variants in the proband.

Category Variant 1 Variant 2 Variant 3

Nucleotide change c.3304C>T c.4745T>C c.14740G>A

Amino acid change p.Q1102* p.L1582P p.E4914K

Exon 16 22 67

Zygosity Heterozygote Heterozygote Heterozygote

Variant type Nonsense Missense Missense

1000G No No 2.00 × 10−4

dbSNP154 No No rs199829169

NHLBI-ESP6500 No No No

ExAC No No 9.89 × 10−5

gnomAD No No 9.55 × 10−5

ChinaMAP No No 1.46 × 10−3

HGMD No No No

ClinVar No No Likely benign

MutationTaster2021 Deleterious Deleterious Benign

PROVEAN NA Deleterious Neutral

SIFT NA Damaging Tolerated

PolyPhen-2 NA Probably damaging Benign

MutationAssessor NA Medium Low

1000G, 1000 Genomes Project; dbSNP154, Single Nucleotide Polymorphism database version 154; NHLBI-ESP6500, National Heart, Lung, and Blood Institute-Exome Sequencing Project 6500;

ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; ChinaMAP, China Metabolic Analytics Project; HGMD, Human Gene Mutation Database; PROVEAN, Protein

Variation Effect Analyzer; SIFT, Sorting Intolerant from Tolerant; PolyPhen-2, Polymorphism Phenotyping v2; NA, not applicable.
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from house mouse to human (Figure 4E). Structural modeling showed
the conformational alteration of the protein (UniProt Knowledgebase:
O75445, Figure 5).

Discussion

In 1998, three biologically important variants (c.2299del,
c.2898del, and c.4336_4337del) in the USH2A gene were reported
to be responsible for the autosomal recessive disorder, Usher
syndrome type IIA (USH2A, MIM #276901), featured by
sensorineural hearing impairment and progressive RP (Eudy et al.,
1998; McGee et al., 2010). Subsequently, the USH2A missense variant
p.C759F was firstly reported to be associated with ARRP without
hearing impairment in 2000, which was presumed to affect the
disulfide bridge in the fifth laminin epidermal growth factor-like
domain of the USH2A protein (Rivolta et al., 2000; Lenassi et al.,
2015). Until now, over 1,155 likely pathogenic variants in the USH2A
gene have been recorded in HGMD, responsible for non-syndromic
and syndromic RP (i.e., ARRP and USH2A). The USH2A gene
variants were reported to be the most common cause (29%) of
Usher syndrome and one of the most common causes (19%–23%)
of ARRP (Gao et al., 2019; Zhu et al., 2020).

In this study, novel compound heterozygous variants in the
USH2A gene, c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P),
were prosecuted as disease causative factors for a Han-Chinese
pedigree with RP by a full ophthalmological examination, WES,

bioinformatics analysis, Sanger sequencing, and co-segregation
analysis. These two variants were predicted to be harmful by
several prediction softwares.

The USH2A gene, located on chromosome 1q41, has two
transcripts due to alternatively splicing (21 exons and 72 exons),
encoding the secreted and transmembrane proteins, respectively
(Inaba et al., 2020; Meng et al., 2021). The longer isoform is a
transmembrane protein of 5,202 amino acids (~600 kDa), which is
a cilial protein and mainly expressed in the connecting cilia of the
photoreceptors and developing inner ear hair cells (Méndez-Vidal
et al., 2013; Huang et al., 2018; Castiglione and Möller, 2022). The
USH2A plays an essential role in the homeostasis, development, and
function of visual and auditory sensory (Molina-Ramírez et al., 2020;
Toms et al., 2020). The protein includes three regions: i) a large
extracellular region with a signal peptide, a laminin N-terminal,
10 laminin epidermal growth factor-like domains, and
34 fibronectin type-III domains separated by 2 laminin G-like
domains; ii) a transmembrane region; iii) a short intracellular
region with a PDZ-binding motif at its C-terminal end (Liu et al.,
2007; Chen et al., 2014; Fu et al., 2020; Zhu et al., 2021). The USH2A
variants, including missense, nonsense, duplications/insertions,
deletions, indels, and splicing variants, spread throughout the
72 exons and their flanking intronic regions (Aller et al., 2006;
Koyanagi et al., 2020; Gao et al., 2021). Genotype-phenotype
correlation has yet to be elucidated, while analyses based on some
studies showed that patients with truncating variants may have more
severe phenotypes, involving visual and auditory dysfunction (Inaba

FIGURE 5
Cartoon models of wild-type and variant USH2A protein in three regions. (A, B) Segment 1 (amino acid 271–1,244): c.3304C>T (p.Q1102*). (C, D)
Segment 2 (amino acid 1,002–1,955): c.4745T>C (p.L1582P). (E, F) Segment 3 (amino acid 4,262–5,202): c.14740G>A (p.E4914K).

Frontiers in Cell and Developmental Biology frontiersin.org07

Huang et al. 10.3389/fcell.2023.1129862

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1129862


et al., 2020; Meng et al., 2021). Non-syndromic RP (typical or isolated
RP) may be caused by variants in genes related to retina-specific
expressions or functions, whereas syndromic RP (RP with extra-ocular
defects) may be aroused by variants in genes functioning in various
cells or tissues (Dias et al., 2018; Verbakel et al., 2018). However, the
precise mechanisms of those variants underlying RP and Usher
syndrome are still unclear.

At least 189 homozygous USH2A pathogenic variants were
observed in 563 patients (RP and USH2A) from different
populations in the worldwide (Figures 6, 7, and Supplementary
Table S2), including European (47.60%, 268/563), Asian (30.91%,
174/563), American (5.86%, 33/563), African (1.78%, 10/563),
and Oceanian (0.35%, 2/563). The most frequent homozygous
variants in RP patients are missense variants, in which p.C759F
and p.C934W account for 46.77% (58/124). Five most frequent
variants in USH2A patients are p.E767Sfs*21 (24.37%, 107/439),
p.W3955* (6.38%, 28/439), p.Q81Yfs*28 (3.64%, 16/439),
c.8559–2A>G (3.19%, 14/439), and c.12067–2A>G (3.19%, 14/
439). The common homozygous missense variant p.C759F is
liable to lead to RP, while the homozygous c.2299del
(p.E767Sfs*21) variant tends to cause USH2A. The extra-, even

intra-familial clinical differences including penetrance and
manifestations related to the same variant suggest that genetic
background, epigenetics, and the environmental factors might
influence the phenotypes.

Homozygous Ush2a knockout mice and zebrafish have
progressive photoreceptor degeneration and non-progressive
hearing impairment, similar to the visual and auditory deficits
in human patients with USH2A variants. Two mutant ush2a
zebrafish with different domains ablated had early-onset
retinal dysfunction aggravated by sustained light exposure,
indicating the critical role of the protein in maintenance of
photoreceptors and development of hair cells, especially the
intracellular domain in visual function (Dona et al., 2018; Han
et al., 2018).

RP is caused by different cell death pathways and mechanisms.
Some studies showed that necroptosis was implicated in both rod and
cone cell death in animal models, and upregulation of receptor-
interacting protein 1 and 3 kinase complexes was related with the
necroptosis in photoreceptors (Murakami et al., 2012; Sato et al., 2013;
Viringipurampeer et al., 2016; Viringipurampeer et al., 2019). The
high expression level of tumor necrosis factor alpha and oxidative

FIGURE 6
Schematic distribution of the usherin gene (USH2A) homozygous variants associated with retinitis pigmentosa (RP) and Usher syndrome type IIA
(USH2A). Numbers in parentheses after the variants represent the number of patients with RP and USH2A, separated by the slash. The dotted line indicates
deletion or deletion-insertion with changes over 20 bp. EGF, epidermal growth factor.
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FIGURE 7
Summary of the usherin gene (USH2A) homozygous variants associated with retinitis pigmentosa (RP) and Usher syndrome type IIA (USH2A). Frameshift
includes small deletion and duplication/insertion with changes involving 20 bp or less leading to reading frame shift. Small indel includes duplication and
deletion-insertion with changes involving 20 bp or less leading to one or more amino acids inserted or replaced. Gross deletion or complex rearrangement
(i.e., complex deletion-insertion) refers to changes over 20 bp. (A) The bar chart indicates the case number of RP or USH2A caused by various variants, in
which the group “1” represents the variant causing RP, the group “2” represents the variant causing both RP and USH2A, and the group “3” represents the
variant causing USH2A. The Venn diagram shows the reported numbers of variants causing RP and USH2A. (B) The proportion of RP and USH2A patients
carrying theUSH2A homozygous variants in different continents. (C) The proportion of cases with RP and USH2A by different variant types. (D) The percentage
of cases with RP and USH2A observed at different variants. (E) The proportion of cases with RP caused by different variant types. (F) The percentage of cases
with RP observed at different variants. (G) The proportion of cases with USH2A by different variant types. (H) The percentage of cases with USH2A observed at
different variants.
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stress could induce the activation of NLRP3 inflammasome, including
NLRP3, caspase-1, and interleukin 1 beta expression, and precipitate
pyroptosis in rd10 mouse retinas at postnatal day 23 (Olivares-
González et al., 2020). Autophagy was found to be involved in the
photoreceptor cell death in some RP models, and the inhibition could
exert a protective role (Rodríguez-Muela et al., 2015; Yao et al., 2018;
Qiu et al., 2019). These studies demonstrate that more than one
cellular mechanism is activated in retinal degeneration, which may be
genotype-specific. Therefore, further research on the mechanisms of
rod and cone photoreceptor cell death would be beneficial for the
potential treatment of RP.

Given that patients may miss or refuse hearing examinations,
the diagnosis of USH2A may be omitted in some cases, and the
true frequency of USH2A-associated ARRP may be lower. In this
study, pure-tone audiometry and vestibular examination were
conducted, and the hearing acuity of the proband fell within the
normal range, indicating the compound heterozygous USH2A
variants may cause ARRP alone.

In conclusion, novel compound heterozygous variants,
c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P), were
identified as the genetic causes for ARRP in a Han-Chinese
family by WES and Sanger sequencing. Our study expands the
spectrum of the USH2A gene variants and may contribute to
improved genetic counseling, prenatal diagnosis, and disease
management for this family. Further construction of site-
specific gene-deficient animal models and functional study may
help to understand the genetic mechanism of USH2A-associated
ARRP, which may further provide a clue to develop target therapy
of this complex disorder.
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