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Collagen XII, a fibril-associated collagen with interrupted triple helices (FACIT),
influences fibrillogenesis in numerous tissues. In addition to this extracellular
function, collagen XII also directly regulates cellular function. Collagen XII is widely
expressed in connective tissues, particularly tendons, ligaments, and the
periodontium and periosteum, where it is enriched in the pericellular regions.
Mutations in the collagen XII gene cause myopathic Ehlers-Danlos syndrome
(mEDS), an early-onset disease characterized by overlapping connective tissue
abnormalities and muscle weakness. Patients with mEDS exhibit delayed motor
development, muscle weakness, joint laxity, hypermobility, joint contractures, and
abnormal wound healing. A mEDSmousemodel was generated by deletion of the
Col12a1 gene, resulting in skeletal and muscle abnormalities with disorganized
tissue structures and altered mechanical properties. Extracellularly, collagen XII
interacts with collagen I fibrils and regulates collagen fibril spacing and assembly
during fibrillogenesis. Evidence for the binding of collagen XII to other EDS-related
molecules (e.g., decorin and tenascin X) suggests that disruption of ECM
molecular interactions is one of the causes of connective tissue pathology in
mEDS. Collagen XII also has been shown to influence cell behavior, such as cell
shape and cell-cell communication, by providing physical connection between
adjacent cells during tissue development and regeneration. The focus of this
review is on the functions of collagen XII in development, regeneration, and
disease.
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Introduction

Collagen XII belongs to the fibril-associated collagen with interrupted triple helices
(FACIT) family and is an α1 homotrimer consisting of two short collagenous domains and
three non-collagenous domains, including a large N-terminus domain (Koch et al., 1992;
Dublet et al., 1989) (Figure 1A). Collagen XII has variants in the NC1 and NC3 domains
generating four different isoforms. Major splice variants in the NC3 domain result in large
XIIA and small XIIB isoforms of collagen XII (Trueb and Trueb, 1992; Chiquet et al., 2014).
A large XIIA NC3 domain consists of 18 fibronectin type III (FN3) repeats with four von
Willebrand factor A (vWA) modules, whereas the small XIIB isoform lacks half of the
NC3 domain. Interestingly, collagen XII molecules assemble as homotrimers as well as XIIA
and XIIB heterotrimers (Koch et al., 1995; Chiquet et al., 2014) (Figure 1B). Both large and
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small variants are present in humans and mice, and their expression
differs depending on developmental stage and tissue localization.
After birth, the small variants become predominant, and large
variants are restricted to dense connective tissues such as
tendons, ligaments, periodontium, and periosteum (Böhme et al.,
1995; Karimbux and Nishimura, 1995). Alternative splice variants at
the 3′-end generate variants encoded by exon 1 or 2, respectively.
The long NC1 variant shares a sequence with collagen XIV, another
FACIT structurally similar to collagen XII. The collagen XIV
domain contains a glycosaminoglycan binding sequence, and the
long NC1 variant is believed to function in the interaction with
glycosaminoglycans (Kania et al., 1999). On the other hand, the
short NC1 variant shares a common sequence with collagen IX,

which contains information for alpha chain selection and triple helix
assembly (Bon et al., 2003). Because these NC1 variants differ in
both structure and tissue expression, each variant is considered to
have a tissue- or event-specific function.

Collagen XII is believed to be responsive to mechanical stress.
This is supported by evidence that collagen XII was induced by
tensile or cyclic strain in fibroblastic cells, and it was shed when the
stress was removed (Trächslin et al., 1999; Arai et al., 2008).
Furthermore, the chicken Col12a1 promoter has an enhancer
region that responds to static tensile strain (Chiquet et al., 1998).
This evidence suggests that collagen XII forms ECM complexes that
absorb or transduce mechanical signals in response to mechanical
stress. Future studies should investigate the detailed molecular
mechanisms involved in this process. Other functions of collagen
XII have been elucidated, especially with the discovery of COL12A1-
related disease.

COL12A1 mutations in human diseases

The first patients harboring COL12A1 mutations were
reported in 2014 (Hicks et al., 2014; Zou et al., 2014). Since
then, 16 families have been reported, with both autosomal
dominant and autosomal recessive inheritance (Malfait et al.,
2017; Punetha et al., 2017; Witting et al., 2018; Mohassel et al.,
2019; Delbaere et al., 2020; Araújo and Antunes, 2021; Coppens
et al., 2022). The individuals present with Ehlers-Danlos
syndrome (EDS)-like symptoms, such as distal joint
hypermobility in combination with proximal joint
contractures, and abnormal scarring, as well as myopathic
features including muscle hypotonia and weakness with
delayed motor development. Based on the symptoms, the
COL12A1-related disease was classified as myopathic type
Ehlers-Danlos syndrome (mEDS) in 2017 (Malfait et al.,
2017). COL12A1 variants homozygous for loss-of-function
mutations have been reported to cluster in the hinge region
located in the transition between the NC3 domain and fibril-
associated region, that includes the TSPN and COL2 domain
(Delbaere et al., 2020). The collagenous domains are involved in
fibrillogenesis with binding to collagen I and COMP (Keene et al.,
1991; Koch et al., 1995; Agarwal et al., 2012), whereas the TSPN
domain appears to regulate collagen XII secretion since
mutations in this domain are associated with accumulated
intracellular collagen XII (Delbaere et al., 2020). In addition,
collagen XII also interacts with other extracellular molecules,
such as decorin, fibromodulin (Font et al., 1996), and Tenascin X
(Veit et al., 2006) (Figure 1C), that also are involved in
fibrillogenesis and EDS pathologies. Indeed, some mEDS
patients have altered expression of these ECM molecules.
Understanding the relationship between different variants and
the pathology will allow for the elucidation of the function(s) of
collagen XII and provide a foundation for development of future
treatments.

The generation of genetically modified Col12a1 animals has
allowed further definition of the functions of collagen XII (Izu et al.,
2011; Agarwal et al., 2012; Hemmavanh et al., 2013; Marro et al.,
2016; Wehner et al., 2017; Schönborn et al., 2020; Sun et al., 2020;
Fukusato et al., 2021; Izu et al., 2021; Fung et al., 2022). A mouse

FIGURE 1
Schematic diagram of collagen XII structure and molecular
interactions. (A)Domain structure of collagen XII. Collagen XII consists
of two short triple helical domains (COL1 and COL2) separated by
non-collagenous domains (NC1 and NC2) and large amino-
terminal non-collagenous domains (NC3). NC3 is composed of a
thrombospondin N-terminal domain (TSPN), four von Willebrand
factor A domains, and 18 fibronectin type III repeats. (B) The
heterotrimeric structure model of collagen XII consisting of two large
isoforms (XIIA) and one short isoform (XIIB). (C)Hypothetical model for
collagen XII extracellular interaction with other ECM molecules.
Collagen XII interacts with the collagen I-containing fibril surface via
its collagenous domain. Decorin might involve in this interaction in a
glycosaminoglycan dependent manner. Large NC3 domain of
collagen XII interact with tenascin-X, which binding to collagen
I-containing fibrils is mediated by decorin.
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with a 2–5 exon deletion in the Col12a1 gene yielded a conventional
null for collagen XII (Izu et al., 2011). The Col12a1 null mice were
small and demonstrated kyphosis, abnormal skeletal development
with decreased muscle volume, abnormal gait, and decreased grip
strength, comparable with the clinical presentation seen in mEDS
patients (Izu et al., 2011; Zou et al., 2014). In addition, Col12a1
overexpression under the control of the Col1a2 promoter
(Schönborn et al., 2020) and a tendon-specific conditional
Col12a1 deletion in mice have been developed (Fung et al.,
2022). Analysis of tendons, bones, skin, and corneas from
genetically modified Col12a1 mice demonstrated that collagen
XII is involved in fibrillogenesis, regulating collagen I fibril

spacing and assembly, clearly indicating an extracellular function
of collagen XII in fibrillogenesis, tissue structure and function.

The evidence from analysis of mEDS pathologies and animal
models clearly demonstrate that the extracellular interaction between
collagen XII and other ECMmolecules involved in fibrillogenesis, tissue
structure, and mechanotransduction are necessary for functional tissue
development. In addition to such extracellular functions, collagen XII
has been demonstrated to regulate cell shape and cell-cell
communication by providing physical connections between adjacent
cells with collagen bridges (Izu et al., 2011; Izu et al., 2016;Wehner et al.,
2017; Izu et al., 2021). Next, we focus on the direct regulation of collagen
XII on cell behavior during tissue development and regeneration.

FIGURE 2
Schematic diagram of collagen XII bridge formation during development, growth, and regeneration. The diagram illustrates bone formation (A),
tendon development (B), and heart (C) and axon regeneration (D). Collagen XII bridges are formed between adjacent cells during bone formation and
tendon development, making intercellular network formation necessary for developing functional tissue. In the regeneration process, collagen XII
accumulation is found at the leading edge of the injured sites and bridges between truncated tissues, allowing cell migration. This is under the
control of TGF-β and Wnt/β-catenin signaling in zebrafish during heart and axon regeneration, respectively.
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Collagen XII regulates cell-cell
communication via collagen bridge
formation

Collagen XII expression is ubiquitous in collagen I-containing
mesenchymal tissues during embryonic development (Böhme et al.,
1995; Bader et al., 2009). After birth, its distribution becomes more
restricted, i.e., tendon sheath, periosteum and periodontium
(Karimbux and Nishimura, 1995; Reichenberger et al., 2000). At
the cellular level, collagen XII is enriched in the pericellular region,
where cell-cell communication occurs (Izu et al., 2016; Izu et al.,
2021).

During the process of bone formation, mature osteoblasts are
responsible for the deposition of the bone matrix, thus, in the
periosteum and endosteum, coordination of osteoblast shape,
orientation, physical interaction with neighboring cells, and
formation of a communicating networks via cadherins and
connexins are critical. These properties are critical for healthy
and strong bone formation (Ilvesaro et al., 1999). Collagen XII is
expressed in both the periosteum and endosteum and is localized
around mature osteoblasts (Böhme et al., 1995; Izu et al., 2011). In
Col12a1 null mice, mature osteoblasts had altered shape with poor
polarization, and impaired cell-cell communication via gap
junctions. Col12a1 null mice exhibited decreased bone mass with
a disorganized bone structure. Studies using in vitro primary
osteoblast cultures demonstrated that collagen XII appeared on
the cell surface and thereafter extended toward neighboring cells
to form collagen bridges (Izu et al., 2016). This suggests that the
physical connection of collagen XII bridges between neighboring
osteoblasts is essential for acquiring and maintaining mature
osteoblast bone-forming ability (Figure 2A). It is noteworthy that
collagen bridge formation also requires collagen VI because a
deficiency of either collagen XII or VI disrupts the formation of
collagen bridges. Patients with COL6A1 mutations suffer Bethlem
myopathy and Ullrich congenital muscular dystrophy, which are
clinically similar to mEDS (Hicks et al., 2014; Zou et al., 2014),
suggesting functional interactions. Although collagens VI and XII
are co-localized at the cell culture level, their direct interactions have
not been defined. Moreover, the changes in collagen VI or XII
expression in the patients with COL6A1 or COL12A1 mutations
remain controversial (Hicks et al., 2014; Punetha et al., 2017;
Delbaere et al., 2020), and further studies are required.

Collagen XII bridge formation also has been observed in
primary tenocyte cultures (Izu et al., 2021). Tendon is a highly
organized tissue and development of organized tendon ECM
involves several compartments, including collagen fibril and fiber
forming compartments, which, together with adjacent tenocytes, are
organized into a fascicle (Birk and Trelstad, 1984; Birk and Zycband,
1994; Graham et al., 2000; Canty and Kadler, 2005; Zhang et al.,
2005). Developing a hierarchically organized tendon structure
requires columnar alignment of tenocytes along the longitudinal
axis and tenocyte network formation between laterally adjacent
tenocytes via cell process extension perpendicular to the
longitudinal axis. The primary unit comprises fibrils that
organize into fibers, surrounded by tenocytes and fascicular
ECM, where collagen XII is expressed (Zhang et al., 2003; Izu
et al., 2021) (Figure 2B). As with osteoblasts, the altered tenocyte
shape, and impaired cell-cell connection/communication via

connexin 43 found in Col12a1 null mice may be due to the lack
of collagen XII bridge formation between cells. This alteration is
associated with less compartmentalized as well as disorganized
tendon structure, altered tendon mechanical properties (Izu et al.,
2021; Fung et al., 2022), and increased risk of articular cruciate
ligament injury (Fukusato et al., 2021). These data indicate the
essential role of collagen XII bridge formation during tenocyte
network formation and coordination of the tendon hierarchical
structure and mechanical properties. Thus, collagen XII plays a role
in establishing intercellular communication by creating collagen
bridges between neighboring cells during tissue development and
growth.

The role of collagen XII during tissue
repair and regeneration

In addition to its roles in development and growth, collagen XII
also is involved in tissue repair and regeneration. Key roles in repair
and regeneration are supported by studies in mice (Schönborn et al.,
2020) and in other species with high regenerative capacity, such as
salamander (Zukor et al., 2011) and zebrafish (Marro et al., 2016;
Wehner et al., 2017; Bise et al., 2020; Bretaud et al., 2021).

Cryoinjury in the zebrafish heart has been used as a human
regeneration model for post myocardial infarction. Cryoinjury
destroys cardiac cells, but preserves the collagenous layer of the
epicardium, where collagen XII is developmentally and
physiologically localized. During the repair process, dynamic
accumulation of collagen XII was observed at the injury sites
(Marro et al., 2016; Bise et al., 2020; Bretaud et al., 2021)
(Figure 2C). Interestingly, collagen XII was found at the
regenerative leading edge of cardiomyocytes, bridging the
provisional fibrotic tissue. At the regenerative leading edge,
collagen XII interacts with tenascin C, collagen I, and fibronectin,
where TGF-β signaling is activated. On the other hand, TGF-β
inhibitor blocked cardiomyocyte recruitment together with the
extracellular matrix, including collagen XII, suggesting that
cardiomyocytes induce collagen XII expression via the TGF-β
signaling pathway. Also, collagen XII has been demonstrated to
sequester latent, but not active TGF-β during corneal remodeling
(Sun et al., 2021) and skin repair (Schönborn et al., 2020).
Extracellular interactions between collagen XII and TGF-β
regulating cells may differ depending on the tissue as well as
developmental and pathological phases, and future studies will be
needed.

In addition, collagen XII accumulation promoted axon
growth across the lesion site during functional recovery in a
zebrafish model of spinal cord injury (Wehner et al., 2017). The
lesion-specific Col12a1 transcription and deposition of collagen
XII are regulated by fibroblast-like cells through Wnt/β-catenin
signaling. Wnt/β-catenin signaling also regulates the expression
of Col6a2, which encodes the collagen VI α-chain, together with
Col12a1a/b spinal cord regeneration. This is consistent with the
colocalization of collagens VI and XII in osteoblast network
formation (Izu et al., 2016). Most strikingly, Col12a1a
overexpression was sufficient for axon regeneration without
Wnt/β-catenin signaling, suggesting that a physical bridge via
collagen XII between truncated sites provides a critical

Frontiers in Cell and Developmental Biology frontiersin.org04

Izu and Birk 10.3389/fcell.2023.1129000

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1129000


microenvironment for axon growth and cells responsible for
regeneration (Figure 2D).

Similar to regeneration, the accumulation and bridge formation
of collagen XII are found in wounded skin, but it seems to promote
fibrosis and scarring (Moinzadeh et al., 2013; Bergmeier et al., 2018).
In support of this, the free-living African spiny mouse, that
suppresses collagen XII induction at skin wound sites, can
regenerate skin after injury without scarring due to lack of
macrophage infiltration (Seifert et al., 2012; Brant et al., 2016).
Surprisingly, however, excisional wounds were not repaired in either
mouse models lacking or overexpressing collagen XII (Schönborn
et al., 2020). In the Col12a1 overexpressing mice, only inflammatory
M1macrophages, but not M0 orM2macrophages, were upregulated
in adhesion to collagen XII, suggesting that excess collagen XII may
activate M1 macrophages via specific binding sites. Thus, collagen
XII bridge formation is involved in tissue development,
regeneration, and repair; however, the outcome of tissue
remodeling may differ depending on the collagen XII-binding cells.

Conclusion

Identification of COL12A1 mutations in human patients and
generation of genetically modified animal models have contributed
to the understanding of the functional roles of collagen XII. These
studies demonstrated that collagen XII is involved in both regulation
of extracellular organization and cellular behavior necessary for
tissue structure and function. Accumulating evidence demonstrates
an essential function for collagen XII in bridge formation during
tissue development, regeneration, and repair. This would be
considered a new regulatory system for cell behaviors, such as
cell polarization, migration, and cell-cell communication.
Collagen XII bridge formation requires collagen VI and
interactions with other ECM molecules such as tenascin C,
tenascin X, fibronectin, and decorin. However, because collagen
XII appears at the leading edge of the transected tissues or processes
of distant cells, specific receptors for collagen XII may exist and
function at the cell surface rather functioning via other ECM
molecules. Induction of collagen XII expression seems to be
regulated by Wnt/β-catenin and TGF-β/SMAD signaling during
tissue regeneration in zebrafish, but because the receptors for
collagen XII have not been found, the upstream and downstream
signaling of collagen XII are still controversial. Finding a binding

counterpart would be the next challenge in understanding the
mechanisms of collagen XII. This will advance our understanding
of the pathogenesis of mEDS and contribute to the establishment of
a treatment for the disease.
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