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Thyroid-associated ophthalmopathy (TAO) is a complicated orbitopathy related to
dysthyroid, which severely destroys the facial appearance and life quality without
medical interference. The diagnosis and management of thyroid-associated
ophthalmopathy are extremely intricate, as the number of professional
ophthalmologists is limited and inadequate compared with the number of
patients. Nowadays, medical applications based on artificial intelligence (AI)
algorithms have been developed, which have proved effective in screening many
chronic eye diseases. The advanced characteristics of automated artificial
intelligence devices, such as rapidity, portability, and multi-platform compatibility,
have led to significant progress in the early diagnosis and elaborate evaluation of
these diseases in clinic. This study aimed to provide an overview of recent artificial
intelligence applications in clinical diagnosis, activity and severity grading, and
prediction of therapeutic outcomes in thyroid-associated ophthalmopathy. It also
discussed the current challenges and future prospects of the development of
artificial intelligence applications in treating thyroid-associated ophthalmopathy.
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Introduction

Artificial intelligence (AI) has gradually become a part of each aspect of our lives, especially
medicine, with the rapid development of computer technologies and smart devices. This term
did not emerge recently but was first proposed at a conference in 1956 (Russell and Norvig,
2010). The early achievement of AI applications in medicine was the automated recognition of
electrocardiograms, which was based on programmed medical knowledge (Kundu et al., 2000).
Machine learning (ML), a subfield of computer science, endowed AI with the ability to
independently discern patterns from data. The training set, containing several inputs and
relevant outputs, is critical for ML methods to analyze the underlying patterns, which help
obtain correct outputs from new inputs (Deo, 2015). Further, deep learning (DL) has given a
major boost to the AI renaissance in recent decades. DL methods generally build an artificial
neural network with many layers to analyze colossal datasets, such as numerous medical images
(LeCun et al., 2015; Schmidhuber, 2015).

The application of integrated AI-ML-DL algorithms, combined with advanced medical
imaging and data transmission systems, has grown rapidly in the medical field, such as
ophthalmic healthcare (Balyen and Peto, 2019). For instance, diabetic retinopathy (DR) can be
detected by screening the retina using fundus photography and optical coherence tomography
as a representative chronic ocular disease. It was found that multiple AI applications in retinal
images had significant benefits in the early detection of DR (Gulshan et al., 2016; Ting et al.,
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2017; Tufail et al., 2017). Recent studies also revealed that the detection
of glaucoma could be promoted using AI-ML-DL algorithms with
high accuracy, sensitivity, and specificity (Li et al., 2018a; Devalla et al.,
2018).

Thyroid-associated ophthalmopathy (TAO), an intricate
autoimmune disease, is associated with the highest incidence of the
orbital disorder in adults, affecting approximately 2.9 men and
16 women per hundred thousand people every year (Bartley et al.,
1995; Wiersinga and Bartalena, 2002). Severe cases tend to develop in
male and older patients, accompanied by disfiguring proptosis and
optic neuropathy (Bahn, 2010). The clinical manifestations of TAO
include chemosis, eyelid retraction, exophthalmos, periorbital pain,
and strabismus. Besides, the course of the disease is described as
Rundle’s curve, which is composed of a one- to 3-year active phase and
a subsequent chronic stable phase (Khong et al., 2016). This
characteristic of TAO can be graded according to the clinical
activity score and the severity grading identified by European
Group on Graves’ orbitopathy (EUGOGO) (Bartalena et al., 2021).
Variations of patterns in patients make TAO diagnosis, evaluation,
and management challenging, which immensely depend on the
profession and experience of well-trained ophthalmologists. AI
applications may act as a supporting role in TAO clinical practice.

This review summarized the research progress and prospective
application of AI in TAO diagnosis and management. The available
studies focused on the identification of characteristic signs, disease
grades, and dysthyroid optic neuropathy (DON); prediction of TAO
progression; therapeutic response to glucocorticoids (GCs) and
decompression surgery; and even protocol formulation of orbital
radiotherapy. Given the prosperity of this “Big Data” era, we
believe that this review could comprehend the current
achievements and accelerate the promising AI applications in
clinical practice, which may help ophthalmologists and
endocrinologists with limited experience.

Application of AI algorithms in detecting
the signs and symptoms of TAO

As mentioned earlier, TAO generally starts with an active course.
In this stage, patients suffer from ocular pain, redness and swelling of
the conjunctiva and eyelids, and, most importantly, progressive
proptosis and vision loss (Mourits et al., 1989). Early intervention,
such as GC pulse therapy, can lead to premature termination of the
active course and the start of a stable phase (Kauppinen-Mäkelin et al.,
2002). Therefore, the early and accurate diagnosis of TAO can benefit
the following management and prognosis. However, a large
proportion of patients with TAO do not approach the department
of ophthalmology, but the department of endocrinology, at the first
visit because of thyroid dysfunction. Also, a few symptoms and signs of
TAO are insidious enough to be missed during the examination. Thus,
an automated diagnostic system assisted by AI algorithms can
significantly increase the clinical efficiency of TAO diagnosis.

Grus et al. (1998) first tested an artificial neural network (ANN) in
TAO. This ANN, a kind of probalistic neural network, contained
input, pattern, summation and output layers, which could recognize
the possible class of samples after training, thus possessing the
diagnostic value. The sera samples were collected from patients
with or without TAO (n = 16:11), Western blot analysis was
performed, and densitometric data were collected. After training,

96.3% of test samples were correctly classified using an ANN,
exceeding the multivariate statistical technique with 85% accuracy.
This initial research enlightened the diagnostic potential provided by
AI methods in TAO, though the autoantibodies detected in this study
were not useful in TAO diagnosis. A few years later, Salvi et al. focused
on the clinical signs and specialist examination of patients with TAO
in two analogical studies (Salvi et al., 2002a; Salvi et al., 2002b). The
samples were both divided into two groups based on disease
progression. The ANN applicated in two studies was a back-
propagation model used for the classification and progression
prediction of TAO, which was constructed with 13 input variables
derived from ophthalmic examinations. The accuracy of classification
and progression prediction was 78.3%–86.2% and 67%–69.2%,
respectively. As to the fundamentals of AI application in TAO
diagnosis, these DL methods still need manual parameters
measured by ophthalmologists or physicians.

After 2 decades of technological updating, advanced face
recognition and automated image processing systems have
increased the possibility for AI application in TAO. An intelligent
diagnostic system for TAO was invented using multiple task-specific
models based on facial images (Huang et al., 2022). Briefly, an entire
facial image was analyzed and cropped into the eye part using
Module I. Ocular dyskinesia and special signs of TAO were
subsequently detected using Modules II and III. This study
recruited 21,840 images from 1560 patients, of which 20% were
used as the test set. The accuracy of eye location and cornea and
sclera segmentation, conducted using Modules I and II, was 0.98,
0.93, and 0.87, respectively. The area under the receiver-operating
characteristic curve (AUROC), sensitivity, and specificity of
detecting signs were 0.93, 87%, and 88% for eyelid retraction;
0.90, 79%, and 86% for eyelid edema; 0.94, 89%, and 90% for
eyelid congestion; 0.91, 83%, and 85% for conjunctival congestion;
and 0.91, 85%, and 79% for ocular dyskinesia, respectively. Besides,
the AUROC of DL networks (ResNet-50, ResNet-101, and
InceptionV3) was 0.91, 0.92, and 0.89, respectively. Compared
with previous models, this automated diagnostic system detected
TAO signs highly accurately just with facial images. Besides, this
system could also be loaded into mobile devices, thus showing the
potential to help patients in areas lacking veteran ophthalmologists
and medical resources.

Karlin et al. (2022) developed another AI platform based on a
DL model to identify TAO using ocular photographs. The training
set contained 1944 facial images, and the testing depended on
additional 344 photographs. In line with the testing results, the
accuracy, specificity, precision, recall, and F1 score of the proposed
platform reached 89.2%, 86.9%, 79.7%, 93.4%, and 86.0%,
respectively. The specific signs of TAO were not separated but
integrated into a component model, thus generating heatmaps to
present the pathological regions in facial images. This DL model
was also compared with a cohort of ophthalmologists in the
diagnosis of TAO. Interestingly, compared with the expert
cohort, the DL ensemble model had higher accuracy (86% vs.
78%) and recall (89% vs. 58%), whereas the specificity was lower
(84% vs. 90%).

In clinical practice, doctors usually spend a lot of time confirming
TAO diagnosis at their first ophthalmologic visits. Even with an expert
with abundant experience in orbital diseases, a TAO diagnosis can
only be confirmed by the comprehensive assessment of the chief
complaints of patients, ocular signs, medical history of dysthyroid, and
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imageological examination (Dolman, 2012). To a certain extent, the
aforementioned studies indicated that the DL classifier using external
ocular photographs might substitute the specialists to provide the
initial diagnosis for patients with TAO and even accurately grade the
activity and severity.

Application of AI algorithms in the orbital
imaging of TAO

Orbital imaging has provided substantial support since the 1980s
in the clinical evaluation of TAO (Hosten et al., 1989). Computed
tomography (CT) scanning and magnetic resonance imaging (MRI)
hold the same importance with their own merits. CT can clearly
present the degree of extraocular muscle enlargement and the
condition of the optic nerve in the orbital apex. The delineated
anatomy of the orbital wall and periorbital structures such as
adjacent sinuses are essential for decompression surgery design
(Cubuk et al., 2018). The benefits of MRI rely on its capacity for
better resolution between muscles and orbital fat, which can help
identify the specific pattern of TAO without radiation (Higashiyama
et al., 2017). These characteristics have promoted the widespread use
of CT and MRI in TAO, and abundant image data have become the
hotbed of AI algorithms.

The research team of Shanghai Jiao Tong University explored the
diagnostic value of two AI models for TAO using CT andMRI images.
Lin et al. (2021) constructed DL algorithms into networks A and B,
which inherited from the Visual Geometry Group (VGG) network and
the Residual Neural Network (ResNet). By recruiting 160 MRI images,
the accuracy, specificity, and sensitivity of network A were 0.863 ±
0.055, 0.896 ± 0.042, and 0.750 ± 0.136, respectively, for differentiating
between active and inactive statuses of patients with TAO. After
optimizing, the sensitivity of network B improved (0.821 ± 0.021),
and the AUC of both networks was 0.922. In another study, 1,435 CT
scans were used for a TAO screening 3D-ResNet model training,
validation, and testing (Song et al., 2021). The results demonstrated
that the AUC, accuracy, sensitivity, and specificity of this AI model
were 0.919, 0.868, 0.878, and 0.865, respectively. Besides, the
performance of this screening algorithm was also satisfactory in the
diagnostic test.

Hanai et al. (2022) focused on extraocular muscle (EOM)
enlargement in patients with TAO. The proposed diagnostic
system was constructed based on deep neural networks
including ResNet-50 and VGG-16. A total of 371 participants
were recruited in this study with their coronal scans, including
about 60% for training, 20% for validation, and the remaining 20%
for test data. The results showed that the AUC, sensitivity, and
specificity of this model for detecting EOM enlargement were
0.946, 92.5%, and 88.6%, respectively, indicating that the
thickness of EOM could be detected using AI algorithms with
high accuracy and speed in TAO.

Lee et al. (2022) developed a convolutional neural network–based
model to assess the severity of TAO by analyzing the axial, coronal,
and sagittal planes of CT images. A total of 288 CT images comprised
mild TAO, moderate-to-severe TAO, and normal controls, which
were divided into four comparable groups. Compared with controls,
the diagnostic AUC of this model was 0.979 ± 0.020 for moderate-to-
severe TAO, 0.895 ± 0.052 for mild TAO, and 0.905 ± 0.029 for three

comparisons. The performance of the proposed model was also better
than that of VGG-16, GoogleNet, and ResNet-50, and even of three
oculoplastic specialists.

DON is significant with respect to the vision-threatening
condition in TAO (Saeed et al., 2018). The optic nerve is
suppressed by pathologically thickened tissues in the orbital
apex, leading to several symptoms such as blurred vision,
decreased color vision, and defect of field vision (Victores and
Takashima, 2016). Early detection and intervention improve the
prognosis. A hybrid model based on a deep convolutional neural
network was proposed to predict DON using CT scans (Wu et al.,
2022). In this model, a specific module was used to preprocess the
image and extract the meaningful features for DON pathologies.
The samples were divided into 87 healthy controls and 91 patients
with TAO, including 42 patients with DON. After training and
testing, the accuracy, specificity, sensitivity, and F1-scrore were
96%, 99.5%, 94%, and 96.4%, respectively. In this study, a DL model
displayed significant advantages in predicting DON in patients
with TAO.

The orbital CT scans and MRI images are the most common
images examined in patients with TAO, as they can be not only
evaluated by radiologists and ophthalmologists but also preprocessed
into available data and then submitted to AI algorithms for further
screening or predicting. The diagnosis, activity and severity grading,
and DON prediction all have important clinical implications for
patients with TAO patients, and AI algorithms, especially DL
models, can provide satisfactory assistance to optimize this
complex process in the future. The summarization of
aforementioned studies in diagnosis and grading of TAO is
presented in Table 1.

Application of AI algorithms in
treating TAO

GC pulse therapy

In accordance with the 2021 EUGOGO guidelines (Bartalena et al.,
2021), intravenous GCs combined with mycophenolate sodium were
nominated as the first-line treatment for moderate-to-severe and
active TAO. The pulse therapy of GCs has been used in TAO
management for decades, and many studies have demonstrated
substantial benefits. Still, about 20%–30% of patients in clinical
trials were unresponsive to GC treatment, even with unbearable
adverse effects (Vannucchi et al., 2014; Zhu et al., 2014). The
general method in a clinic is closely monitoring the initial
outcomes of GC treatment, which determine the subsequent
remedies, to avoid the unworthy risk of overdosed GCs. Thus, a
practical method for response prediction before GC therapy is
required.

Coronal T2-weighted MRI images with fat suppression can clearly
show the cross-sectional morphology and radiomics features of EOMs.
Hu et al. (2022) developed three ML-based models to analyze the
radiomics data of patients with TAO. In this retrospective study,
110 samples were selected, and GC-responsive (n = 62) and
unresponsive (n = 48) cases were equally split into training and
validation sets. A semi-quantitative imaging model was also built
by two experienced doctors, in which the absolute signal intensities of

Frontiers in Cell and Developmental Biology frontiersin.org03

Diao et al. 10.3389/fcell.2023.1124775

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1124775


EOMs were manually measured and normalized to values of ipsilateral
temporal muscle. The AUCs of the three ML-based models in two sets
(0.968 and 0.916; 0.933 and 0.857; 0.919 and 0.855) were all better than
the performance of the semi-quantitative method (0.805).
Additionally, including the disease duration of TAO into AI
algorithms enhanced the diagnostic ability in their validation
(AUC: 0.952 vs. 0.916), indicating the advantage of the AI model
in predicting the response of patients with TAO to GCs.

Besides the use of MRI, a prospective and observational
protocol was proposed by Wang et al. (2021) for developing a
new prediction model. A total of 278 untreated patients with
moderate-to-severe and active TAO will be recruited into this
trial based on the events per variable method and previous
models. The clinical data and AI-related parameters will be
collected from these volunteers before their standard 12-week
GC pulse therapy. After treatment, the patients will be divided
into GC-responsive/unresponsive groups based on their outcomes
of therapy. The facial morphological changes and traditional
clinical data will be used to develop a new AI model, which can
recognize the best variables for GC-response prediction. This study
is an ongoing project, and the findings can guide on the
individualized GC treatment for TAO.

Orbital radiotherapy

Orbital radiotherapy in alliance with GCs was recommended as
the second-line treatment (Bartalena et al., 2021). The therapeutic
effect of regional irradiation, which seems to have a mutual promoting
effect with GCs (Bartalena et al., 1983; Oeverhaus et al., 2017), was
demonstrated by several randomized controlled trials in TAO
(Prummel et al., 2004). Conventionally, a low dose of 20 Gy was
given for about 2 weeks (Tanda and Bartalena, 2012). Although
adverse events were relatively rare in orbital radiotherapy
(Marcocci et al., 2003), the irradiation target still needs to be
precisely delineated to avoid possible damage to organs at risk (OARs).

Jiang et al. (2021) developed a DL model based on a fully
convolutional network (FCN) to realize the auto-segmentation of
the clinical target volume (CTV) for patients with TAO. Briefly,
CT images from 121 patients with TAO undergoing radiotherapy
were collected for training and testing. The outcomes were set as the
Dice similarity coefficient (DSC) and Hausdorff distance (HD).
Because of two orbits, Jiang et al. suggested treating the two-part
CTV as one target, which was demonstrated to have higher HD values
than the separate method (8.23 ± 2.80 vs. 9.03 ± 2.78). The dosimetric
comparison showed that both algorithms based on the FCN model

TABLE 1 AI algorithms in diagnosis and grading of TAO.

Authors
(Year)

Task Input data type Samples dataset AI model Accuracy AUC

Grus et al.
(1998)

Diagnostic
classification of TAO

IgG autoantibody
repertoires

Sera TAO: 16, controls: 11 The probalistic
neural network

96.3% -

Salvi et al.
(2002a)

Classification and
progression
prediction of TAO

13 clinical eye signs 246 patients with absent or
inactive TAO and 152 patients
with active TAO

A back-propagation
neural model

Classification: 86.2%,
progression
prediction: 67%

-

Salvi et al.
(2002b)

Classification and
progression
prediction of TAO

13 clinical eye signs and
age, gender, smoking
and follow-up interval

129 patients with absent or
inactive TAO and 113 patients
with active TAO, 103 normal
subjects

A back-propagation
neural model

Classification: 78.3%,
progression
prediction: 69.2%

-

Huang et al.
(2022)

Diagnostic system of
TAO and its special
signs

Facial images 21,840 facial images from
1560 patients (3120 eyes)

ResNet-50, ResNet-
101 and
InceptionV3

Eye location: 0.98, cornea:
0.93, sclera: 0.87

ResNet-50: 0.91,
ResNet-101: 0.92,
InceptionV3: 0.89

Karlin et al.
(2022)

Detecting TAO Single front facing
photograph

1944 photographs for training
and 344 images for testing

ResNet-18 89.2%, 86% (compared to
expert cohort)

-

Lin et al.
(2021)

Detecting the active
and inactive phase
of TAO

Orbital MRI images 160 images from 108 patients Deep convolutional
neural network
(DCNN)

0.863 0.922

Song et al.
(2021)

Screening TAO Orbital CT images 1,435 CT scans from 193 patients
and 715 healthy subjects

3D-ResNet 0.868 0.919

Hanai et al.
(2022)

Detection of EOM
enlargement in TAO

Orbital CT images 371 participants (60% for
training, 20% for validation and
20% for testing)

ResNet-50 and
VGG-16

- 0.946

Lee et al.
(2022)

Diagnosis and severity
evaluation of TAO

Orbital CT images 288 CT scans from 200 patients
and 100 controls

CNN Mild TAO: 0.826,
moderate-to-severe
TAO: 0.930, three
comparisons: 0.842

0.895
0.979
0.905

Wu et al.
(2022)

Prediction of
dysthyroid optic
neuropathy (DON)
in TAO

Orbital CT images 178 participants (42 DON,
49 TAO without DON,
87 controls)

DCNN 96% -

EOM, extraocular muscle; DCNN, deep convolutional neural network; DON, dysthyroid optic neuropathy.
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performed better than manual segmentation. In another study (Jiang
et al., 2020), a stacked neural network using adjacent anatomy for
target location was proposed to improve the accuracy of CTV.
Compared with the FCN model, this stacked network increased the
bilateral DSC by 1.7% and 3.4%, but reduced the HD value by 0.6.

Position errors caused by manual or mechanical misconduct are
probable in the actual delivery, except for planned contours before
irradiation (Ezzell et al., 2003). The electronic portal imaging device
(EPID) dosimetry was established for real-time supervision. Zhang
et al. (2021) conducted an interesting study for integrating EPID
measurements and AI algorithms. First, the irradiation plans were
duplicated from 40 patients with TAO to a solid head phantom, and
position errors combined with varying translation errors in different
directions were added to the protocols. The radiomics of EPID
measurements were extracted and analyzed using 3 ML models.
Their AUC values were all above 0.90 for position error detection
and relatively lower (0.76, 0.80, and 0.91) for direction identification.
The research team classified all the position and direction errors into
three types (Dai et al., 2021). The aforementioned ML models plus a
CNN model were also applied to recognize these errors using
radiomics data from EPID transmission maps as inputs. The
classification accuracies of the CNN model performed well in this
competition. Additionally, Liu et al. (2022) developed a deep neural
network (DNN) algorithm with structural similarity difference and
orientation-based loss, which could provide more features and
information from EPID images. A total of 2240 EPID fluence maps
were enrolled and subjected to the DNN model for training and
testing. The proposed model outperformed with a better prediction
accuracy (0.722) than other ML models and previous study results.

The OARs contain lenses, optic nerves, retina, and lacrimal glands
during orbital radiotherapy. AI-based algorithms can optimize the

procedure of restricted irradiation and reduce the potential risks,
which may be beneficial for TAO treatment. Other orbital diseases
requiring radiotherapy, such as mucosa-associated lymphoid tissue
lymphoma and optic nerve sheath meningioma, may also benefit from
AI applications.

Orbital decompression surgery

Orbital decompression surgery was introduced to solve the
conflict between excessive orbital contents and relatively inadequate
orbital volumes by removing parts of the orbital bony wall and fat
(Roncevic and Jackson, 1989). This surgery would serve as a salvage
operation only for uncontrollable exposure keratopathy or DON with
unresponsive GCs (Bartalena et al., 2021). It performs during a later
course of TAO management, when patients step into the inactive
phase with stable disfigurements (Limone et al., 2021).

Yoo et al. (2020) introduced a generative adversarial network
(GAN) model to predict postoperative appearance before
decompression surgery. A GAN could automatically synthesize
medical images by a generator module, which learns to map
samples from a random distribution to the specific distribution
(Iqbal and Ali, 2018). This transformation was conducted based on
the preoperative facial images. In brief, 109 pairs of matched
images were augmented for the proposed GAN model training.
These AI-synthesized images were semblable after their evaluation
compared with the actual postoperative facial images, whereas the
image quality was unsatisfactory. Besides, an additional training
set, containing 76 paired datasets and 1000 GAN-generated
datasets, was used to enhance the ability of the DL classifier
(based on VGG-16) for TAO identification (AUC, 0.872 vs.

TABLE 2 AI algorithms in treatment of TAO.

Authors
(Year)

Task Input data type Samples dataset AI model Accuracy AUC

Hu et al. (2022) Prediction of therapeutic
response to GCs in TAO

Orbital T2-weighted MRI
images

Training (n = 78) and
validation (n = 32) cohorts

LR
DT
SVM

- 0.968, 0.916
0.933, 0.857
0.919, 0.855

Wang et al.
(2021)

Developing a prediction
model for identifying
intravenous GCs response

Traditional clinical
information and PPVs
output by four AI models

278 untreated patients with
moderate-to-severe and
active TAO

Ongoing
study

Ongoing study Ongoing study

Jiang et al.
(2021)

Auto-segmentation of CTV
for TAO patients

Orbital CT images 121 patients undergoing
radiotherapy

FCN - -

Jiang et al.
(2020)

Improving the auto-
segmentation accuracy of
CTV in TAO

Orbital CT images 120 cases with moderate-
to-severe TAO

Stacked
neural
network

- -

Zhang et al.
(2021)

Detecting positioning error
in TAO radiotherapy

Radiomics analysis from
EPID

Treatment plans of
40 patients with TAO

SVM
KNN
XGBoost

- Positioning errors: all
above 0.90; direction
classification: 0.76,
0.91, 0.80

Dai et al.
(2021)

Identifying positioning error
in TAO radiotherapy

Radiomics data from EPID
transmission maps

40 TAO patient
radiotherapy plans

SVM
KNN
XGBoost
CNN

ML 1: 0.532-0.889
ML 2: 0.491-0.949
ML 3: 0.671-0.931
CNN: 0.689-0.949

ML 1: 0.778-0.945
ML 2: 0.682-0.989
ML 3: 0.779-0.990
CNN: 0.832-0.992

Liu et al. (2022) Position error classification
in radiotherapy of TAO

EPID fluence maps 2240 EPID fluence maps DNN 0.722 -

LR, logistic regression; DT, decision tree; SVM, support vector machine; PPV, positive predictive values; FCN, fully convolutional network; EPID, electronic portal imaging device; KNN, k-nearest

neighbors.
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0.957). The overview of discussed studies in treatment of TAO is
exhibited in Table 2.

Application of AI algorithms in privacy
safeguard of TAO

The physiognomic changes in patients can be crucial for a real-
time evaluation of the disease stage in the clinical diagnosis and
management of TAO. The storage of facial images is important,
which can also be used in AI training as mentioned earlier (Huang
et al., 2022; Karlin et al., 2022). The facial privacy of patients was
commonly anonymized by cropping images into a restricted area in
the overwhelming majority of data collection and literature reports.
Regarding ophthalmology, the retained field generally ranged from the
supraorbital arch to the infraorbital margin. However, this pattern
could not elude advanced facial recognition, while dropping some
meaningful clinical information (Clover et al., 2010).

Recently, a creative study on AI-assisted privacy protection was
published in Nature Medicine. Yang et al. (2022) introduced a novel
technology named the digital mask. This mask could be synthesized
with diagnostic information and without recognizable characteristics
in the original face depending on DL algorithms and three-
dimensional reconstruction. They carried out a prospective clinical
trial to evaluate the feasibility of this mask. A total of 420 patients
(from departments dealing with strabismus, pediatric ophthalmology,
TAO, and oculoplasty) were recruited, and 253 were confirmed with
associated ocular diseases through facial diagnosis. According to their
results, all the pixel errors in eyeball and eyelid reconstruction were
about 1%. Cohen’s κ values between 12 ophthalmologists and digital
masks demonstrated high consistency (κ = 0.801 for TAO and
0.845–0934 for other diseases). In the recognition-removal
experiments, the accuracy of recognition by respondents between
cropped pictures and masked images was 91.3% versus 27.3%.

Regarding AI recognition systems, Rank-1 was <0.02 for the three
AI models, indicating the extremely low possibility for the correct
identification of digital masked images. Besides, Yang et al. also
investigated the willingness of patients to share facial images, and
the result confirmed that the proposed digital mask did help.

Discussion

AI applications occupy an increasing important part in clinical
practice owing to their rapidity, precision, and economy. In
ophthalmology, many AI applications have achieved satisfactory
performance in diagnosing and predicting several retinal diseases
based on the contribution of widely used fundus images (Li et al.,
2018b; Nagasato et al., 2018; Peng et al., 2019). Unlike the majority of
ocular diseases, TAO is more specialized and has gained the attention
of fewer ophthalmologists, implying inadequate medical resources for
such patients. The burgeoning AI represents a promising future for
solving this problem.

The diagnosis and grading of TAO are highly comprehensive,
including the summarization of chief complaints and symptoms,
examination of external ocular signs, detection of thyroid function
and immunology, and assessment of orbital images (Smith and
Hegedüs, 2016). Facial images can be easily acquired using
smartphones, and automated AI algorithms can help identify
meaningful signs and provide diagnostic advice. Orbital CT and
MRI scans are broadly used, and the conventional images can be
converted into precise data for AI analysis, thus avoiding variable
subjective interpretation between observers. The response to GC
therapy and the occurrence of DON can also be predicted by AI-
aided image processing with digital standards.

Among these aforementioned studies, we found that developing
AI models to predict the postoperative appearance of orbital
decompression may worth more discussion. In a recent study,

FIGURE 1
The hypothetical pattern of AI applications in TAO clinical practice. The diagnosis and grading of TAO could be deduced by an integrated AI module
based on masked appearance, laboratory index and processed orbital images. The different therapy options could be optimized by AI assistances
automatically.
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Wickwar et al. (2018) conducted a qualitative study about patients’
expectations of orbital decompression surgery. It found that the
inability to completely imagine post-operative appearance caused
some anxieties, which may be greatly ameliorated by AI-
synthesized images. On the other hand, there were different
feelings on whether outcomes of surgery had met patients’
expectations. And possible strabismus or asymmetry may worsen
the situation (Del Monte, 2002). Thus, it would be more
reasonable for this kind of AI-assisted prediction to take these
factors into consideration. Overall, predicting postoperative
appearance by AI models does help propagandize orbital
decompression but still needs to be improved.

AI development in TAO has some challenges. Firstly, the
incidence of TAO can hardly be comparable to other ocular
diseases, especially cataracts and diabetes retinopathy (Shah and
Patel, 2022). CT and MRI examinations are also not as simple as
fundus photography and optical coherence tomography.
Attributed to these two factors the sample size of TAO-related
data is relatively low, substantially hindering the advance of AI
models in this field. Secondly, the exophthalmometry values and
orbital depths are significantly different between races (de Juan
et al., 1980; Tsai et al., 2006), implying that the AI model trained
based on Caucasian data may not be practicable for Chinese Asians,
and extra data collection is needed. Thirdly, some common
problems still exist. Many clinicians are reluctant to use AI
models in their practice due to the lack of understanding and
trust (Maddox et al., 2019), while most patients also prefer to meet
a doctor in reality (Keel et al., 2018). The AI-relevant laws and
social supervision cannot match the present technology. Under this
situation, we suggested that a TAO-related database collaborated
by domestic and international centers would play a vital role in AI
development. Establishing some AI pilot schemes in expert clinics
of TAO could also help the verification and generalization of AI
applications in TAO. Regarding the privacy of patients, the novel
introduced digital mask (Yang et al., 2022) can provide us an
admirable start to build the safeguard.

Although several challenges and problems stand in the way of
AI development in TAO, we still need to embrace this promising
technology. For further studies, it is foreseeable that the integration
of AI models using clinical signs and orbital images can create more
reliable AI-based systems for TAO diagnosis. Using AI algorithms,
we may separate the standard 12-week GC therapy and record
changes from intervals. The AI prediction for GC response can be
more precise with these data and help formulate the individual
treatment options for each patient with TAO. Through all-around

integration, the future scenario of AI applications in TAO may
develop as the flow chart in Figure 1.

Conclusion

In summary, the emerging AI algorithms may potentially
improve the accuracy of TAO diagnosis and reduce the
economic costs for patients to access qualified healthcare
resources. This automated technology can instantly help
optimize therapeutic strategies and surgical design during the
long course of TAO management. We believe that AI algorithms
may become vital in TAO clinical practice soon with the
continuous accumulation of TAO data and an improvement in
computing capacity.
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