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The behaviour of microscopic swimmers has previously been explored near large-
scale confining geometries and in the presence of very small-scale surface
roughness. Here, we consider an intermediate case of how a simple
microswimmer, the tangential spherical squirmer, behaves adjacent to singly
and doubly periodic sinusoidal surface topographies that spatially oscillate with
an amplitude that is an order of magnitude less than the swimmer size and
wavelengths that are also within an order of magnitude of this scale. The nearest
neighbour regularised Stokeslet method is used for numerical explorations after
validating its accuracy for a spherical tangential squirmer that swims stably near a
flat surface. The same squirmer is then introduced to different surface
topographies. The key governing factor in the resulting swimming behaviour is
the size of the squirmer relative to the surface topography wavelength. For
instance, directional guidance is not observed when the squirmer is much
larger, or much smaller, than the surface topography wavelength. In contrast,
once the squirmer size is on the scale of the topography wavelength, limited
guidance is possible, oftenwith local capture in the topography troughs. However,
complex dynamics can also emerge, especially when the initial configuration is not
close to alignment along topography troughs or above topography crests. In
contrast to sensitivity in alignment and topography wavelength, reductions in the
amplitude of the surface topography or variations in the shape of the periodic
surface topography do not have extensive impacts on the squirmer behaviour. Our
findings more generally highlight that the numerical framework provides an
essential basis to elucidate how swimmers may be guided by surface topography.
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1 Introduction

Ever since the studies of Robert Hooke and Antonie van Leeuwenhoek, it has been
known that a drop of pond water contains countless microbes, many of which are motile, and
indeed some can be lethal, such as Naegleria fowleri, the causative agent of amoebic
meningitis. Even harmless motile microbes have attracted the attention of scientists for
centuries, though more recently developments in nano- and micro-technology have also
enabled fabrication of self-propelling artificial micro-robots and manipulation of their
dynamics using microfluidic devices (Kherzi and Pumera, 2016). In laboratory
experiments and observations, with both synthetic and biological swimmers, of the
range of known control mechanisms, by far the most common is the influence of
confining boundaries.
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Nonetheless, the physical effects of walls on microswimmers
can be subtle and have been extensively investigated theoretically,
numerically, and experimentally in the past decade (Lauga and
Powers, 2009; Elgeti et al., 2015). For instance, numerous
biological microswimmers such as bacteria and sperm cells are
known to accumulate near a flat wall boundary (Rothschild, 1963;
Berke et al., 2008; Smith et al., 2009; Kantsler et al., 2013; Bianchi
et al., 2017; Ohmura et al., 2018). Furthermore, motility near
surfaces also has a functional role, for instance, biofilm
formation and initial spread (Pratt and Kolter, 1998), as well as
enhanced searching, which in turn is significant for fish egg
fertilisation, where a sperm needs to enter the egg micropyle
(Cosson et al., 2008). In addition, curved boundaries such as
convex walls, corners, and obstacles are easily fabricated in
microfluidic devices, which has motivated studies on the effects
of such confinements both for biological microorganisms
(Denissenko et al., 2012; Tung et al., 2014; Shum and Gaffney,
2015; Sipos et al., 2015; Ishimoto et al., 2016; Nosrati et al., 2016;
Nishiguchi et al., 2018; Ostapenko et al., 2018; Rode et al., 2019;
Yang et al., 2019) and artificial microswimmers (Takagi et al., 2014;
Spagnolie et al., 2015; Liu et al., 2016; Yang et al., 2016; Wykes
et al., 2017).

These curved boundaries and obstacles are typically larger than,
or comparable to, the swimmer. If the structure on the wall
boundary is smaller than the swimmer length scale, it may be
considered a rough boundary instead of a completely flat surface.
The impact of surface roughness has previously been considered via
an asymptotically small amplitude of the surface topography in the
presence of a spherical particle and a spherical microswimmer (Rad
and Najafi, 2010; Assoudi et al., 2018), the so-called squirmer (Shaik
and Ardekani, 2017).

The squirmer is a model microswimmer first proposed by
Lighthill (1952) as a slightly deforming sphere and later corrected
and used by Blake (1971) as a model of ciliate swimmers. This simple
model is currently understood to provide qualitative predictions for
a spherical biological microswimmer (Pedley, 2016; Pedley et al.,
2016). In particular, a simplified version of the model, in which a
rigid sphere can self-propel due to a given surface velocity slip
profile, is known as the spherical tangential squirmer. This has been
widely used as a simple mathematical model having a finite volume
for studies on hydrodynamical aspects of microswimming such as
nutrition uptake (Magar et al., 2003), cell–cell interactions (Ishikawa
et al., 2006; Drescher et al., 2009), Janus particle motility (Spagnolie
and Lauga, 2012; Ishimoto and Gaffney, 2013), collective dynamics
(Evans et al., 2011; Zöttl and Stark, 2012; Delfau et al., 2016; Oyama
et al., 2016), swimming in a non-Newtonian medium (Lauga, 2009;
Zhu et al., 2012; Nganguia and Pak, 2018), and swimming near a wall
(Llopis and Pagonabarraga, 2010; Spagnolie and Lauga, 2012;
Ishimoto and Gaffney, 2013). The squirmer has also been studied
in the context of confinement and obstacles such as the interior of a
tube (Zhu et al., 2013), the presence of lattice-like multiple obstacles
(Chamolly et al., 2017), or a curved and structured wall (Das and
Cacciuto, 2019).

Investigations into the effects of small surface topography on
microswimmers are, however, limited to the asymptotic analysis
of rough surfaces or boundary features (Kurzthaler and Stone,
2021) such as curvatures with length scales that are much larger
than those of the swimmer. The current study, therefore, aimed to

bridge the gap between an asymptotically small amplitude of the
surface roughness and large length scale curved boundaries. For
periodic structures at this mesoscale, in particular, there is the
prospect that the microswimmer may become oriented and
guided by the surface, and we will numerically investigate the
dynamics of a spherical tangential squirmer under these
conditions. Such investigations are particularly motivated by
recent studies of a colloidal microswimmer near a small
surface topography (Simmchen et al., 2016), highlighting that
a structured surface topography may be fabricated in a
microfluidic device with the potential for utilisation in guiding
microswimmers.

The very near-wall dynamics, at a separation of around 50 nm
and less (Klein et al., 2003), typically depends on both
hydrodynamic and steric interactions (Klein et al., 2003;
Kantsler et al., 2013; Bianchi et al., 2017), and a short-range
repulsive potential force is often utilised by modelling studies to
ensure that simulated cells do not penetrate the walls (Spagnolie
and Lauga, 2012). However, even a small difference in the
repulsion function can alter swimmer behaviour (Lintuvuori
et al., 2016; Ishimoto, 2017). Thus, in this initial study, we only
focus on the hydrodynamic interactions and do not consider any
additional steric interactions, contact mechanics, and charge
effects.

This is motivated not only by the utility of the relative
simplicity in this initial study but also for understanding the
impact of hydrodynamic surface interactions where, despite
these non-hydrodynamic forces, swimmer deposition is
undesirable and thus of minimal interest, compared to
topography guidance dynamics when deposition does not occur.
It also entails that the results and conclusions of this study are not
contingent on the details of contact mechanics and steric forces,
which vary with surfaces and solutes (Klein et al., 2003). Thus, the
numerical simulations are stopped just before the squirmer
dynamics is influenced by the short-range dynamics on a very
close surface approach. This short-range detail may be
accommodated in later work together with many further
refinements, such as incorporating more faithful representations
of flagellated and ciliated swimmers (Ohmura et al., 2018; Ohmura
et al., 2021).

The structure of this paper is as follows: Section 2 introduces the
squirmer model and three different surface topographies. Section 3
discusses the numerical methods and their verifications. Section 4
presents the simulation results for the different surface topographies,
followed by a discussion of the implications, in particular for
microswimmer guidance via surface topography, in Section 5.

2 The squirmer

We consider the non-dimensional Stokes equations of the low
Reynolds number flow, from which it follows for a velocity field u
and a pressure field p that

∇p � Δu and ∇ · u � 0. (1)
We impose the no-slip boundary condition on the swimmer and the
wall, together with the force and torque balance equations for a
swimmer with negligible inertia.
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We first introduce the spherical tangential squirmer model. The
no-slip boundary is imposed on a spherical swimmer of
dimensionless radius a = 1, possessing an axisymmetric and
tangential surface velocity (Ishikawa et al., 2006). The sphere
centre is located at X = (x, y, z), and n denotes the unit vector of
its orientation, as shown schematically in Figure 1, where
coordinates, variables for the position of the squirmer centre, and
the angles θ,Θ are defined using a diagram. Here, θ is the angle made
by the swimming direction and the xy plane. In particular,Θ ∈ [0, π]
denotes the polar angle relative to n, and we impose an axisymmetric
tangential velocity slip us on the squirmer, given by

us Θ( ) � ∑∞
n�1

BnVn cosΘ( ), (2)

where Vn is a function derived from the Legendre polynomial
Pn(x) via

Vn x( ) � 2
�����
1 − x2

√
n n + 1( )

dPn x( )
dx

. (3)

The swimming velocity in free space is dictated by the first mode,
with U = (2/3)B1n (Lighthill, 1952; Blake, 1971). We fix B1 = 3/2 so
that the squirmer swimming speed is set to be unity in free space,
and we neglect the higher modes by setting Bn = 0 for n ≥ 3 so that
the swimmer is subsequently fully characterised by the squirmer
parameter β = B2/B1 (Ishikawa et al., 2006). In particular, and
following convention, the swimmer is denoted as a pusher when
β < 0, a puller when β > 0, and a neutral swimmer when β = 0 (Evans

et al., 2011). The second mode, associated with the parameter B2,
corresponds to the flow induced by the Stokes dipole. In particular, a
cell with a trailing flagellum, such as an E. coli bacterium or a sperm
cell, behaves as a pusher; cells with leading flagella, such as
Chlamydomonas and Leishmania (Walker et al., 2019), are
modelled as pullers; and cells possessing fore–aft symmetry, such
as ciliates, behave as neutral swimmers (Evans et al., 2011).

Here, we focus on spherical tangential squirmers that swim
stably near a flat surface. Thus, we consider puller squirmers with β

≳ 5, which are known to exhibit stable swimming near a flat surface
(Ishimoto and Gaffney, 2013; Uspal et al., 2015). In particular, we
examine their dynamics close to surfaces with structured
topographies. The first of these topographies is a one-
dimensional sinusoid defined by

h x, y( ) � A sin kx( ), (4)
where A is the amplitude and k = 2π/λ is the wavenumber, with λ

denoting the wavelength (Figure 2A). The second topography is
given by the doubly periodic sinusoid.

h x, y( ) � A sin kx( )sin ky( ), (5)
as depicted in Figure 2B, and the third is given by

h x, y( ) � A 2 sin2 kx( )sin2 ky( ) − 1[ ]. (6)
This final topography is shown in Figure 2C and presents doubly
periodic peaks with highest and lowest heights of +A and −A,
respectively, as in the previous two topographies. However,
notably, the inter-peak wavelength is now halved, and the
parameter λ = 2π/k no longer represents the wavelength since
the sinusoidal functions are squared in Eq. 6. Throughout this
study of the doubly periodic topographies, we focus on cases that
are symmetrical in switching the x and y-directions.

We consider both the surface of the squirmer and the wall
surface topography denoted by S and W, respectively, with the
boundary conditions of the Stokes equations given by no-slip
conditions on both boundaries. The surface velocity of the
squirmer, denoted v(x), can be described by combining the
squirmer linear velocity U and angular velocity Ω, together with
its tangential surface velocity, us, of size given by Eq. 2 and in the
axisymmetric tangential direction, as depicted in Figure 1. Hence,
the no-slip condition entails the fluid velocity on the surface of the
swimmer is given by

v x( ) � U +Ω × x − X( ) + us x( ), x ∈ S( ). (7)
In contrast, the wall surface topography is assumed to be stationary,
and we thus have

u x( ) � 0 x ∈ W( ). (8)

3 Numerical methods

3.1 Nearest-neighbour regularised Stokeslet
method

The dynamics of the squirmer has been computed using the
nearest-neighbour regularised Stokeslet method (nnRSM)

FIGURE 1
Schematic diagram of a spherical tangential squirmer, of radius
a = 1, near a no-slip wall. Here, X denotes the centre of the spherical
swimmer relative to a laboratory reference frame, with Cartesian
coordinates (x, y, z) and h(x, y) is the height of the surface above
its average midplane (dashed) at z = 0. Furthermore, z is overloaded
and also represents the height of the swimmer centre above the
midplane, with an analogous overloading of x, y. Whether x, y, z refer
to coordinates or the overloaded definition X = (x, y, z) for the location
of the squirmer centre will be clear from context. The unit vector n
gives the orientation of the swimmer, which makes an angle θ relative
to the mid-plane of the surface topography, and Θ is the local polar
angle of a point on the swimmer’ surface relative to n. The swimmer’s
motility is driven by an axisymmetric tangential velocity of its surface,
of size us, and in the direction of increasing Θ, as detailed in the main
text.
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(Gallagher and Smith, 2018; Smith, 2018), and the numerical
simulations have been performed based on the MATLAB code
accompanied by Gallagher and Smith (2018), as we now
summarise. The Stokes flow boundary integral equations for the
single-layer formulation are given by (Pozrikidis, 1992)

uj x( ) � − 1
8π

∫
S∪W

Sij x, y( )fi y( ) dSy . (9)

Here, fi(y) denotes the components of the surface traction and the
integral kernel Sij is the Stokeslet, which exhibits an integrable
singularity as y → x, with the surface integral well-defined. For
numerical tractability, Cortez introduced a regularised Stokeslet
(Cortez, 2001), which is the exact divergence-free solution to the
Stokes flow equations with a spatially smoothed point force, and
then approximated the boundary integral (Cortez et al., 2005) via

uj x( ) � − 1
8π

∫
S∪W

Sϵij x, y( )fi y( ) dSy , (10)

where Sϵij is the regularised Stokeslet and ϵ is the regularisation
parameter. As the error in this approximation isO(ϵ), we recover the
singular boundary integral once we take the limit of ϵ→ 0. Following
Cortez et al. (2005), we consider a regularised Stokeslet of the form,

Sϵij x, y( ) � r2 + 2ϵ2( )δij + rirj{ } r2 + ϵ2( )−3/2, (11)

where r = x − y, r = |r|, and δij represent Kronecker’s delta. The no-
slip boundary conditions are simply given by enforcing u(x) = v(x)
from Eqs. 7, 8 for boundary points in the integral Eq. 10. Since the
squirmer is swimming freely, we also have the inertialess force and
torque balance equations.

∫
S
f x( ) dSx � 0 , ∫

S
x − X( ) × f x( ) dSx � 0. (12)

We then discretise the surface integrals (10), (12), by
introducing the quadrature node positions x[n] and the
associated weights A[n] for the discretised surface point n (n = 1,
. . ., N), where N is the total number of surface points. The
aforementioned surface integrals contain the product of ‘f dS’
and we discretise the integral (Gallagher and Smith, 2018; Smith,
2018) via

∫ •fj x( ) dSx ≈ ∑N
n�1

• gj n[ ]A n[ ], (13)

where the symbol, •, on the right-hand side, represents an arbitrary
function of x, evaluated at x[n], and gj[n] = fj(x[n]).

Continuing with the framework of Smith (2018), we introduce a
second surface discretisation, x[q], (q = 1, . . .,Q) which corresponds
to a more refined discretisation than used for the surface traction,
with N ≪ Q, as illustrated in Figure 3. The regularisation error is
O(ϵ), and this motivates taking relatively small values of ϵ in
computations. The two discretisations enable an efficient
numerical solution as the kernel, Sϵij, which can vary rapidly, and
thus requires a finer discretisation, which would be inefficient if used
for the surface traction, f. In particular, the size of the dense linear
system depends only on N, not Q. Thus, the cost of assembling the
system is defined by O(NQ), whereas the cost of the direct solver is
defined by O(N3). Moreover, if the force and quadrature
discretisations do not overlap, the quadrature error no longer
diverges as ϵ → 0, and hence a less refined force discretisation in
this framework is in general more accurate than if the two
discretisations coincide (Gallagher et al., 2019).

The nearest-neighbour matrix, ][q, n], is then defined separately
for a swimmer and a wall as

1 if n � arg min|x n̂[ ] − x q[ ]| x n̂[ ], x q[ ] ∈ S( )
1 if n � arg min|x n̂[ ] − x q[ ]| x n̂[ ], x q[ ] ∈ W( )
0 otherwise,

⎧⎪⎨⎪⎩ (14)

where argmin is the argument at which the minimum is attained
over the set n̂ ∈ {1, . . . , N}, and we use this matrix to interpolate the
discretisation via

fj x q[ ]( )dS x q[ ]( ) ≈ ∑N
n�1

] q, n[ ]gi n[ ]A n[ ]. (15)

Combining Eqs 13, 15 and noting the total number of the points
for the finer discretisation Q, we have

∫ • x( )fj x( ) dSx ≈ ∑N
n�1

gj n[ ]A n[ ]∑Q
q�1

• x q[ ]( ) ] q, n[ ]. (16)

FIGURE 2
Illustrations of the surface topography functions h(x, y) considered in this study. (A) Singly periodic sinusoidal wave topography, (B) doubly–periodic
sinusoidal wave, and (C) doubly–periodic peaks, respectively, associated with Eqs 4–6. The maximum andminimum heights, h(x, y), are +A and −A for all
topographies.
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We use •(x) � Sϵij(x′, x) in Eq. 16 to discretise the boundary integral
(10), and we use •(x) = 1 and •(x) = ϵijk(xk − Xk) in Eq. 13 for the
force and torque balance relations (12), respectively.

In particular, to solve the squirmer trajectory, we first need to
determine its velocity, U, and angular velocity,Ω, which can then be
integrated over time to determine the squirmer location and
orientation. First, it should be noted that at a fixed point in time,
the squirmer location and orientation are obtained from previous
integration or from the initial conditions at the start of the
simulation. Then, the discretisations of Eqs 10, 12, with u = v
eliminated in terms ofU,Ω, and the known us via Eqs. 2, 3, 7, 8, give
3N + 6 constraints for the 3N + 6 scalar unknowns associated with
the unknown surface tractions at the N discretisation points and the
unknowns U, Ω. The resulting linear system is readily solved,
provided that collocation points are unique, and we have a non-
singular dense linear system that can be solved directly via standard
methods.

As is the case for both singular and regularised versions of the
boundary integral representation for flow around a constant
volume body, the integral equation admits a gauge freedom f
→ f + αm, where α is any constant and m is the surface normal
pointing into the fluid (this can be observed by applying
incompressibility and the divergence theorem to deduce that
∫SSijmidS = 0). In the absence of boundary conditions for
traction, this freedom results in the pressure being determined
only up to an additive constant in the exact problem.
Discretisation results in an invertible matrix, and hence a
unique (approximate) solution, because the discretised integral
is no longer evaluated precisely to 0; moreover, the non-
uniqueness of the continuum solution for the pressure is not
dynamically important as it does not affect either the total force or
moment on the swimmer.

3.2 Swimming in a free space

We first examine the numerical accuracy of the swimming
velocity calculation for the squirmer in free space. The squirmer
parameter is set to β = 0, and the exact swimming speed is |U| = 1,
as detailed in the previous section. We have fixed the
regularisation parameter ϵ = 0.001 and examined the impact

of changing the discretisation refinement. In particular, with the
total number of the points that form the squirmer surface given
by N � 6n2s and Q � 6N2

s for each discretisation (Gallagher and
Smith, 2018; Smith, 2018), changes in both ns and Ns have been
examined. The results of Table 1 establish numerical parameters
sufficient to obtain our desired relative error of around 1%.
Finally, we also note that changes in β have not been observed
to alter the swimming speed, as expected.

3.3 Swimming near a wall

Hereafter, we set the squirmer discretisation parameters to be
(ns, Ns) = (4, 18) and consider the squirmer near a no-slip wall. As
previously studied by the boundary element method (Ishimoto
and Gaffney, 2013), a strong puller tends to stably swim near a
flat wall. We, therefore, choose β = 7 and set the initial location of
the squirmer centre to be (0,0,1.15), with the initial orientation
given by θ = −0.17π, which is effectively the initial angle of attack
relative to the mid-plane of the surface topography, as can be seen
from Figure 1.

FIGURE 3
Illustration of the points representing the squirmer and surface topography, with the finer discretisation (A) used for the kernel and the coarser
discretisation (B), used for the surface traction. Discretisation points on the spherical squirmer surface are indicated by red dots. In contrast, blue
discretisation points are shown for the doubly periodic surface topography of Figure 2B, with the size of the discretised surface given by L = 8 and the
surface topography given by Eq. 5, as plotted in Figure 2B, with an amplitude of A = 0.1 and the wavelength given by λ = 2. Note that we here display
the wall meshes after rescaling by the method described at the end of Section 3.

TABLE 1 Predictions for the free space swimmer speed. The exact speed is
given by |U| = 1 and its numerical calculation is presented for refinements of
both the discretisations used in the nearest–neighbour regularised Stokeslet
method, where N � 6n2

s and Q � 6N2
s .

ϵ ns Ns |U|

0.001 4 10 1.0135

0.001 4 12 1.0017

0.001 4 14 1.0073

0.001 4 16 1.0153

0.001 4 18 1.0048

0.001 5 10 1.0291

0.001 5 12 1.0079

0.001 5 14 1.0098

0.001 5 16 1.0113
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We first use the regularised Blakelet (Ainley et al., 2008) in
the nearest-neighbour regularised Stokeslet method and
compare the simulation result with the stable distance
obtained via the boundary element method using the singular
Blakelet (Ishimoto and Gaffney, 2013), with the latter providing
the stable separation distance z* ≈ 1.1578. As shown in Figure 4,
these predictions of these two algorithms are in reasonable
agreement.

We then consider a wall that is captured by an explicit
discretisation of its surface rather than by use of the Blakelet, as
implemented in the sperm simulation of Gallagher and Smith
(2018). The wall is given by the x-y plane and represented by the
square with a length of L, with its centre at the location of the
projection of the squirmer centre, X, onto the plane z = 0. Each
side contains nw and Nw points with equal separations for
surface traction and kernel discretisations, respectively
(Gallagher and Smith, 2018; Smith, 2018). Hence, the number
of points on the surface S ∪ W are given by N � 6n2s + n2w and
Q � 6N2

s +N2
w for the surface traction and kernel discretisations,

respectively. An example of a swimming trajectory is plotted in
Figure 4.

We then rescale the wall points to resolve the
squirmer–boundary hydrodynamic interaction more efficiently by
using the function

f: −1/2, 1/2[ ] → −1/2, 1/2[ ], f x( ) � 1
2
tan

πx

2
( ). (17)

The equally discretised square of unit length

S � x, y( ) ∈ −1/2, 1/2[ ] × −1/2, 1/2[ ]{ } (18)

is mapped by this function, via

f x( ), f y( )( ); x, y( ) ∈ S{ }, (19)

and then dilated by the scale of L. The square obtained by this
scheme more precisely represents the hydrodynamical interactions
between the squirmer and the wall, as seen from the results labelled
“rescaled” in Figure 4, which use this mapping. These trajectories in
particular are sufficiently accurate for our purposes and very close to
the prediction of the boundary element method (BEM) of the stable
swimming height above the surface, which is exact to within
discretisation error.

4 Results

In this section, we discuss the swimming trajectories of the
squirmer near a surface with a structured periodic topography, as
defined in Eqs. 4–6 and depicted in Figure 2. For all simulations
presented, the initial height of the squirmer was fixed at z = 1.2, with
the initial angle of attack given by θ = −0.17π. Furthermore, initial
squirmer centre location coordinates of x = 0, y = 0, are set together
with squirmer parameters of B1 = 3/2, β = 7, and a surface
topography amplitude of A = 0.1, unless explicitly stated
otherwise. Although the dynamics can change depending on the
parameters and initial settings, we fix these variables to consider the
stable behaviour and its modulation by surface topography,
focussing on the impact of the initial orientation and topographic
patterns. The surface topography wavelength and the initial
orientation of the squirmer in the x–y plane, namely, φ in
Figure 5, are thus varied extensively among the simulations and
either stated or, in the case of φ, can otherwise be immediately
inferred from the initial tangent angles of the trajectories in the
presented plots.

FIGURE 4
Swimming trajectories of the squirmer with a regularisation of ϵ =
0.001 and different discretisation parameters. Also plotted is the
height of the stable fixed point obtained by the boundary element
method using the singular Blakelet (Ishimoto and Gaffney, 2013),
as labelled “BEM stable distance,” and a trajectory using a regularised
Blakelet with the nearest-neighbour regularised Stokeslet method, as
labelled by “Blakelet.”

FIGURE 5
Bird’s eye view of the squirmer above the doubly periodic surface
topography of Eq. 5, as depicted in Figure 2B, with λ = 4. The angle φ is
defined to be the angle of the x–y projection of the squirmer
orientation vector n from the y-axis, as illustrated, and thus gives
the direction of the squirmer in the x-y plane.

Frontiers in Cell and Developmental Biology frontiersin.org06

Ishimoto et al. 10.3389/fcell.2023.1123446

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1123446


4.1 Singly periodic sinusoidal topography

We start with the single-wave sinusoid topography given in Eq. 4
and Figure 2A. The initial location of the squirmer and the initial
angle of attack are fixed at the simulation default initial values of X =
(0, 0, 1.2) and θ = −0.17π, as stated previously, while the initial
orientation of the squirmer in the x–y plane has been initially
considered in detail with φ = 0.5π and then subsequently varied.

Thus, we first consider a squirmer swimming parallel to the
wave vector of the sinusoidal topography or equivalently along the
x-axis. Fixing the initial orientation relative to the x–y plane via φ =
0.5π, swimming trajectories in the x–z plane are plotted in Figure 6A
for different surface topography wavelengths λ = 1, 2, 4, 8.
Corresponding trajectories in the θ-z phase plane are shown in
Figure 6B. When the wavenumber λ is smaller (λ = 1, 2), the
squirmer attains stable oscillatory swimming, but the oscillation
in the z-axis is smaller than the surface topography amplitude, A =
0.1, highlighting that the topography only perturbs the stable
position associated with swimming near a flat wall. This may be
observed in Figure 6C, where the z-dynamics for the last part of the
oscillating motion obtained in Figure 6A are shown relative to a
horizontally rescaled and shifted axis x/λ together with the surface
topography function h. However, as the wavelength is increased to
λ = 4, λ = 8, the oscillatory motion then transitions to an amplitude
that is larger than that of the surface topography, as can be seen in
Figure 6C. In addition, one can observe that, with λ = 4, the
wavelength of the z-component oscillations in the trajectory need
not match that of the underlying surface topography, though in
contrast, these two wavelengths do match for the trajectories with

λ = 2 and λ = 8. Although the problem converges to the locally flat
wall case in the large wavelength limit, the locally flat approximation
does not hold for the range of λ we have examined, as may be
inferred from the oscillatory motion in Figure 6C.

We then consider the squirmer dynamics with different initial
values of φ, and thus different initial orientations relative to the x–y
plane, while once again varying the wavelength of the singly periodic
topography. Figure 7 shows the predicted trajectories and the
orientations for the case with the surface topography amplitude
A = 0.1 and wavelength λ = 1, 2, 4, 8, while considering various
values of φ, from 0 to 0.5π. From the figure, one can observe that the
squirmer tends to swim either parallel or perpendicular to the
direction of the well, which is aligned along the y-axis, though
the orientation angle φ need not always necessarily match the
direction of motion. For instance, some trajectories in Figure 7
follow the topographical crest by swimming in the direction of the
positive y-axis, with the orientation angle, φ, remaining very close to
the initial value rather than aligning with the y-axis, even after a long
time. Also, some further trajectories are attracted towards the
negative x-axis, without the orientation angle φ evolving to
reflect this change in swimming direction. Hence, overall drifting,
that is, a misalignment between the swimming direction and
swimmer orientation, can be induced by the
squirmer–topography hydrodynamic interaction.

Notably, the swimming dynamics associated with an initial
orientation angle of φ ≈ 0.05 with λ = 1, or φ ≈ 0.15 with λ = 2,
is unstable, and the trajectories evolve towards the stable
orientations of φ = 0, as seen in Figures 7A, B. Here, the stable
swimming along the y-axis is accompanied by hydrodynamic

FIGURE 6
Dynamics of the squirmer swimming adjacent to the singly periodic sinusoidal topography of Eq. 4 and Figure 2A, with different wavelengths λ = 1, 2,
4, 8. The wave amplitude of the topography is fixed at A = 0.1. (A) Trajectories in the x–z plane. (B) Trajectories in the θ–z phase plane. (C) Horizontally
rescaled and shifted z position for the last part of the simulation (A), together with the topography function h.
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capturing, with the squirmer moving along a trough of the surface
topography. Furthermore, in both cases, the z-dynamics attains a
stable oscillatory motion, as may be observed in Figures 6A, B. In
both cases, the qualitative aspects of these features are unaltered
when the amplitude A is decreased, though the timescale for the
reorientation along one of the axes becomes longer.

Analogously, an increase in the topography wavelength to the
intermediate value of λ = 4 entails that swimming oblique to the
troughs and peaks of topography can be observed, as seen in
Figure 7C. However, at this wavelength, the squirmer
concomitantly undergoes extensive oscillations in the z-direction.
Furthermore, the squirmer enters the near vicinity of the surface
(Figure 7C) once it is no longer oriented approximately along the y-
axis. This requires a consideration of surface mechanics to proceed.
More precisely, in practical applications, surface mechanics would
become relevant and would need to be added to the model. This is
outside the detailed scope of the study and, hence, we stop the
numerical simulation, thus also avoiding the numerically
unreasonable spatial resolutions required for the associated fine-
scale hydrodynamics.

We further increase the wavelength of the sinusoidal topography
to λ = 8, with trajectories presented in Figure 7D, which on

projection to the x–y plane, are essentially straight, regardless of
the initial orientation angle φ. Hence, at larger wavelengths, the
squirmer swims with a direction that is unaffected by the surface.
Furthermore, the z-dynamics of the squirmer trajectory become
more oscillatory as the topography wavelength increases, as
observed previously in Figure 6, unless the squirmer is captured
in the trough along the y-axis, in which case the z-dynamics
converges to a stable position.

More generally, all of these observations highlight that even with
a surface topography amplitude of A = 0.1, which barely visible, as
highlighted by Figure 3, the squirmer’s behaviour is affected by the
structured surface topography in a complex manner. In particular,
the resulting trajectories are contingent on the details of the
topography parameters and the squirmer orientation, especially
once the topography wavelength is comparable to the squirmer size.

4.2 Doubly periodic sinusoidal topography

We now consider the squirmer dynamics near a surface with the
doubly periodic wave topography, given by Eq. 5 and illustrated in
Figure 2B. In the current setting, the topography breaks the

FIGURE 7
Dynamics of the squirmer near a surface with the singly periodic sinusoidal wave topography of Eq. 4 and Figure 2A. The surface topography
amplitude is given by A= 0.1, and the wavelength is (A) λ= 1, (B) λ= 2, and (C) λ= 4, (D) λ= 8. (Top panels) the projections of the squirmer trajectories onto
the x–y plane with different initial orientation angles, φ, as defined via Figure 5. These initial angles may be inferred from the initial tangents of the plotted
projected trajectories. (Middle panels) the time evolution of the height of the centre of the squirmer, z. (Bottom panels) the time evolution of the
orientation angle φ. Different colours index different initial values of the orientation angle, φ.
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translational symmetry in the y-direction, and hence the trajectories
now also depend on the value of the initial y position of the squirmer
centre. We first consider the squirmer starting with an orientation
φ = 0.5π and an initial centre location coordinate of y = λ/4, with the
other initial location coordinates and the initial angle of attack at the
default values of x = 0, z = 1.2, and θ = −0.17π. Then, the squirmer
moves along the −x-axis with similar dynamics in the z-direction to
that displayed in Figure 6. In particular, the dynamics in the z-
direction are only slightly perturbed when λ = 1, 2 but display larger
oscillations when λ = 4, 8.

We then consider variations in the initial squirmer orientation
angle φ that, as previously, entails the trajectories are no longer
constrained to two spatial dimensions. The surface topography
amplitude remains fixed at A = 0.1, and the initial height,
location, and attack angle are at default values, while we consider
variation in the orientation angle φ and the topography wavelength,
which here is still given by λ. When λ = 1 (Figure 8A), the trajectories
are not affected by the surface topography, as the trajectories are
straight when projected on to the x–y plane, and the angle φ is
constant in time. However, in the simulation with the wavelength
λ = 2 (Figure 8B), some trajectories with φ ≈ π/4 are
hydrodynamically captured near the bottom of the doubly
periodic sinusoidal valley, whereas swimming outside of this
region of initial orientation angles is not affected by the surface
topography, as in the case of λ = 1.

These features can also be observed when we increase the
wavelength to λ = 4 (Figure 8C). In contrast, for the larger
wavelength of λ = 8, there is no evidence for an attracting trough
of squirmer dynamics near the bottom of the topographic valley
(Figure 8D). Together, these results highlight that the hydrodynamic
attraction towards, and subsequently along, topographic valleys is
not only limited but also only possible when the scale of the

swimmer’s diameter is comparable with the length scale of the
surface topography.

We then move to consider the final surface topography of
doubly periodic peaks as introduced by Eq. 6 and displayed in
Figure 2C. Trajectories with straight line projections onto the x–y
plane can be observed when the squirmer’s initial location and
orientation angle align along topography troughs or across
topography crests. For example, given the default initial location
of X = (0, 0, 1.2) and an initial orientation angle φ = 0, the squirmer
swims with φ = 0 throughout time. In addition, these trajectories also
exhibit nearly constant z-dynamics, though small z-oscillations are
observed with amplitude ≲ 0.05 due to the topography, and this
oscillation is further diminished as the topography wavelength
increases. Furthermore, with the default initial location and an
initial value of φ = 0.25π, or with initial values of X = (0, λ/4,
1.2) and φ = 0.5π, straight line x–y projected trajectories are also
observed. Furthermore, in the z-direction, the squirmer behaviour
changes from small oscillatory perturbations to larger amplitude z-
oscillations as the wavelength increases, in direct analogy to the
examples considered in detail with the previous topographies.

For more general initial configurations of the squirmer, we have
considered the three-dimensional behaviour of the resulting
trajectories, with the simulation results plotted in Figure 9 for
λ = 2, 4, 8, 16, observing the wavelength for this topography is
λ/2, not λ. In the previous doubly periodic surface topography,
swimming with the orientation angle φ = π/4 allowed the cell to
move along a surface topography trough, noting that the prospect of
drifting observed in the singly periodic topography of Figure 2A can
be ruled out. In contrast, for the current case, an orientation of φ = π/
4 moves across the surface topography peaks.

Again, the simulation results show that the squirmer is attracted
by orientation angles corresponding to troughs in the surface

FIGURE 8
Dynamics of the squirmer near a surface with the doubly periodic sinusoidal wave topography of Eq. 5, as depicted in Figure 2B. The surface
topography amplitude is given by A = 0.1, and the wavelength is (A) λ = 1, (B) λ = 2, (C) λ = 4, (D) λ = 8. (Top panels) the projections of the squirmer
trajectories onto the x–y plane with different initial orientation angles, φ, as defined via Figure 5. These initial angles may be inferred from the initial
tangents of the plotted projected trajectories. (Bottom panels) the time evolution of the orientation angle φ. Different colours index different initial
conditions.
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topography, which here are φ = 0, π/2, for example. Furthermore,
such topographic attraction is realised when the squirmer diameter
is close to the characteristic length scale of the surface modulation, as
seen in Figures 9A–C. However, again for the parameter regimes of
Figures 9B, C, the swimmer can approach very close to the surface,
and the trajectory simulations are halted as detailed surface
dynamics are outside the scope of the study. Finally, we note that
once the surface topography wavelength is increased further, with
λ = 16 as presented in Figure 9D, all projected trajectories are
straight lines, and the orientation angle φ is constant in time. Hence,
at these larger wavelengths, the surface–swimmer interactions no
longer influence the guidance of the squirmer.

5 Discussion

In this paper, we have numerically investigated the
hydrodynamics of a puller spherical tangential squirmer near a
surface with a singly or doubly periodic structured topography. In
particular, the amplitude of the surface topography was an order of
magnitude less than the squirmer size and a wavelength on the scale
of the squirmer size. The simulated squirmer is known to be
attracted to a stable separation from a flat wall, and a mesh-free
regularised Stokeslet boundary element numerical scheme was
demonstrated to accurately capture the dynamics induced by the
subtle hydrodynamic interactions between a spherical tangential
squirmer and a flat wall.

When the wavelength of the sinusoidal surface topography is
smaller than the squirmer size, the perpendicular dynamics of the

swimmer trajectory is a small amplitude oscillatory perturbation
from the constant stable swimming height associated with a flat
boundary. However, as the wavelength of the surface topography is
increased, the squirmer acquires larger vertical, z-direction,
oscillations with a wavelength that matches that of the
topography at very large surface topography wavelengths, but not
always at intermediate values (Figure 6C).

Furthermore, the squirmer movement in the horizontal, x–y,
plane has been observed to be highly dependent on the detailed
geometrical properties of the surface topography. We first
considered a singly periodic sinusoidal surface topography.
When the wavelength of the surface topography (Eq. 4) is not
significantly larger than the squirmer diameter (λ < 4), the
horizontal squirmer motion reorientates towards one of two
stable directions, i.e., parallel and perpendicular to the
wavevector of the surface topography, as seen in Figure 7.
Furthermore, drifting can sometimes be observed, whereby the
direction of motion differs slightly from the orientation angle, φ, as
noted in Figure 7, for example.

At intermediate wavelengths (λ = 4) the squirmer can approach
the surface. The detailed subsequent behaviour would be contingent
on the near-surface physics, the detailed study of which is beyond
the scope of this study. Once the surface topography wavelength is
further increased, with λ = 8 sufficient so that the wavelength is four
times that of the squirmer diameter, we observed that the horizontal
motion is that of straight lines and surface induced guidance of the
squirmer in the horizontal plane is lost.

For the doubly periodic surface topographies, the squirmer had
the tendency to be locally guided to swim along surface topography

FIGURE 9
Dynamics of the squirmer near a surface with the doubly periodic sinusoidal wave topography of Eq. 6, as depicted in Figure 2C. The surface
topography amplitude is given by A = 0.1, and the wavelength is unchanged from previous plots, but is no longer given by λ = 2π/k where k is the
wavenumber of the sinusoidal functions in Eq. 6, since these functions are squared. Hence, to preserve wavelength at 1, 2, 4, 8 length units in the
respective columns, we take (A) λ = 2, (B) λ = 4, (C) λ = 8, and (D) λ = 16 onmoving from left to right across the figure. (Top panels) the projections of
the squirmer trajectories onto the x–y plane with different initial orientation angles, φ, as defined via Figure 5. These initial angles may be inferred from the
initial tangents of the plotted projected trajectories. (Bottom panels) the time evolution of the orientation angle φ. Different colours index different initial
conditions.
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troughs rather than over crests, though only when the squirmer
diameter was comparable to the surface topography wavelength.
However, such tendencies were weak and, at intermediate surface
topography length scales, often accompanied by very close
approaches to the surface where steric interactions would be
important.

These qualitative features of the squirmer trajectories have
also been observed when the squirmer parameter, β = B2/B1, from
Eq. 2, was varied within the range that induced stable swimming
in the vicinity of a flat wall. In addition, changing the sinusoidal
surface topography to a sigmoidal topography to represent
fabricated surface wells in microfluidic devices did not induce
a significant change in the qualitative features of the swimming
trajectories. In turn, this evidences that squirmer swimming
behaviours are influenced mainly by the length scale of the
surface topography. In addition, we have also observed that
the swimmer behaviour can be complex, especially when the
swimmer is not aligned along the surface topography troughs or
above the surface topography crests, though a limited local
guidance to swim along the surface topography troughs has
also been common.

There are considerable numbers of studies focussing on
microswimmer dynamics near non-trivial geometrical structures
such as curved obstacles (Nishiguchi et al., 2018; Das and Cacciuto,
2019), bumps (Simmchen et al., 2016; Yang et al., 2019), and maze-
like micro-devices (Denissenko et al., 2012; Tung et al., 2014), but
the length scale of the surface topography in the current study
features much finer surface structures. We also note that the
transitional vertical behaviours in the z-direction, from
perturbations of the stable swimming height for a flat wall to
topography-following motion at very large surface topography
wavelength, necessitate a consideration of the finite-size
amplitude of the surface topography. In particular, such
behaviours highlight that the dynamics examined in this study
requires larger-scale physics beyond the effective boundary
conditions (Sarkar and Prosperetti, 1996; Kunert et al., 2010;
Luchini, 2013) based on a very small amplitude surface roughness.

In the context of representing biological microswimmers such as
spermatozoa and bacteria, which are pusher swimmers rather than
pullers, hydrodynamic stable swimming occurs for prolate pusher
tangential squirmers, but not spherical squirmers (Ishimoto and
Gaffney, 2013). Moreover, the hydrodynamic interactions strongly
depend on the swimmer morphology and beating pattern (Smith
et al., 2009; Shum et al., 2010; Ishimoto and Gaffney, 2014; Walker
et al., 2019). In turn, this highlights that detailed numerical studies
are required to explore the surface dynamics for both prolate
squirmers and more realistic microbiological swimmers near
non-trivial surface topographies, including the prospect of a
ciliated epithelium, modelled as a dynamic periodic boundary
(Smith et al., 2008).

Furthermore, contact dynamics are also experimentally known
to be significant for boundary accumulation behaviours of
microswimmers (Kantsler et al., 2013; Bianchi et al., 2017) and
to vary extensively with solutes and surfaces (Klein et al., 2003).
However, the current study does not consider the detailed surface
dynamics in the region very close to the boundary since its scope
considers universal hydrodynamic interactions, rather than the
boundary behaviours for a specific swimmer, solute, and surface.

Even with a simple short-range repulsion, the details of the
repulsive force can alter the swimmer dynamics (Lintuvuori
et al., 2016; Ishimoto, 2017), while the contact mechanics reflect
the specific biological and physical features of the system under
investigation. A further generalisation to be considered in artificial
colloidal microswimmers is the impact of sedimentation and
gyrotaxis due to swimmer density heterogeneity and density
offset from the fluid (Das et al., 2020), as well as the chemical
and physical mechanisms that drive the colloidal particle (Uspal
et al., 2015). Also, the swirling squirmer characterised by a
rotlet–dipole singularity is known to exhibit circular motion
near a boundary (Ishimoto and Gaffney, 2013), and the impact
of the surface topography on such a swimmer warrants future
investigations.

In summary, this investigation has used the nearest neighbour
regularised boundary element method (Gallagher and Smith, 2018) to
numerically explore the hydrodynamic interactions between a spherical
tangential squirmer and a spatially oscillating surface topography with an
amplitude that is an order of magnitude less than the squirmer size. In
particular, a squirmer was investigated that swam with very simple
dynamics close to a flat boundary, relaxing to a stable distance from
thewall, and swimming in the direction of its orientation in the horizontal
plane. However, even with small amplitude surface topographies, this
squirmer’s dynamics has depended in a subtle and complex manner on
the wavelength of the surface topography. We found that surface
topographies could effect limited and local squirmer guidance towards
topography troughs, in particular once the squirmer size is of the same
order of magnitude as the surface topography wavelength. However,
contact dynamics may also be induced at such wavelengths of the surface
topography, especially if the initial squirmer orientation to the surface is
not along topography crests or troughs. However, surface guided
behaviours are robust to other aspects of the surface topography, such
as reductions in the amplitude and changes in the shape of the surface
topography waves. More generally, the framework enables these
predictions to be made forming a basis for in silico experimentation
of microorganisms and designing artificial micromachines.
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