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Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the
current curative therapy is limited. Emerging evidences demonstrate
mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness.
Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined
with NLRP3 inflammasome activation is involved in cochlear damage.
Autophagy not only clears up undesired proteins and damaged mitochondria
(mitophagy), but also eliminate excessive ROS. Appropriate enhancement of
autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect
auditory cells. In addition, we further discuss the interplays linking ROS
generation, NLRP3 inflammasome activation, and autophagy underlying the
pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related
hearing loss.
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1 Introduction

Hearing loss affects almost 5% of the world’s population and impacts people
ranges of all ages (Sheffield and Smith, 2019). Hearing loss causes communication
barriers between people, leading to isolation, depression, dementia, and other
psychological problems. This primary effect not only impairs the quality life of
patients themselves but also causes indirect economic losses to society
due to the reduced productivity caused by communication difficulties
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(Cunningham and Tucci, 2017). Therefore, a
comprehensive understanding mechanism of hearing
loss is extremely important for disease prevention and
treatment.

Hearing loss is mainly considered a sensory disorder in
humans. Multiple factors contribute to the pathogenesis of
sensorineural hearing loss (SNHL), such as noise exposure,
ototoxic drugs (aminoglycoside antibiotics, platin-based
anticancer drugs, and loop diuretics), genetic mutations,
aging, and chronic conditions. Histopathological changes of
SNHL are characterized by mechanosensory hair cell damage,
spiral ganglion neuron (SGN) loss, and stria vascularis atrophy
(Keithley, 2020; Rousset et al., 2020). Emerging studies have
suggested that mitochondrial DNA damage, reactive oxygen
species (ROS) overproduction, and inflammatory mediators
activation are associated with subsequent cochlear damage.
Mitochondria ROS could induce inflammasome activation
that promotes various disease progression (Martinon, 2010;
Sorbara and Girardin, 2011). Moreover, ROS could also
induce cellular defense process such as autophagy, a
cytoprotective manner that deliver damaged organelles to
lysosomes for degrader (Wang and Klionsky, 2003; Vernon
and Tang, 2013). Current studies reveal autophagy exhibits
an antioxidative capacity to protect against hair cell damage
and possesses the potential to alleviate noise-induced hearing
loss (NIHL) (Ye et al., 2019). This review mainly discusses the
underlying mechanism affecting cochlear damage and hearing
loss, including ROS-induced oxidative stress, autophagy, and
NLRP3 inflammasome (Figure 1).

2 Mitochondria and reactive oxygen
species

2.1 ROS generation

ROS, such as superoxide anions, hydrogen peroxide, and
hydroxyl radicals, are reactive molecules containing oxygen and
are mainly generated in the mitochondria (Han and Someya, 2013;
Shrestha et al., 2021). Various stress conditions could markedly
induce mitochondrial ROS production, increase metabolic rates,
hypoxia, and membrane damage. The mitochondrial electron
transport chains generate the electrochemical gradient to drive
oxidative phosphorylation for ATP synthesis. The electron leakage
in the respiratory chain results in the production of superoxide
(Chance et al., 1979; Turrens, 2003; Brand, 2010). Seven precise
sites have been identified formitochondrial ROS production, complex
I (NADH), complex III (cytochrome c oxidoreductase), glycerol 3-
phosphate dehydrogenase, NADH-Q oxidoreductase, pyruvate
dehydrogenase, and 2-oxoglutarate dehydrogenase. Of these sites,
complex I-III are well shown to display the maximum capacities to
produce ROS (Turrens et al., 1985; Muller et al., 2004; Pryde and
Hirst, 2011). Antioxidant enzymes (catalase, SOD, and glutathione
peroxidase) exert the cytoprotective effect by scavenging ROS.
Oxidative stress represents an imbalance between ROS production
and the antioxidant defense system. Overproduction of ROS can
destroy biological membranes, attackDNA, cause genemutations and
protein denaturation, and ultimately cause various human diseases,
neurodegenerative diseases, carcinogenesis, and aging-related diseases
(Fujimoto and Yamasoba, 2019).

FIGURE 1
Interplay of oxidative stress, autophagy and NLRP3 inflammasome in hearing loss.
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2.2 Mitochondrial ROS in hearing loss

Mitochondria ROS overproduction plays a key role in cochlear
damage and hearing impairment (Pryde and Hirst, 2011). ROS-
induced oxidative stress cause direct damage in cochlear hair cells,
SGNs, and stria vascularis. ROS generation also leads to
inflammation and pro-inflammatory cytokines secretion (Wong
and Ryan, 2015). There are approximately 16,000 hair cells, and
35,000 transmissive SGNs in the human cochlea (Ehret and
Frankenreiter, 1977; Schettino and Lauer, 2013). The cochlear
hair cell and SGN refer to the foundation of sensory, and they
do not regenerate after death. The most common histological sign of
SNHL is cochlear sensory cell loss and damage (Schuknecht et al.,
1973).

Oxidative stress induced by ROS can cause NIHL (Choi and
Choi, 2015). ROS production is immediately detected in the
cochlear tissue after exposure to high-intensity sound, and
could be detected for several days (Ohlemiller et al., 1999).
ROS-induced lipid peroxidation (malondialdehyde and 4-
hydroxynonenal) can lead to apoptosis and vasoactive lipid
peroxidation, and reduce cochlear blood flow (Yamashita et al.,
2004; Fetoni et al., 2019). Noise-related ischemia and reperfusion
further potentiate ROS generation (Wong and Ryan, 2015). In
addition, noise trauma could induce elevate mitochondrial calcium
levels and metabolic demand in hair cells, subsequently increasing
ROS production (Henderson et al., 2006; Peng and Jou, 2010).
Moreover, the antioxidants have been shown to attenuate NIHL
when given either before or after noise exposure (Le et al., 2017).
Ototoxic drugs are general associated with ototoxicity in clinical
application. Hair cells are mechanoreceptors uniquely containing
mechanotransducer (MET) channels on stereo ciliary bundles
(Beurg et al., 2009; Wagner and Shin, 2019). Aminoglycoside
transports into the hair cell via the MET channel, results in cell
demise (Guthrie, 2008). Cisplatin-induced hearing loss is mainly
caused by inflammation. Inflammation leads to the overproduction
of NADPH oxidases subunits, impaired antioxidant defense
systems. The subsequent ROS accumulation results in cell death
in multiple manners, apoptosis, autophagy, pyroptosis, and
necroptosis (Sheth et al., 2017; Gentilin et al., 2019; Nan et al.,
2019). Cisplatin induced chronic changes affect outer hair cells,
stria vascularis, and SGNs (Meech et al., 1998; Alam et al., 2000;
Bowers et al., 2002). The free radical theory of aging believes that
ROS attacking life macromolecules and causing tissue and cell
damage is the fundamental cause of body aging (Beckman and
Ames, 1998). Aging stress causes mitochondrial DNA damage,
ROS overproduction, antioxidant function decreasing, and
subsequent cochlear senescence (Fujimoto and Yamasoba,
2014). Mouse models of age-related hearing loss (ARHL) are
known to harbor excessive ROS levels mitochondrial DNA
mutations and. Increased ROS levels leads to lower
mitochondrial membrane potential, affecting hair cell survival
and hearing loss (Han and Someya, 2013; Yamasoba et al.,
2013). SOD1-null mice display premature ARHL due to hair
cell loss (McFadden et al., 1999).

In summary, noise trauma, ototoxic drugs or aging could first
induce elevate mitochondrial calcium levels and metabolic demand,
or lead to ischemia and reperfusion, or causes mitochondrial DNA
damage. Then ROS is overproduced and leads to lower

mitochondrial membrane potential, lipid peroxidation, pro-
inflammatory cytokines secretion. Finally, senescence and cell
death occur in the cochlea.

2.3 Antioxidants strategy in hearing loss

Antioxidants have the function of scavenging ROS and can be
used to treat oxidative stress-related hearing loss. Mitochondrial-
targeted antioxidants are expected to prevent or treat mitochondria-
related disorder (Fujimoto and Yamasoba, 2019). Currently, the
novel effective antioxidants, MitoQ, and SkQR1 exhibit protective
effects against hearing loss in mouse auditory cell lines and animal
models. MitoQ is a ubiquinone derivative that covalently binds to
lipophilic triphenylphosphine (TPP) ions through aliphatic carbon
chains and targets mitochondria (Kelso et al., 2001). The efficacy of
mitochondria target antioxidants is more relying on their ability to
cross the phospholipid bilayer and mitochondrial ROS elimination.
The positive charge and hydrophilicity of TPP cation enable MitoQ
accumulate to several hundred-fold in negatively charged
mitochondria (Murphy and Smith, 2007). SkQ1 and SkQR1 are
designed fromMitoQ and display greater permeability in membrane
transportation than MitoQ (Antonenko et al., 2008). The two
antioxidants could also inhibit mitochondrial ROS formation.
Treatment with MitoQ or SkQR1 protects against gentamicin-
induced ototoxicity in animal models (Jankauskas et al., 2012;
Ojano-Dirain et al., 2014). However, the efficacy of MitoQ in
human studies is limited (Snow et al., 2010), and more clinical
trials are required to evaluate its therapeutic effects on hearing loss
patients. In addition, another antioxidant astaxanthin exerts
powerful activities for ROS scavenging due to its unique
membrane function and ability to permeate the blood-brain
barrier (Nan et al., 2019). Collectively, these novel antioxidants
may be a feasible method to alleviate and prevent ROS-related
hearing loss.

3 Antioxidative role of mitochondria
autophagy on hearing loss

3.1 Mitochondria autophagy mechanism

Autophagy is the process through which cells degraded
cytoplasmic contents in the lysosome. Despite autophagy is once
considered a non-selective process that mediated the bulk
degradation of cytoplasmic components, current studies have
demonstrated it can specifically target damaged organelles, such
as mitochondria, ruptured lysosomes, peroxisomes, ER, lipid
droplets (Levine and Kroemer, 2019). More than 40 autophagy-
related (ATG) genes have been reported in yeast, of which ATG11
andATG101 are considered core genes. These autophagic factors are
recruited at the initiation, elongation, and closure of
autophagosome. Mostly, the cellular cargo either containing an
LC3-interacting region (LIR) or labeled with a ubiquitin tag
could be recruited to adaptor proteins, which serves as a bridge
between substances and LC3 (or GABARAP) motif and conjugate to
the autophagosome membrane. Moreover, specific proteins bind to
tripartite motif (TRIM) members for alternative autophagic
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degradation (Kimura et al., 2017). During the past decade, emerging
studies have reported the involvement of autophagy in human
diseases, particularly in neurodegenerative disorders, autoimmune
diseases, and cancers (Mizushima and Levine, 2020).

The selective elimination of abnormal mitochondria via the
autophagy pathway is termedmitophagy. Mitochondria degradation
is triggered under the conditions of basal mitochondrial quality
control, dysfunction, and developmental processes (Twig et al.,
2008; Sato and Sato, 2011). The most well-studied mitophagy
pathways are termed ubiquitin- and receptor-mediated
mitophagy. The first pathway is mainly involved in PINK/Parkin,
while receptor mitophagy includes NIX/BNIP3L, BNIP3, and
FUNDC1. PINK1, a serine/threonine-protein kinase, is mainly
associated with oxidative stress, autophagy, and apoptosis in cell
(Trempe et al., 2013). Physiological PINK1 is transported into
mitochondria via the mitochondrial target signal (MTS) and the
membrane potential (ΔΨm) (Yamano and Youle, 2013). The whole
length of PINK1 is cleaved by matrix processing peptidase and
PINK-associated rhomboid-like protease (PARL), releasing into the
cytoplasm and degraded through ubiquitin-proteasome system
(Deas et al., 2011). PINK1 transportation to the inner
mitochondrial membrane is impaired in damaged or depolarized
mitochondrial, causing the PINK1 accumulation on the outer
mitochondrial to form dimers. Phosphorylation of PINK1 dimers
recruits Parkin (an E3 ubiquitin ligase) through direct interaction,
further activating Parkin and initiating mitophagy (Sarraf et al.,
2013; Gladkova et al., 2018). Damaged mitochondria are enclosed
into phagosome, and delivered to lysosome for depredating, as well
as the PINK1 and Parkin protein degradation (Li et al., 2022a).

Bcl-2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3)
and BNIP3-like (BNIP3L/NIX) are homologous members of the
Bcl-2 family, which are initially reported as pro-apoptotic proteins
(Imazu et al., 1999). Both of the proteins are expressed on the
mitochondria outer membrane, and contain classical LIR domains
as essential components for mitophagy initiation. NIX/BNIP3L is
required for excess mitochondria removal during reticulocyte
maturation (Schweers et al., 2007). Phosphorylation of
BNIP3 and NIX at serine residue sites near the LIR motif could
stabilize their interactions with LC3, and promote mitophagy (Zhu
et al., 2013; Rogov et al., 2017).

FUNDC1 is another well-known mitophagy receptor localized
to the outer membrane of mitochondria. Similar to BNIP3 and
BNIP3L, FUNDC1 also contains an LIR motif for interacting with
the LC3 region (Liu et al., 2012). Under normal condition,
FUNDC1 is phosphorylated at Try18 and Ser 13 by Src kinase
and CK2, respectively. Hypoxia stress causes
FUNDC1 dephosphorylation via inhibiting Src kinase and
CK2 activity (Liu et al., 2012). Dephosphorylated FUNDC1 has a
significantly higher affinity to LC3. Moreover, phosphoglycerate
mutase family member 5 (PGAM5) also response for
FUNDC1 dephosphorylation under hypoxia or mitochondrial
uncoupling (Chen et al., 2014).

3.2 Mitochondria ROS and autophagy

The complex interplay between mitochondria oxidative stress
and autophagy has been extensively reported. Excessive ROS level

triggers general autophagy over mitophagy (Frank et al., 2012), while
moderate ROS level triggers mitophagy through specific signaling
activation. In turn, the redox signaling with mitophagy possess a
cytoprotective protective effect to promote cell survival (Zhang et al.,
2021). Dynein-related protein 1 (DRP-1) is the key factor in
controlling mitochondria division and mitophagy initiation.
Inhibiting DRP-1-dependent mitophagy can cause damaged
mitochondria accumulation and ATP metabolic dysfunction,
leading to cochlear hair cell senescence (Lin et al., 2019).

Increased ROS levels can regulate mitophagy via several
pathways, NF-κB, mTOR, p38-MAPK, SIRT, etc., For example,
ROS (H2O2) accumulation results in NF-κB inhibitor releasing
in H2O2 oxidation manner, which activate NF-κB signaling (Sies
et al., 2017). NF-κB promotes mitophagy through upregulating
p62 expression, and attenuates NLRP3 inflammasome-mediated
mitochondrial damage. p38-MAPK belong to the MAPK family
and is induced by stress stimuli, such as inflammatory cytokines and
oxidative stress. p38-MAPK affect the Parkin-mediated mitophagy
in Parkin/PINK1-dependent pathway (Xiao et al., 2017). Sirtuins are
a family of NAD-dependent deacetylases, which is response to
activated NAD + function. SIRT1 affects Parkin translocation to
mitochondrial inner membrane, and is slightly related to NAD+/
NADH ratio alterations (Di Sante et al., 2015). SIRT1 could
deacetylate FOXO1/3 and enhances mitophagy via activating the
PINK1-Parkin axis (Zhao et al., 2021a). Inhibition of miR-34a/
SIRT1 signaling enhance mitophagy and attenuate ROS-related hair
cell death in the hearing loss context, implicating complicated
interplay between ROS and mitophagy (Xiong et al., 2019).

3.3 Autophagy impairment contributes to
ototoxic drugs, noise exposure, and aging-
related hearing loss

Autophagy is an essential process participating in normal
cochlear development and normal function of inner ear cells.
Several autophagic genes (e.g., ATG4, ATG5) are expressed in
the mouse cochlea from the embryonic phage until the adult
phage (Aburto et al., 2012). ATG4-null mice show the common
pathological features of the inner ear (Mariño et al., 2010). Deletion
of Atg5 results in HCs degeneration and severe congenital hearing
loss in mice due to the accumulation of undesired autophagic
substrates (Fujimoto et al., 2017).

Dysfunction autophagy is linked to ototoxic hearing loss.
Autophagic protein formation in the early stage of cisplatin
treatment exerts cytoprotective activity, and induce HEI-OC1 cell
death in the late stage of cisplatin treatment (Youn et al., 2015; Li
et al., 2018). Neomycin treatment could induce HC death via
mitophagy suppression (He et al., 2017; Zhang et al., 2022).
Systemically aminoglycoside administration preferentially induces
cochlear hair cell death and results in irreversible hearing loss.
Gentamicin triggers RIPOR2 translocation from cochlear
stereocilia to the pericuticular area in murine hair cells;
RIPOR2 interacts with the autophagic protein GABARAP to
activate autophagy, resulting in hair cells death (Li et al., 2022c).
Downregulated RIPOR2 or GABARAP could prevent hair cell death
and alleviate hearing loss inmice, suggesting autophagy components
may be therapeutic targets to prevent ototoxicity (Li et al., 2022b).
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Presbycusis is a common sensory disorder associated with aging.
Autophagy deficiency occurs both in the aging model of HEI-OC1
cells and cochlear explant cultures (He et al., 2020). Furthermore,
SGN from premature deaf mice model also display autophagic
decreasing and accumulated lipofuscin (Menardo et al., 2012).
Upregulation of autophagy promotes aging HC survival and
slows the degeneration of auditory cells (Xiong et al., 2019).
Rapamycin, an mTOR inhibitor, enhances SGNs autophagy via
inhibiting the mTOR pathway, resulting in ARHL amelioration (Liu
et al., 2022). Moreover, mitophagy refers to a specific autophagy
process for damaged mitochondria degradation and cellular
homeostasis maintaining. Mitophagy proteins (PINK1/Parkin,
and BNIP3) is downregulated in the mouse auditory cortex and
inferior colliculus region with aging (Youn et al., 2020); additionally,
colocalization of autophagosome and lysosome is also decreased in
the auditory system of aged mouse, indicating mitophagy
impairment in the central auditory system.

ROS-induced oxidative damage is a major element of NIHL.
The interplay between autophagy and ROS generation in NIHL
has been detected. TTS-noise induced low-level oxidative stress
activates autophagy that exerts a protective effect on outer hair
cell survival, while excessive oxidative stress overwhelms the
beneficial potential of autophagy, leading to outer hair cell
death (Yuan et al., 2015). This point is supported by the
results: noise-induced oxidative marker elevations is noise-
dose-dependent in outer hair cells; whereas, autophagy marker
is sharply increased after TTS, but slightly elevated in PTS and
unaltered in sPTS noise (Yuan et al., 2015). Moreover, several
antioxidant proteins or autophagic activators display the capacity
to alleviate NIHL. SESN2 (sestrin 2) is an endogenous antioxidant
protein. SESN2 interact with Unc-51-like protein kinase 1
(ULK1) to promote Beclin1 phosphorylation, Parkin
mitochondrial translocation, and further facilitate mitophagy
(Kumar and Shaha, 2018), indicating it might be as a
therapeutic target against noise-induced cochlear injury.
Pejvakin is a peroxisome-associated protein from the
gasdermin family and exhibit a protective effect against
harmful oxidative stress. Pejvakin-mediated selective
autophagic degradation (pexophagy) could protect auditory
hair cells against noise-induced damage via modulating the
recruitment of autophagosome-associated protein MAP1LC3B
(LC3B) (Defourny et al., 2019). Calcineurin inhibitor FK506 is
also reported as an autophagic activator. It can activate autophagy
via binding to ATPase catalytic subunit in neuronal cells, and
alleviate neurodegenerative diseases (Kim et al., 2017). Treatment
with FK506 (tacrolimus) could also reduce noise-induced hair cell
damage via activating autophagy, and alleviated NIHL in adult
CBA/J mice (He et al., 2021).

4 NLRP3 inflammasome in hearing loss

Inflammasomes are likely responsible for elevated ROS
production in immune cells. The cochlea was once thought to
have immune privileges. However, the immune privileged status
changed when it was discovered that lymphocytes, such as
macrophages can infiltrate into the endolymphatic sac of guinea
pigs (Watson et al., 2017).

4.1 NLRP3 inflammasome activation

NLRP3 inflammasome is the most studied inflammasome
comprised of NLRP3, an apoptosis associated speck-like protein
containing a CARD (ASC) and procaspase (Agostini et al., 2004).
NLRP3 contains an N-terminal pyrin domain (PYD), nucleotide-
binding oligomerization (NACHT) domain, and C-terminal
leucine-rich repeat (LRR) domain. Under the healthy condition,
NLRP3 displays auto-repressed via the internal interaction of the
NACHT and LRRs domain. PAMPs from microorganisms or
DAMPs from endogenous lead to the removal of auto-repressed
(Bryant and Fitzgerald, 2009). Exposure of the PYD domain
mediates ASC and pro-caspase one recruitment, triggering the
caspase-1 activation, and pro-inflammatory cytokines maturation
(such as IL-1β and IL-18). NLRP3 is a general sensor of cellular
stress that could be activated by ROS proximity to the
inflammasome. NLRP3 inflammasome activation has been tightly
regulated, and participates in several physiological processes,
including immune system response and host defenses. The
activated mechanisms included three panels, ionic flux, lysosomal
damage, and ROS-mediated mitochondrial dysfunction (Tschopp
and Schroder, 2010).

4.2 NLRP3 inflammasome in hearing loss

Mitochondria ROS has been confirmed as the crucial
mechanism of ototoxic drugs. However, it is undesirable for the
clinical application of antioxidants to alleviate the cisplatin-induced
hearing loss. Cisplatin can trigger the assembly of
NLRP3 inflammasome, induce marginal cell pyroptosis and
cochlear damage (Yu et al., 2022). The pathological morphology
changes and NLRP3 expression could be suppressed by inhibiting
the upstream signal TXNIP. In addition, the NLRP3 inflammasome
activation triggered by ROS was also reported in the ARHL and
NIHL. The mechanisms are mainly involved in downstream
inflammatory cytokines secretion (Shi et al., 2017; Zhuang et al.,
2018; Sai et al., 2022).

Gain-of-function mutation in NLRP3 causes a spectrum of
autoinflammatory diseases termed cryopyrin-associated periodic
syndromes (CAPS) (Yu and Leslie, 2011). Abnormal
NLRP3 inflammasome activation and excessive IL-1β secretion is
the major reason of CAPS, and has been demonstrated in three
clinical subtypes: neonatal-onset multisystem inflammatory disease
(NOMID), Muckle-Wells syndrome (MWS), and familial cold
autoinflammatory syndrome (FCAS). These phenotypes share
general features, recurrent fever, rash, headache, etc., (Moltrasio
et al., 2022). Hearing loss is one of the most common symptoms of
NOMID and MWS, but is rare in FCAS. Notably, postcontrast MRI
examination observed pathologic cochlear enhancement in most
NOMID and MWS patients (Ahmadi et al., 2011), indicating the
blood-labyrinth barrier is permeable by inflammation. Genetic
studies of CAPSs have reported more than 80 NLRP3 variants,
the majority of which are missense mutations located in exon 3,
encoding the conserved NACHT domain (Conforti Andreoni et al.,
2011). Whereas, minority NLRP3 mutations in other regions (e.g.,
LRR domain) are related to syndromic and non-syndromic hearing
loss, such as deafness autosomal dominant 34 (DFN34) and keratitis
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fugax hereditaria (KFH) diseases. DFNA34 caused by the missense
substitution p.Arg918Gln (c.2753G > A) in exon 7 (encoding the
LRR domain) has been reported in two unrelated families
(Nakanishi et al., 2017). Subjects in one family exhibited hearing
loss accompanied by autoinflammatory features, while another
family patients displayed hearing loss segregated without any
other organ symptoms. Pathologic cochlea enhancement is
identified in these subjects, implicating the cochlear inflammation
in hearing loss. The hearing loss in several members is alleviated or
completely resolved after treatment by IL-1β inhibitor anakinra
(Nakanishi et al., 2017). A further study demonstrated the
NLRP3 inflammasome were also activated in inner ear
macrophages, and cochlea-infiltrated macrophages contribute to
NLRP3-related hearing loss in the murine model (Nakanishi
et al., 2017; Nakanishi et al., 2020).

4.3 Interplay between autophagy,
NLRP3 inflammasome, and ROS generation

ROS induces NLRP3 inflammasome and results in cell damage.
The mitophagy/autophagy system may eliminate mitochondrial
ROS, thereby inhibiting the of NLRP3 inflammasome activation
(Zhou et al., 2011). Autophagy can protect cells from inflammatory
damage by inhibiting the activation of the inflammasome and pro-
inflammatory signaling pathways (He et al., 2017). However, under
starvation conditions of yeast, autophagy can promote inflammation
via ATG-5 dependent non-classical manner (Dupont et al., 2011;
Cao et al., 2019). In turn, NLRP3 inflammasome exerts an inhibitory
effect on autophagy by cleaving the downstream signal molecule
TRIF (Lai et al., 2018). Moreover, NLRP3 inflammasome activation
mediate IL-1β releasing, which represents the main neurotoxicity in
neuronal diseases, including brain stroke, Parkinson, and
Alzheimer’s Disease (Wang et al., 2017; Han et al., 2019; Zhao
et al., 2021b).

5 Another mechanisms of hearing loss

ERG (ether-a-go-go-related gene) channels are the members of
the voltage-dependent potassium channel family, which have three
subtypes, as ERG1 (Kv 11.1), ERG2 (Kv 11.2), and ERG3 (Kv11.3).
The results of Ramazan Bal et al. show that the ERG channels appear
to contribute to setting action potential (AP) frequency, threshold
for AP induction, and, possibly, resting membrane potentials in this
cells, which plays an important role in the formation of hearing
(Yildirim and Bal, 2018).

Acid-sensing ion channels (ASICs) are voltage-independent and
proton-gated channels. Bao-Ming Wu and Tian-Dong Leng
demonstrate that oxidative stress increases ASIC1a expression/
activation through the JNK signaling pathway, which may
provide insight into the pathogenesis of neurological disorders
that involve both ROS and activation of ASIC1a (Cakir et al.,
2019; Wu et al., 2021).

Oxidative stress-induced Ca2+ permeable transient receptor
potential melastatin 2 (TRPM2) channels are expressed at high
levels in the brain, which seems to link neuronal excitability to
cellular metabolism and participate in the pathogenesis of

neurodegenerative disorders, such as SNHL (Bal et al., 2020).
Activation of TRPM2 by reactive oxygen/nitrogen species (ROS/
RNS) occurs following the production of ADPR, an intracellular
activator. TRPM2 activation has been associated with cell death in
the presence of increased oxidative and nitrosative stress, such as
during oxygen–glucose deprivation. In the cochlear nucleus (CN),
among these redox-sensitive TRP channels, TRPM2 is a potential
candidate sensor of oxidative stress.

All in all, these studies have shown that oxidative stress-induced
ion channels, including TRPM2 cation channels (Bal et al., 2020),
ASICs (Cakir et al., 2019), ATP-sensitive potassium channels (Bal
et al., 2018) and ERG channels (Yildirim and Bal, 2018), play an
important role in hearing loss. These channels seem to transduce the
increase in levels of reactive oxygen species exceeding physiological
limits into specific cellular responses, such as triggering the
apoptosis pathway, and ultimately leading to hearing loss.

6 Conclusion

In summary, ROS-mediated mitochondrial dysfunction
combined with NLRP3 inflammasome activation contribute to
progression of neurodegenerative diseases, including SNHL. ROS-
induced oxidative stress and NLRP3-activated pro-inflammatory
cytokines can damage the cochlea structure of auditory hair cells and
SGNs. Novel efficient antioxidants can remove ROS and protect
auditory cells. In addition, autophagy not only eliminate damaged
proteins and organelle but also reduce ROS formation, and alleviate
hearing loss. In most conditions, autophagy can ameliorate
inflammatory diseases via inhibiting the NLRP3 inflammasome
activation. Whereas, the pro-inflammatory effect of autophagy
should be also noted in some cases. There remain some details to
be solved. For example, the potential regulatory mechanism of
autophagy in NLRP3 inflammasome remain unclear in SNHL
progression. Moreover, intervention time in inflammatory
reactions in the early or advanced stages of hearing loss should
also be investigated. These conclusions provide therapeutic targets
for inner ear diseases, such as targeting mitochondrial ROS,
neutralizing pro-inflammatory cytokines, and appropriately
increasing autophagy levels.
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