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Age-related macular degeneration (AMD) is a neurodegenerative disease and a
leading cause of irreversible vision loss in the developed world. While not
classically described as an inflammatory disease, a growing body of evidence
has implicated several components of the innate immune system in the
pathophysiology of age-related macular degeneration. In particular,
complement activation, microglial involvement, and blood-retinal-barrier
disruption have been shown to play key roles in disease progression, and
subsequent vision loss. This review discusses the role of the innate immune
system in age-related macular degeneration as well as recent developments in
single-cell transcriptomics that help advance the understanding and treatment of
age-related macular degeneration. We also explore the several potential
therapeutic targets for age-related macular degeneration in the context of
innate immune activation.
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Introduction

Age-related macular degeneration (AMD) is a neurodegenerative disorder characterized
by the presence of drusen, extracellular deposits, followed by retinal pigment epithelium
(RPE) and photoreceptor loss. AMD is rarely seen before age 55, after which prevalence
increases with increasing age (Klein et al., 2010). Several classification systems exist for
AMD, with disease taxonomy defined based on the frequency and size of macular drusen, the
presence of pigmentary abnormalities, and the presence of geographic atrophy or
neovascularization (Fleckenstein et al., 2021). AMD is commonly subcategorized into
neovascular (wet) disease where choroidal vascular changes are present, and non-
neovascular (dry) disease where such changes are absent. While only a minority (10%–
15%) of patients will develop neovascular disease, wet AMD is responsible for a majority of
cases of sudden vision loss in the disease (Jager et al., 2008).

AMD is a multifactorial disease, with a complex set of risk factors, like age, environment,
and genetic susceptibility; the heritability of late stage AMD has been estimated to be up to
71%, higher than most complex age-related diseases (Fleckenstein et al., 2021). The strongest
risk factor for AMD is age. Aging is a critical component of AMD pathology; during aging,
injury, or inflammation, resident microglia migrate to the affected site. Microglial infiltration
can trigger a response involving the infiltration of other myeloid-derived cells, including
peripheral monocytes andmonocyte-derived macrophages. CCL2 and CX2CL1 chemokines,
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for instance, are implicated in AMD-related subretinal microglial
and macrophage infiltration (Raoul et al., 2010). Expression patterns
of cytokine and cytokine receptors change as biological age and state
progress, indicating these inflammatory mechanisms may be
involved in AMD development.

Modifiable risk factors for AMD include smoking, diet, and
physical activity. Smoking has been shown to increase the chance of
developing AMD by two to four times, and cessation reduces AMD
risk (Velilla et al., 2013). Consumption of foods with lutein,
zeaxanthin, fish oil, and polyunsaturated fatty acids have been
shown to decrease the chance of late stage AMD. These insights
have led to the formulation of the AREDS vitamin supplementation
regimen, a mainstay of therapy for non-neovascular AMD
(AREDS2 Research Group et al., 2012).

While the precise pathogenesis of AMD remains unknown,
several lines of evidence implicate drusen, the hallmark lesions of
AMD. Several factors, including amyloid, complement, and 7-
ketocholesterol, have been isolated from drusen and are
hypothesized to contribute to AMD progression (Mullins et al.,
2000; Rodriguez et al., 2014). The development of neovascular AMD
in particular is strongly associated with the vascular endothelial
growth factor (VEGF) family of cytokines and resultant signaling
through Flt-1 (Nork et al., 2011). The identification of this link has
been key to the development of a host of anti-VEGF therapies that
have been used in the treatment of neovascular AMD (Solomon
et al., 2019).

In the retina, glial cells support photoreceptor function by
providing physical and metabolic support through a number of
mechanisms such as transporting nutrients and clearing debris. The
three broad types of glial cells in the retina are microglia, astrocytes
and Müller cells (Reichenbach and Bringmann, 2019). Retinal
microglia respond to retinal injury and mediating
neuroinflammation, where retinal macroglia–astrocytes and
Müller cells–maintain retinal homeostasis through regulation and
transport of ions, glucose, and neurotransmitters. Microglia and
macroglia involvement have both been implicated in AMD
pathogenesis.

Methods exploring the underpinnings of AMD are rapidly
developing. In recent years, scientists have been using single-cell
RNA sequencing (scRNA-seq) to analyze the pathogenesis and
etiology of diseases whose origins remain unclear. Due to the
genetic complexity of AMD, it has been difficult to precisely
identify the cell-types associated with AMD development. In
2019, researchers used scRNA-seq to develop the first single-cell
transcriptomic atlas of the human retina, a full record of the
transcriptomes of each cell type (Menon et al., 2019). Use of the
transcriptomic atlas predicts Mu€ller glia and astrocytes have a role in
the pathogenesis of AMD (Menon et al., 2019).

A 2021 study built upon these findings by focusing on the genes
transcribed instead of the cells. This study used scRNA-seq to obtain
the transcriptomes of 93,000 retinal cells; in addition to using the
data to transcriptionally identify differences in retinal neurons,
researchers also assessed the cell-type expression levels of each
AMD risk gene (Lyu et al., 2021). Through this method, 23 risk
genes were found to be cell-type-specific genes. For instance, CFH, a
gene strongly associated with AMD, was determined to be
specifically expressed in endothelium cells. This relationship
implied that endothelial cells may play a role in the development

of AMD. In addition, C3 and CFI, two other AMD genes, were found
to be preferentially expressed; C3 by microglia and astrocytes, and
CFI by astrocytes, endothelium, and Mu€ller cells. Although the
complete pathogenesis of AMD remains unclear, scRNA-seq allows
scientists to better understand which cell types are involved in the
disease’s development.

A growing body of research has shown that AMD pathogenesis
is associated with neuroimmune interactions; most recently,
neovascular AMD pathology was associated with COVID-19
infection severity and morbidity, providing just one example of
the potential neuroimmune interactions involved in AMD (Yang
et al., 2022). The blood-retina barrier protects the retina, making it
an immune-privileged part of the eye; still, innate immune
interactions may influence the progression of this
neurodegenerative disorder. Immune privilege in the eye is
characterized in part by Müller glia and astrocytes–in addition to
endothelial cells, pericytes, and perivascular macrophages, among
others–modulating the trafficking of cells in and out of the retina.
However, the innate immune response–including macrophages,
monocytes, neutrophils, and natural killer T cells–may serve to
play a role in neurodegenerative diseases, including AMD
(Novellino et al., 2020; Dhodapkar et al., 2022). Innate immune
cells contribute to the maintenance of the blood-retina barrier,
vascularization, and inflammation, and their disruption or
dysfunction may have implications for the development of AMD.
This article focuses on the role of these immune cells in AMD
pathogenesis.

Macrophages

Macrophages are a diverse group of cells that serve several
functions across tissue repair, immunity, and homeostasis (Wynn
et al., 2013). In the central nervous system, macrophages can secrete
proinflammatory factors; while microglia constitute the bulk of
resident myeloid cells in the central nervous system, monocyte-
derived macrophages may become activated depending on the
surrounding milieu (Yang et al., 2020). Macrophages along the
outer collagenous zones of Bruch’s membrane have been shown
to be present in AMD lesions (Killingsworth et al., 1990). The
phagocytic ability of cultured human RPE has been found to be
decreased in AMD donors (Inana et al., 2018). Macrophages have
been shown to become activated in several different ways. A widely
used system classifies macrophage activation as either M1 (classic
activation) or M2 (alternative activation); however, recently more
activation states have been identified. M1 macrophages, specifically,
are known to activate phagocytic and antitumor inflammatory
responses (Liu et al., 2021). In neovascular AMD monocytes and
in the neovascularization-choroidal rodent model, M1 macrophages
had a proangiogenic effect; in both models, angiogenesis was
mediated by TNF-α, whose inhibition led to a decrease of
choroidal neovascularization (Hagbi-Levi et al., 2021).
Perivascular macrophages, cells distinct from microglia, are
present in the retina and are believed to contribute to the blood-
retinal barrier maintenance during homeostasis. During
photoreceptor degeneration, these cells may be recruited to sites
of damage (Mendes-Jorge et al., 2009). Although the role of these
peripheral macrophages in the perivascular choroidal space in AMD
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is not yet fully understood, alterations to their function may be
associated with age-related changes in the choroidal vasculature
(Yang et al., 2020).

In the murine model, macrophage ablation by CSF1R blockade
leads to choroid vascular atrophy in addition to structural and
angiogenic RPE dysfunction, suggesting that macrophages residing
in the choroid may serve an important role in structural maintenance
of the RPE and choroid vasculature (Yang et al., 2020). One signaling
pathway that helps maintain retinal immune homeostasis is the
interferon-beta signaling pathway, which in the murine model has
been used to reduce microgliosis, macrophage response, and choroidal
neovascularization (Lückoff et al., 2016). In cases of photoreceptor
degeneration, monocyte infiltration can precede microglia infiltration
during the early stages of the immune response (Karlen et al., 2018).
This finding suggests that monocyte-derived macrophages along with
microglia may play a role in the immune response in AMD (Karlen
et al., 2018). In retinitis pigmentosa (Tebbe et al., 2020) monocyte-
derived macrophages may contribute to cone death as their inhibition
protects against cone degeneration in the rd10mousemodel of retinitis
pigmentosa (Funatsu et al., 2022). Given their overall role in choroidal
vascularization and RPE maintenance, targeting these cells may be a
potential therapeutic approach for AMD, particularly as it relates to
limiting angiogenesis and chronic inflammation. It may be possible to
explore stem cell therapeutic potential to restore their phagocytic
function as genetically-modified stem cells have previously been
shown to promote turnover of perivascular macrophages in the
macaque brain (Soulas et al., 2009).

Monocytes

Monocytes, as part of the immune system, can differentiate
into macrophages or dendritic cells. Monocyte-derived
macrophages, as aforementioned, appear to play a role in
AMD, but the primary difference between these two cells is
their localization; monocytes circulate in the bloodstream
where macrophages infiltrate tissue. Peripheral monocyte
counts, in particular, have been shown to be higher in AMD
patients versus controls (Xue et al., 2021). In intermediate and
advanced AMD, monocyte phagocytic function is shown to be
reduced about 40% across several monocyte subtypes compared
to controls (Gu et al., 2021). Gu et al. found that this effect could
be ameliorated by application of glatiramer acetate, which may
provide a therapeutic avenue for AMD (Gu et al., 2021).
Glatiramer acetate is an immunomodulatory polypeptide that
is used in the treatment of relapsing or remitting multiple
sclerosis (Gran et al., 2000). Increased TNF-α is also
associated with monocyte activation, as patients with higher
prevalence of choroidal neovascularization demonstrated high
levels of monocyte TNF-α (Cousins et al., 2004).

In atrophic, or dry, AMD, CCR2+ monocytes have been
identified in the subretinal space (Sennlaub et al., 2013). In the
mouse model, these monocytes were also shown to possibly
contribute to photoreceptor degeneration. Furthermore, CD163+
monocytes and macrophages may have a role in AMD pathology
and progression (Swayze et al., 2022). In late stages of AMD, these
changes in monocyte function can potentially be modified by the
P2X7 receptor, which is expressed in a variety of cells, especially in

monocytes, and can function as a scavenger receptor mediating
phagocytosis (Drysdale et al., 2022). The P2X7 receptor mediated
membrane fluidity, which was reduced across several types of
leukocytes, including monocytes, in advanced AMD. In mice,
impaired cholesterol clearance by monocytes in the murine
model triggers several events leading to the development of
cholesterol-rich drusen deposits underneath the RPE, a hallmark
of AMD (Ban et al., 2018). These drusen deposits may be associated
with disease progression and may provide a potential therapeutic
target for AMD.

Natural killer cells

Natural killer (NK) cells are a component of the innate immune
system, affecting cytokine production and cytotoxicity, with
antiviral and antitumoral effects by killing cells that downregulate
the MHC Class I self-antigen presentation system (Vivier et al.,
2008; Bern et al., 2019). In a genotyping study of AMD and control
patients, the NK receptor AA haplotype was, in combination with
the human leukocyte antigen (HLA)-Cw*0701 allele, associated with
AMD (Goverdhan et al., 2008). In another study of gene expression
profiles in AMD, there was a lower prevalence of resting NK cells in
AMD versus control, but the C1S, ADM, and 1ER5L genes were
shown to have a positive correlation with activation of NK cells,
among others, along AMD progression (Zeng et al., 2021). Further
experiments in mice models have shown that in vivo depletion of
interferon-γ-secreting NK cells lead to reduced choroidal
neovascularization (CNV) (Lee et al., 2014).

Neutrophils

Neutrophils are a type of leukocyte that drive both acute and
chronic inflammation (Kolaczkowska and Kubes, 2013). As with
monocytes, the P2X7 receptor mediates membrane fluidity, which is
reduced in neutrophils and other leukocytes in advanced AMD
(Drysdale et al., 2022). Furthermore, the neutrophil-to-leukocyte
ratio is higher in patients with neovascular AMD (Niazi et al., 2019).
Increased INFλ levels lead to LCN-2 upregulation and neutrophil
activation; inhibition of this INFλ inflammatory signal, through
AKT2 inhibition, leads to decreased LCN-2-mediated neutrophil
infiltration, which may provide a novel therapeutic approach to
early dry AMD (Ghosh et al., 2019).

Neutrophils are characterized by their strategy for pathogen
eradication, which is known as a neutrophil extracellular trap
(Kolaczkowska and Kubes, 2013). Neutrophil extracellular trap
formation has previously been associated with retinal diseases
(Ghosh et al., 2019; Wang et al., 2018). Aβ1-40 the main amyloid-
beta component of the drusen characteristic of AMD may promote
neutrophil extracellular trap formation in AMD through the Toll-like
receptor 4 and neutrophil NADPH oxidase pathways (Chen et al.,
2022). PAD4 inhibition in the mouse model led to reduced neutrophil
extracellular trap formation, providing a potential therapeutic option
for AMD (Chen et al., 2022). PAD4 inhibition is currently used to
treat rheumatoid arthritis and lupus, among other autoimmune
diseases. This finding suggests a possible role for neutrophils in
AMD that needs to be explored further.
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Dendritic, B, and T cells

Dendritic cells are innate immune cells that activate lymphocytes, in
addition to capturing and processing antigens (Banchereau and
Steinman, 1998). Early dendritic cell recruitment occurs during retinal
injury (Lehmann et al., 2010). In a laser-induced CNV mouse model of
AMD, both wild-type and dendritic-cell-deficient mice exhibited similar
levels of CNV area, (Droho et al., 2021). Dendritic and B cells alike are yet
to be strongly linked with AMD progression.

T cells are lymphocytes that can be activated by dendritic cells.
Chemokine profiles of CD4+ and CD8+ patients differ between AMD
and control conditions (Choi et al., 2022). Furthermore, in AMD versus
control gene expression analysis, the AMD condition exhibited lower
resting CD4+ memory T cells (Zeng et al., 2021). T cells may become
activated in response to oxidative stress (Cruz-Guilloty et al., 2014).
T-helper (Th) 1 T cells were found at lower frequency in patients with
neovascular AMD (Singh et al., 2017). CD56+ CD28- T cells in the
peripheral blood are higher in AMD versus control patients, suggesting
a possible function of T cells in AMD (Faber et al., 2013).

CNV lesions in the murine model triggered T cell immune
response as well, with an increase in IL-17-producing γδT-cells
through C5a (Coughlin et al., 2016). In CD4+ T cells, C5a stimulates
IL-17 production, which may imply a role for C5a in AMD and T
lymphocyte activation (Liu et al., 2011). Natural killer T (NKT) cells
make up a small percentage of innate immune cells. NKT cells are
implicated in CNV, and in Cd1d-restricted invariant and NKT-
deficient mice, there are lower levels of CNV and VEGF, indicating
the potential role of NKT cells in AMD (Hijioka et al., 2008).

Possible therapeutic targets include targeting the interferon-beta
signaling pathway or the AKT2 signaling pathway (Lückoff et al.,
2016; Ghosh et al., 2019). Targeting proteins such as PAD4 or C5a
may produce similar results. Recent clinical trials for geographic
atrophy have shown success at targeting the complement system
(Coughlin et al., 2016; Chen et al., 2022). Therapeutic targets
implicated in other neurodegenerative diseases such as glatiramer
acetate, which is primarily used in MS has shown some efficacy in
reversing AMD monocyte pathology in vitro (Gu et al., 2021). One
limitation of potential therapies is their use in the murine model,
which lacks an anatomical macula (Pennesi et al., 2012).

Conclusion

Progress in understanding the peripheral immune response in
AMD has been made and future research on human retinas with

AMD using single-cell approaches will further help the field.
Furthermore, the development of non-human primate models of
AMD or human retinal organoids derived from human pluripotent
stem cells from patients with AMD may facilitate the translational
development therapeutic interventions for AMD targeting immune
dysregulation.
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