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Purpose: To evaluate the retinal microvascular alteration after implantable collamer
lens (ICL) implantation inmoderate to highmyopia patients using quantitative optical
coherence tomography angiography (OCTA).

Methods: This prospective cohort study included 50 eyes of 25 patients with
preoperative spherical equivalent ≥ −3.00 D. Patients underwent bilateral ICL
implantation at the Department of Ophthalmology, Peking University Third
Hospital, from November 2018 to July 2019. OCTA was used to image the
superficial and deep retinal capillary plexuses before ICL implantation surgery and
at 3 months follow-up.

Results: There was no significant difference in the microvascular density within each
annular zone and all quadrantal zones of the superficial and deep layers found in
myopia patients before and after ICL surgery.

Conclusion: Levels of microvascular density in retinal capillary plexuses were stable,
as detected by theOCTA, showing the high security of ICL implantation, whichwould
not leave adverse effects on retinal microvasculature in myopia patients.
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1 Introduction

With the increase in educational pressure and limited time outdoors, myopia has become
the most common vision problem (Morgan et al., 2018). Recent epidemiological studies
indicated a prevalence of myopia as high as 80%–90% in young adults in East Asia (Foster
and Jiang, 2014; Wu et al., 2016). It is estimated that, in 2050, half of the world’s population will
be affected with myopia and 10% of people will be at a relevant risk of becoming blind as a result
of high myopia (Holden et al., 2016; Hopf and Pfeiffer, 2017). With the elongation of the eyeball
that occurs with the progression of myopia, the retinal microvascular decrease was observed in
the myopia subjects (Yang et al., 2016; Al-Sheikh et al., 2017; Li et al., 2017).

Since the introduction of the Implantable Collamer Lens (ICL; Staar Surgical, Nidau,
Switzerland) in 1993, refractive surgery has entered a new era of myopia treatment (Assetto
et al., 1996). Because it significantly increased best-corrected visual acuity (BCVA) while
reducing caused higher-order aberrations and improving postoperative contrast sensitivity
(Wang and Zhou, 2016), the ICL is most frequently used to correct high and extrememyopia. In
addition, the ICL performs superbly in the treatment of low to moderate myopia (Kamiya et al.,
2012; Dougherty and Priver, 2017; Kamiya et al., 2018).
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However, multiple studies revealed that intraocular refractive
surgery, such as cataract surgery, may lead to early retinal
ischemia, hypoxia, or even retinal vasculitis (Alnawaiseh et al.,
2018; Kim et al., 2018; Pilotto et al., 2019; Liu J et al., 2021).
Retinal complications would cause a potential or substantial threat
to patients’ vision. So, it is vital to monitor retinal microvascular
alteration after intraocular refractive surgery. ICL implantation is also
a kind of intraocular refractive surgery. However, it is still unknown
whether the ICL implantation surgery will affect the retinal
microvasculature of myopic eyes.

Optical coherence tomography angiography (OCTA) is a new,
non-invasive imaging technique with wide application potential for
retinal vascular disease (de Carlo et al., 2015; Gao et al., 2016;
Wylegala, 2018). In 2006, Optical Coherence Angiography was first
performed to visualize the vasculature in the human eyes (Makita
et al., 2006). OCTA can produce high-resolution, three-dimensional
images and measure the microvascular network in different layers of
the retina structure without the use of contrast agents (Gao et al., 2016;
Zhang Q et al., 2016). This study aimed to use OCTA to uncover
potential retinal capillary network alterations induced by ICL
implantation surgery.

2 Materials and methods

2.1 Participants

This study includes a total of 50 eyes from 25 participants with
moderate and high myopia. All subjects underwent ICL implantation
surgery at the Department of Ophthalmology, Peking University
Third Hospital between November 2018 and July 2019. Inclusion
criteria: 21–45 years old, binocular myopia, with a spherical equivalent
of greater than −3.00 diopters (D), anterior chamber depth (ACD) ≥
2.8 mm, corneal endothelial cell count (cECC) ≥ 2000 cells/mm2, SE
remained unchanged for more than 1 year, unsatisfactory vision with
contact lenses or spectacles. All patients included in this study had no
history of intraocular surgery and showed no other ocular pathologies
(uveitis, glaucoma, cataract, keratoconus, severe dry eye, etc.) or
serious systemic diseases (diabetes, uncontrolled hypertension,
severe hyperthyroidism, etc.).

The method of this study was approved by the Ethics Committee
of Peking University Third Hospital (M2020240). In addition, this
study was registered and approved on Clinical Trials.gov
(NCT04443231). Each subject was given informed consent after an
adequate study explanation.

Before surgery, each subject got a full ocular examination: The
ACD (measured from the endothelium to the crystalline lens) was
measured using anterior segment Optical Coherence Tomography
(Visante-OCT; Carl Zeiss Meditec, Jena, Germany), the horizontal
white-to-white (WTW) distance and axial length (AL) were measured
by optical biometry (IOL Master 700; Carl Zeiss Meditec, Jena,
Germany), cECC was obtained from each eye, using a corneal
endothelial microscope (SP-2000; Topcon, Tokyo, Japan).
Additionally, each eye was subjected to slit-lamp biomicroscopic
examination, corneal topography, and funduscopic examination.

The size of the ICL was calculated with a STAAR sizing formula,
based on the result of WTW and ACD. Myopia patients are planned
for standard ICL implantation surgeries by the same surgeon (QH)
under similar settings. Preoperatively, in all patients, 0.5% levofloxacin

eye drops were used 3 days before the operation, four times daily and
topical anesthesia (4% lidocaine) was administered 30 min before the
operation. Through a 3.0-mm temporal corneal incision, the ICL was
slowly inserted into the anterior chamber following the implantation
of hyaluronic acid (ViscAid, Beijing, China), under visualization with
OPMI Lumera 700 surgical microscope (Carl Zeiss Meditec,
Germany), and the Toric ICL implantation surgery was completed
with the help of the Callisto Eye System (Carl Zeiss Meditec,
Germany). Any remaining viscosurgical device was washed out of
the anterior chamber with the balanced salt solution. Antibiotic eye
drops, steroidal eye drops, and artificial tear drops were used
postoperatively.

Moreover, each patient’s eye was assessed for uncorrected visual
acuity (UCVA), BCVA, intraocular pressure (IOP), and manifest
refraction before surgery as well as 1 day, 1 week, 1 month, and
3 months afterward. For statistical analysis, the decimal Snellen
evaluation of UCVA and BCVA was converted to the logarithm of
the minimum angle of resolution (logMAR). With the aid of a non-
contact tonometer (CT-80; Topcon, Tokyo, Japan), the IOP was
measured. The central vault of the ICL (distance from the posterior
surface of the ICL to the crystalline lens) was measured using OCT
3 months after surgery.

2.2 OCT angiography

After the ocular examination, AngioVue (Optovue, Fremont, CA,
United States), was used to capture the OCTA images in all
participants from 8:00 a.m. to 12:00 a.m. The system has an
A-scan rate of 70 kHz scans per second, with a light source
centered on 840 nm and a bandwidth of 45 nm. The scan area was
centered on the fovea with a field of view of 6 mm × 6 mm. The
resolution of the exported OCT images was 400 × 400 pixels and
images with scan quality ≥6 were included for analysis. Automatic
segmentation was performed by the software to generate images of the
superficial retinal capillary plexus (SCP), and deep retinal capillary
plexus (DCP). The SCP was segmented from 3 μm beneath the inner
limiting membrane (ILM) to 15 μm beneath the inner plexiform layer
(IPL), representing the outer boundary of the ILM to the outer
boundary of the IPL. The DCP was segmented from 15 μm
beneath the IPL to 70 μm beneath the IPL, representing the outer
boundary of the IPL to the outer boundary of the outer plexiform layer
(OPL) (Yang et al., 2016).

Due to the elongation of the eye, the magnification for imaging the
fundus using fundus photography and OCT differs in the myopic eye
(Li et al., 2017). As a result, Bennett’s formula (Figure 1) (Bennett et al.,
1994) was used to correct magnification in photographs taken with
highly myopic eyes. The correction formula of the image is:

t � p × q × s (1)
Where t represents the actual scan length, p is the magnification factor
determined by the OCTA imaging system, and s represents the
original measurement value obtained from the OCTA. The formula
of the correction factor q is:

q � 0.01306 × AL − 1.82( ) (2)
The AL is the axial length as mentioned above. The foveal

avascular zone (FAZ) centroid was determined using Matlab (The
Mathworks, Inc., Natick, MA, United States) and the image was
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skeletonized. Since large blood vessels in the deep retinal vascular
plexus were considered to be projection artifacts of superficial blood
vessels (Zhang M et al., 2016), our custom algorithm separated the
vessels with diameters >30 μm in both the superficial and deep layers.
The images were then converted to binary images. The partition
method for the macular retinal region was shown in Figure 2.

Fractal dimension (FD) analysis was commonly used in the
objective quantification of retinal capillary complexity (Ab Hamid
et al., 2016). Photoshop was used to crop the image of each area
separately, and then the box-counting method with FracLab
2.1 toolbox was used to quantitatively analyze the FD
(representing blood vessel density) of each area. FracLab (Paris,

France) is designed for digital image analysis and is a plug-in for
Matlab.

2.3 Statistical analysis

The data were presented as the mean ± standard deviation (SD).
The differences between the means were evaluated using
independent sample t-tests (for patients preoperatively and
postoperatively) and analyzed using SPSS Statistics 24 (SPSS
Inc., Chicago, IL, United States). p < 0.05 was considered
significantly different.

FIGURE 1
Magnification correction of OCTA high myopia image. According to Bennett’s formula, the original image (A) was magnified ×1.10 to obtain the
magnified image (B) based on AL = 26.17mm, and then further cropped to the size of the original image (C). Scale bar: 600 μm. (A), (B), and (C)were based on
the same OCTA image.

FIGURE 2
Image partitioning and processing methods. (A)OCTA image after magnification correction. The OCTA image was skeletonized and large blood vessels
with a diameter> 30 μmwere extracted (B) and divided. The annular zonewith a diameter of 0.6–5 mm (C)was divided into 6 annuli (C1—C6) for analysis after
the removal of the avascular zone (D). In addition, four quadrants centered on the fovea were generated (E). ST, superior temporal; SN, superior nasal; IN,
inferior nasal; IT, inferior temporal. Scale bar: 600 μm. (A), (B), (C), (D), and (E)were based on the sameOCTA image, which was the same sample as used
for Figure 1.
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TABLE 1 Preoperative demographics of the myopia patients underwent implantable collamer lens implantation in this study.

Characteristic Mean ± SD

Number, people/eyes 25/50

Sex, male/female 5/20

Age (years) 27.0 ± 3.8 (range 21–36)

MRSE (D) −8.50 ± 2.68

LogMAR BCVA 0.02 ± 0.06

AL (mm) 26.63 ± 1.06

WTW (mm) 11.90 ± 0.31

ACD (mm) 3.26 ± 0.25

cECC (cells/mm2) 2913.00 ± 218.86

ICL size (mm) 12.9 ± 0.3

ICL power (D) −9.38 ± 2.70 (−4.00 to −14.00)

MRSE, manifest refraction spherical equivalent; LogMAR, logarithm of the minimal angle of resolution; BCVA, best corrected visual acuity; AL, axial length; WTW, white-to-white; ACD, anterior

chamber depth; cECC, corneal endothelial cell count.

FIGURE 3
Clinical examinations of myopia patients after ICL implantation surgery. (A) Changes in Snellen lines of BCVA at 3 months after ICL implantation. (B)
Changes between BCVA 3 months after ICL implantation and UCVA Preoperatively. (C)Changes in intraocular pressure 3 months after ICL implantation. (D) A
scatter plot of the attempted versus the achieved manifest spherical equivalent correction 3 months after ICL implantation. (E) Time course of manifest
spherical equivalent after ICL implantation. The asterisks indicate statistically significant differences between pre-surgery and post-surgery. D, day; W,
week; M, month(s).
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3 Result

The demographics of the enrolled subjects are summarized in
Table 1. The mean patient age at the time of surgery was 27.0 ±
3.8 years (ranging from 21 to 36 years). The preoperative manifest
refraction spherical equivalent (MRSE) was −8.50 ± 2.68 D (ranging
from −3.50 D to −13.88 D). The preoperative manifest sphere
was −7.95 ± −2.57 D (ranging from −3.00 D to −13.75 D). The
preoperative manifest refractive cylinder was −1.16 ± 0.92 D (ranging
from 0.00 to −3.25 D). The IOP was 14.60 ± 2.71 mmHg. AL was
26.63 ± 1.06 mm (ranging from 24.87 to 29.50 mm). WTW was
11.90 ± 0.31 mm (ranging from 11.3 mm to 12.7 mm). ACD was
3.26 ± 0.25 mm (ranging from 2.92 mm to 3.80 mm).

All surgical procedures were uneventful, and no postoperative
complications, such as cataract formation, pigment dispersion
syndrome, pupillary block, or axis rotation, were seen
throughout the observation period. Visual acuity improved for
all patients on the first day after surgery. Three months
postoperatively, 2% of eyes lost one line of vision and 98% of
eyes maintained or gained BCVA (Figure 3A). The efficacy index
was 1.11 ± 0.24 (preoperative BCVA: 0.01 ± 0.06 logMAR and
postoperative UCVA: −0.02 ± 0.06 logMAR, p < 0.05; Figure 3B).
The mean preoperative IOP and postoperative IOP (14.6 ±
2.7 versus 15.2 ± 3.2, p > 0.05; Figure 3C) were not significantly
different. At 3 months postoperatively, 90% and 100% were
within ±0.5 and 1.0 D of the attempted correction, respectively
(Figure 3D). The time course changes in the manifest refraction
were shown in Figure 3E. Changes in the manifest refraction from

1 day to 3 months were 0.02 ± 0.68 D. Three months
postoperatively, the vault was 0.64 ± 0.20 mm.

Preoperative versus postoperative retinal microvascular density
for myopia patients, with p values for comparison. The total annular
zone was divided into four quadrantal zones and six annular zones
(bandwidth = 0.73 mm). No significant difference in the
microvascular density within each annular zone and all quadrantal
zones of the superficial and deep layers was found in myopia patients
between pre-surgery and post-surgery (Figure 4).

4 Discussion

Myopia is one of the most prevalent eye disorders, and the
epidemic of high myopia, in particular, is a serious hazard to
public health, such as financial, psychological, quality of life, and
direct and indirect risks of blindness. ICL implantation is one of the
methods to treat myopia. According to our data, ICL implantation is a
safe and effective treatment for both moderate and high myopia. No
eye loses two or more lines of vision after ICL implantation. All eyes
were within ±1.0 D of the attempted correction and both refractive
status and IOP remained stable for 3 months after surgery. Its
performance in safety, effectiveness, stability, and predictability is
even better than the results of Sanders et al. (2004) due to the
advancement of surgical techniques and the update of ICL.

Retinopathy is the most common complication of high myopia,
which is a slowly progressive and sight-threatening condition. Several
studies have investigated the retinal microvascular in patients with

FIGURE 4
The FD (representing retinal microvascular density) of ICL patients pre- and post-surgery for each layer. Among the six individual annular zones (A, B), the
microvascular density in the (A) superficial and (B) deep layers showed no significant difference in myopia patients pre- and post-surgery (all p > 0.05). The
microvascular density was also not significantly different in all quadrantal zones of the superficial (C) and deep (D) layers in myopia patients pre-and post-
surgery. (all p > 0.05). ST, superior temporal; SN, superior nasal; IN, inferior nasal; IT, inferior temporal.
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myopia, revealing the retinal microvascular network alterations inmyopic
eyes. The structural elongation of the eyeball mechanically stretches the
retinal tissue, resulting in the straightening and narrowing of the
microvessels and consequently the decrease of the retinal
microvascular density and perfusion in myopic eyes (Li et al., 2017;
Leng et al., 2018; Li et al., 2018;Milani et al., 2018; Gołębiewska et al., 2019;
Guo et al., 2019). Jiang et al. (2021) found that the superficial and deep
macular microvascular density in high myopia was significantly higher
than that in non-high myopia by using OCTA; Liu M et al. (2021) also
reached the same conclusion in a larger sample study and found a
negative correlation between microvascular density and axial length.

OCT angiography, as an advanced imaging technique
characterized by non-invasiveness, quantification, and reliability,
which can detect blood flow signals in the retina, has superior
advantages over traditional angiography techniques. OCTA is
widely used in the evaluation and diagnosis of eye diseases, such as
high myopia retinopathy (Grudzińska and Modrzejewska, 2018),
glaucoma optic nerve damage (Rao et al., 2020), retinal vein
occlusion (Hirano et al., 2021) and diabetic retinopathy (Sun et al.,
2021). Using OCTA, images from different layers of the retina can be
projected clearly due to its high resolution. In the present study, by
using OCT angiography, superficial and deep retinal capillary density
were measured in moderate and high myopia patients who underwent
ICL implantation between pre-surgery and post-surgery. The OCTA
provided the macular perfusion of a 6 mm × 6 mm area, we calculated
the microvascular density in each region through the box-counting
method after correcting for magnification. Our data showed that ICL
implantation surgery would not leave adverse effects on the retinal
capillary network.

Moreover, clinical evidence suggests that eye surgery would cause
the alteration of retinal microcirculation (Alnawaiseh et al., 2018; Kim
et al., 2018; Liu J et al., 2021). Pilotto et al. (2019) found that the
perfusion of the retinal microvascular plexus in the deeper layers of the
macula increased after uncomplicated cataract surgery, which may be
related to the early postoperative local inflammatory response.
Analogously, Chen et al. (2017) used a retinal oximeter to detect
retinal oxygen desaturation due to retina oxygen deficiency after ICL
implantation. ICL implantation surgery as a safe and effective
refractive surgery plays an important role in correcting moderate
and high myopia. However, due to the unusual anatomy and
physiology of the retina in high myopia eyes, it deserves our
attention for any microcirculation abnormality inherent to ICL
implantation surgery. Using OCTA, ophthalmologists can easily
assess patients’ retinal microvascular health and disease, which
might be beneficial for pre-operative evaluation of ICL
implantation surgery and the detection of postoperative
complications.

There were a few limitations to this study. Since the levels of
microvascular density in the retinal capillary plexuses after ICL
surgery detected by OCTA were stable in this study, the sample size
could not be calculated. Although we have included as many participants
as possible in this study, the number of patients was relatively small and
the follow-up period was only 3 months. In bigger populations and
during longer follow-up periods, retinal microvascular change may be
seen. Besides, because most of the patients who underwent ICL
implantation were young people, this study did not include children
and the elderly, whose preoperative retinal microcirculation is slightly
different (Leng et al., 2018; Golebiewska et al., 2019), and might respond
differently to ICL implantation surgery. Moreover, the OCTA scan area

used in this study is 6 mm × 6mm around the macula. Although it has a
wider scan range, it has not achieved the best presentation on retinal
microvasculature.

In conclusion, this study demonstrates that ICL implantation is an
effective treatment for both moderate and high myopia in young
patients, with excellent safety, predictability, and stability.
Simultaneously, using OCTA, this research provides evidence that
ICL implantation has no adverse effects on retinal microvascular.
Further larger sample sizes and longer-term studies are warranted to
confirm the conclusions presented herein.
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