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Di (2-ethyl-hexyl) phthalate (DEHP), one of endocrine-disrupting chemicals
(EDCs), has widespread concern due to its serious health hazards. Exposure to
DEHP in the early stage of life affects fetal metabolic and endocrine function,
which even would cause genetic lesions. To date, it is widely believed that the
increasing incidence of childhood obesity and diabetes in adolescents is related to
the impact of DEHP on glucose and lipid homeostasis in children. However, there
remains a knowledge gap to recognize these adverse effects. Thus, in this review,
besides the exposure routes and levels of DEHP, we further outline the effects of
early-life exposure to DEHP on children and potential mechanisms, focusing on
the aspect of metabolic and endocrine homeostasis.
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1 Introduction

Di (2-ethyl-hexyl) phthalate (DEHP), belonging to the family of phthalates, is a plasticizer
and solvent in polyvinyl chloride (PVC), which can be used to manufacture various products,
such as cosmetics, toys, andmedical tubing (Li et al., 2012). Through the widespread use of plastic
products, phthalates would migrate to other products or the environment, indirectly or directly
affecting human health (Cho et al., 2015). As endocrine-disrupting chemicals in the external
environment, long-term exposure would have adverse effects on human health (Stojanoska et al.,
2017). It is noted that DEHP shows obvious reproductive toxicity (Zhang et al., 2020) and results
in much more problems, such as ovulation disorders, precocious puberty, and abnormal
pregnancy. Endocrine and metabolic disorders have become risk factors for pregnancy
complications, diabetes, and obesity (Huang et al., 2020; Zhang et al., 2022).

According to DOHaD theory, which is based on an epidemiological study about low birth
weight and malnutrition (Barker, 2007), the effects of exposure before and during pregnancy
would be reflected in the health status of offspring. If it is affected in the period of early life, it will
interfere with the original growth process, resulting in incorrect coding and expression The
DOHaD theory is now widely used in research on diseases, especially chronic diseases. This early-
life nutritional theory is considered applicable to most chronic diseases. For organisms, the
intrauterine period is the key phase of most organ development (Roseboom et al., 2001; Barker,
2007; Agarwal et al., 2018). In researches on chronic diseases, researchers often use the
experimental method of maternal intervention during pregnancy to determine whether the
research factors would produce the corresponding outcome by observing the performance of the
offspring. DEHP exposure in early life can damage the endocrine system of offspring (Qian et al.,
2020). DEHP could affect the fetal reproductive system by regulating the synthesis of hormones
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during pregnancy (Liu et al., 2021a). In female offspring, DEHP
exposure may regulate ovarian hormone production, thereby
affecting the development of follicles (Liu et al., 2017; Liu et al.,
2021b). Additionally, low-dose DEHP exposure is recognized as a
potential risk factor for obesity and metabolic syndrome in offspring
during early life stages (Fan et al., 2020). A prospective cohort study
shows that maternal exposure to phthalates may affect glucose and lipid
metabolic disorders, with potential persisting sex specificity in childhood
(Sol et al., 2020). Understanding the detailed mechanisms that control
endocrine metabolism is vital for improving the health of children.

Thus, in this review, we summarize the effects of early-life
exposure to DEHP on endocrine homeostasis in offspring and
the potential mechanism, and highlight the common connections
existing in the current research, providing some insights for further
scientific research and medical precaution.

2 Exposure routes and levels of DEHP

As general endocrine-disrupting chemicals, phthalates are common
additive in the plastic manufacturing industry and are mainly used to
increase the ductility, elasticity, and strength of plastic products,
including food package, plastic utensils, agricultural plastic film, and
medical PVC devices (Giuliani et al., 2020). As the combination of
phthalates and the main body of the plastic matrix is non-covalent,
phthalates would migrate out of various products and dissolve into the
external environment, causing environmental pollution and affecting
human health (Heudorf et al., 2007; Bolling et al., 2020). People are
generally exposed to phthalates through soil pollution and air pollution
in the external environment. Phthalates can enter the human body
through the respiratory system, digestive system, and skin. Among
them, absorption via the digestive tract through food intake is the largest
intake route of phthalates (Wang et al., 2019). Besides, dust ingestion is
also major exposure route of phthalates, with dosage in the range from
1.12 μg/kg in infants to 1.7 μg/kg in toddlers (Tran and Kannan, 2015).
Table 1 shows the concentrations of various phthalates metabolites,
including MEP, MBzP, MEHP, MEHHP, MEOHP and MECPP from
DEHP, and MnBP, MIBP, MCPP in parent and child urine samples,
respectively (Tellez-Rojo et al., 2013; Wu et al., 2017).

3 Effects of early-life exposure to DEHP
on endocrine homeostasis in children

3.1 Early-life exposure to DEHP could cause
childhood obesity

Childhood obesity has a great impact on health in adulthood,
while adolescent obesity can also lead to psychological problems.

People who were overweight or obese as children or adolescents are
more likely to continue this trait in adulthood, and childhood
obesity is associated with a variety of adverse outcomes (Di
Cesare et al., 2019). A cohort study of 4,857 American Indian
children without diabetes evaluated the association of body mass
index (BMI), blood pressure level, cholesterol content, and
premature death (Franks et al., 2010). Moreover, obesity in
children and adolescence may be related to cardiovascular
disease, diabetes, and various other causes (Bendor et al., 2020).
These findings suggest that preventing obesity in the early stages of
life is of great significance to health for the whole life cycle.

Increasing research on environmental endocrine disruptors has
revealed that endocrine disruptors in the external environment are
closely related to human glycolipids. A variety of established or
potential environmental factors, including phthalate,
polychlorinated biphenyls (PCBs), and perfluoroalkyl acids, can
contribute to glucose and lipid metabolism in the body (Newbold
et al., 2009; Do et al., 2017; Veiga-Lopez et al., 2018). Environmental
factors can have an impact from the early stages of human life, and
research in this field can help analyze the causes of obesity.

Perinatal exposure to DEHP may increase the incidence of
obesity in offspring and DEHP may be a potential chemical
stressor of obesity and obesity-related diseases (Hao et al.,
2013). A meta-analysis summarizing original papers on the
association between phthalate exposure and obesity in children
and adults up to 2019 shows that there is an association between
DEHP and adult obesity in general, but it was not conclusive
(Ribeiro et al., 2019). Furthermore, the relationship between
DEHP and childhood obesity has also been controversial in
previous studies (Ribeiro et al., 2019). In a cohort study, the
concentration of phthalates metabolites in urine collected twice
during pregnancy is positively correlated with height, weight,
waist circumference, body fat percentage, and other physical
indicators of children aged 5–12 years (Harley et al., 2017). A
cohort study of African American pregnant women shows that
prenatal exposure to phthalates is associated with a lower BMI in
early childhood (Maresca et al., 2016). In a cross-sectional study,
an analysis of baseline data from 1,239 American girls between
the ages of 6 and 8 years indicated that there is a weak but
measurable relationship between phthalate exposure and BMI
and waist circumference (Deierlein et al., 2016). A survey of
middle-aged mothers shows that DEHP exposure before birth has
a greater impact on the weight of male offspring, suggesting that
prenatal DEHP exposure would affect the birth weight of the fetus
and that there are gender differences in this effect (Zhang Y. W.
et al., 2018b; Shafei et al., 2018). Collectively, these reports
indicated that early-life exposure to DEHP could cause energy
metabolism disorder, thereby disrupting endocrine homeostasis
in children.

TABLE 1 Concentrations of various phthalate metabolites in urine (SG-corrected, ng/mL).

Source of sample Phthalate metabolite (ng/ml) References

MEP MnBP MIBP MBzP MCPP MEHP MEHHP MEOHP MECPP

Mother 138 85.61 2.30 3.54 1.75 6.56 22.08 14.23 39.65 Tellez−Rojo et al. (2013)

Children 30.8 61.2 17.2 2.90 5.8 10.4 40.66 10.8 12.6 Wu et al. (2017)
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3.2 Early-life exposure to DEHP could
disrupt endocrine homeostasis in children

In animal experiments involving metabolomics evaluation, the
weight of offspring significantly increased after exposure to DEHP
during pregnancy in mice, and the performance of the male
offspring at low doses of DEHP is more obvious (Hao et al.,
2013). Meanwhile, the liver metabolism of offspring is impaired
in childhood, and glucose and lipid homeostasis are markedly
abnormal (Hao et al., 2012; Rajagopal et al., 2019). These results
suggest that maternal exposure to phthalates impairs liver function
and metabolism in the offspring. However, a more detailed
mechanism still needs to be elucidated.

Exposure to DEHP during pregnancy is associated with
shortening of the pregnancy cycle, suggesting that exposure to
DEHP during pregnancy can significantly increase the risk of
preterm birth (Yu et al., 2018; Ferguson et al., 2019). It is
reported that DEHP could cross the placental barrier and cause
premature birth before 37 weeks. Infants whose gestational age is
lower than MEHP negative (Huang et al., 2014). These studies
indicate that the adverse effects of DEHP on fetal growth parameters
may partly depend on the reduction of gestational age, rather than
the direct effects of phthalates, since the gestational age of the fetus is
also related to fetal growth parameters (Huang et al., 2014). In
contrast, there are reports that DEHP exposure during pregnancy
may have no physiological effects on the fetus. In a study of

404 multiethnic women in late pregnancy in New York, the
establishment of phthalate biomarkers and multivariate
adjustment model analysis reveal that DEHP-MWP and high
MWP metabolites are associated with any birth outcome with no
significant correlation (Patti et al., 2021).

4 Potential mechanisms of early-life
exposure to DEHP affecting offspring
health

DEHP not only directly affect the exposed population but also
affect the offspring of the exposed population. The DOHaD theory
proposes that there is a critical period of growth and development
early in life, which is an important stage of fetal gene coding and
expression. If environmental factors interfere with gene expression
during this period, then the growth trajectory of life can be changed
(Suzuki, 2018). DEHP has been reported to cross the placental
barrier and directly or indirectly act on the fetus. The effect of DEHP
on development is already in progress during the period of
intrauterine growth (Latini et al., 2003). Maternal exposure to
DEHP could activate AMPK-SKP2-CARM1 signaling to disrupt
follicular development via autophagy in the fetal ovary in a mouse
model (Zhang Y. et al., 2018a). Moreover, exposure of suckling mice
to DEHP during lactation could affect hormone production, which
is involved in the development of follicles, through the oxidative

FIGURE 1
Diagram of the potential mechanisms of prenatal exposure to DEHP in offspring endocrine disorders. Functionally, DEHP could cross the placental
barrier and directly or indirectly act on the fetus leading to growth retardation, preterm birth, ovary dysfunction and neurological disorders. Maternal
exposure to DEHP could induce obesity and high blood glucose in offspring. Mechanically, maternal exposure to DEHP could activate AMPK-SKP2-
CARM signaling to disrupt follicular development via autophagy in the offspring ovary. Moreover, DEHP can decrease P450 aromatase by activating
PPARα and PPARγ, leading to the inhibition of ovarian secretion of hormones. Maternal DEHP exposure involving in regulating GLUT2 expression and in
the liver leading to insulin resistance through FOXO1 signaling in immature male offspring. The figure was created with BioRender.com.

Frontiers in Cell and Developmental Biology frontiersin.org03

Zeng et al. 10.3389/fcell.2023.1115229

http://BioRender.com
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1115229


stress pathway (Liu et al., 2021a). Previous studies have shown that
phthalates can decrease P450 aromatase by activating PPARα and
PPARγ, leading to the inhibition of ovarian secretion of hormones
(Lovekamp-Swan and Davis, 2003; Ito et al., 2019; Li et al., 2020;
Meling et al., 2022). Early-life exposure to phthalates is a potential
risk factor for obesity and metabolic disorders in offspring (Fan
et al., 2020). Maternal DEHP exposure also plays a significant role in
metabolic disorders by regulating GLUT2 expression and
epigenetics in the liver, which are involved in insulin resistance
in immature male rat offspring (Rajagopal et al., 2019). Exposure to
DEHPmight induce glucose metabolic disorder in offspring through
the JAK2/STAT3/SOCS3 pathway, which is involved in regulating
insulin and leptin signaling pathways (Xu et al., 2018). In addition,
DEHP was recently reported to promote the overexpression of
FOXO1 to induce insulin resistance and hepatic lipid
accumulation (Wei et al., 2022). An overview of the mechanism
how exposure to DEHP affect offspring health is summarized in
Figure 1.

5 Conclusion and perspectives

Existing research suggests there is a strong correlation between
maternal exposure to DEHP and childhood obesity, in accord with the
results observed in animal experiments. However, the exposure dose of
DEHP s in each study was not identical, and the exposure dose of
DEHP in animal experiments differs from the human exposure dose.
Compared with rodents, primates are less sensitive to DEHP and this
has been attributed to differences in the absorption, distribution,
metabolism, and excretion of DEHP between these mammals
(Matsumoto et al., 2008). Consequently, there may be some
differences between the experimental results obtained in rodents and
the actual situation in humans. Combining human and animal studies
from a more specific molecular level would facilitate to explore the
effects of DEHP exposure on endocrine metabolism in offspring.
Evaluation of the clinical significance of DEHP exposure is difficult
in epidemiological studies. Increasing studies that DEHP can cause

changes in physiological functions analyze the effect of DEHP at the
molecular mechanism level. Future work should also focus on related
research in the field of epigenetics to explain the impact of DEHP on
offspring.
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