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Breast cancer remains a significant clinical concern affecting millions of women
worldwide. Immunotherapy is a rapidly growing drug class that has revolutionized
cancer treatment but remains marginally successful in breast cancer. The success of
immunotherapy is dependent on the baseline immune responses aswell as removing
the brakes off pre-existing anti-tumor immunity. In this review, we summarize the
different types of immune microenvironment observed in breast cancer as well as
provide approaches to target these different immune subtypes. Such approaches
have demonstrated pre-clinical success and are currently under clinical evaluation.
The impact of combination of these approaches with already approved
chemotherapies and immunotherapies may improve patient outcome and survival.
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Introduction

Breast cancer remains one of the major causes of death of women, with an estimated
15 Canadian women succumbing to the disease everyday in 2022 (Canadian Cancer Society,
2022). Despite the great progress made in early detection and treatment of breast cancer, it
remains the second largest cause of death due to cancer in women (DeSantis et al., 2019;
Harbeck et al., 2019). Moreover, almost all cases of death due to breast cancer are caused by
metastases to essential organs (Harbeck et al., 2019). Breast cancers are classified according to a
combination of molecular and histological subtypes (Harbeck et al., 2019). Tumors are classified
as hormone receptor positive (HR+), human epidermal growth factor 2 positive (HER2+) and
triple negative breast cancers (TNBCs) (Harbeck et al., 2019). These molecular subtypes display
diverse clinical manifestations, disease outcome, treatment options and various immune
profiles (Harbeck et al., 2019; Onkar et al., 2023) (Figure 1). It has become clear that the
intra- and inter-tumor heterogeneity of breast cancer drives formation of various tumor
immune microenvironments (TIMEs), that have become critical in prediction of responses to
immunotherapy (Hammerl et al., 2021).

Immunotherapies have demonstrated strong potential in tumors such as melanoma (Huang
and Zappasodi, 2022), however, only remain marginally successful in breast cancers (Schmid
et al., 2020), arguing that a better understanding of the diverse immune landscapes of breast
cancers and thus tailoring therapies to those tumors is required to improve patient outcome.

In this review, we aim to emphasize how the immune microenvironment may be used for
clinical classifications of tumors and how the TIME regulates breast cancer growth,
dissemination, and metastasis. These studies highlight immune mediated pathways that are
either under clinical evaluation or may provide clinically relevant targets for future therapies
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(Table 1). We focused exclusively on discoveries made in the context
of breast cancer as they represent a unique tumor model arising in
mainly females and thus are responsive to estrogens.

Immune landscapes of breast cancer

The addition of immunotherapies such as those targeting programed
death 1 (PD1) receptor on activated T-cells, programmed death ligand 1
(PDL1) and cytotoxic T-lymphocyte associated 4 (CTLA4) protein has
become a standard of care for treatment of melanoma (Huang and
Zappasodi, 2022). This is attributed to the highly immunogenic nature of
melanoma allowing a permissive environment for immune based
interventions (Huang and Zappasodi, 2022). More recently, the anti-
PD1 antibody, Pembrolizumab, in combination with chemotherapy has
been approved for the treatment of mismatch repair deficient colorectal
tumors (Andre et al., 2020) and triple negative breast cancers (TNBCs)
(Schmid et al., 2020). With the rise of immunotherapy to treat several
solid tumors (Esfahani et al., 2020), a shift towards an immune-based
rather than exclusively a histological classification of tumors may allow
better segregation of responders and non-responders to the appropriate
therapy. In TNBCs, RNA sequencing (seq.) suggested the existence of at
least four subtypes within TNBCs including an immunomodulatory
subtype, characterized by high T-cell infiltration and upregulation of
immune checkpoint inhibitors (Jiang et al., 2019). These findings support
that only a subset of TNBCs would respond to immune checkpoint
blockade (ICB). Thus, it could be appreciated that classification of breast
tumors using the traditional molecular and histological subtypes would
not be sufficient to predict responders and non-responders within each
breast cancer subtype.

An emerging concept has classified solid tumors into several
immune categories. Immune hot (also referred to as immune

inflamed), which are classified as being heavily infiltrated by T-cells
and express markers of immune cell activation and exhaustion, are
robust responders to immunotherapies (Galon and Bruni, 2019;
Gruosso et al., 2019; Hammerl et al., 2021). On the other end of
the spectrum are immune cold (also referred to as immune desert or
ignored) tumors, which exhibit little to no T-cell infiltration and are
unresponsive to immunotherapies (Galon and Bruni, 2019; Gruosso
et al., 2019; Hammerl et al., 2021). Intermediate immune phenotypes
(also referred to as immune altered) where immune cells are restricted
to the tumor margin (marginally restricted) or restricted to the stroma
(stromal restricted) add to the complexity of the immune
microenvironment and are associated with minimal response to
immunotherapy (Galon and Bruni, 2019; Gruosso et al., 2019;
Hammerl et al., 2021). Moreover, intratumor heterogeneity may
result in only a partial response to immunotherapy as well as allow
for clonal selection for a resistant population. This is illustrated in the
case of hypoxic tumors, with areas being of different immune status
depending on their hypoxic status (Pietrobon and Marincola, 2021).

Recent studies using transcriptomic profiling of all subtypes of
breast cancer divided tumors into three immune categroies based on
immune signature scores: immune high, medium and low (Yao et al.,
2021). Immune high tumors were defined as having the highest
expression of PDL1 and CD8 to CD4 T-cell ratio (Yao et al.,
2021). Interestingly, a higher proportion of TNBCs and HER2+
tumors were classified as immune high tumors whereas estrogen
receptor (ER) and progesterone receptor (PR) positive tumors (the
HR+ tumors) were mainly immune low (Yao et al., 2021). Analysis
from The Cancer Genome Atlas (TCGA) supported this notion by
demonstrating TNBCs and HER2+ breast cancers exhibit increased
immune metagene expression compared to those of the ER+ subtype
(Safonov et al., 2017). This work (Safonov et al., 2017; Yao et al., 2021)
argues that ER/PR+ tumors are of lower immunogenicity and thus

FIGURE 1
Characteristics of the molecular subtypes of breast cancer. Breast cancers can be classified based on gene expression profiles and receptor status. Each
of the subtypes exhibit their own clinical manifestations, disease outcome, treatment options and various immune profile. Figure generated with
biorender.com.
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TABLE 1 Summary of the clinical trials mentioned in this paper. Ordered based on appearance in the text.

Trial code Phase Status Agent tested Condition

NCT05070247 I Recruiting TAK-500 (STING agonist) alone or in combination with
Pembrolizumab (anti-PD1)

Pancreatic, hepatocellular, breast, gastric, esophageal cancers
as well as squamous cell cancers, non-small cell lung cancers
and mesothelioma

NCT04144140 I Completed E7766 (STING agonist) Advanced solid cancers and lymphomas

NCT03956680 I Active BMS-986301 (STING agonist) alone or in combination with
Nivolumab (anti-PD1) and Ipilimumab (anti-CTLA4)

Advanced solid cancers

NCT03843359 I Recruiting GSK3745417 (STING agonist) alone or in combination with
Dostarlimab (anti-PD1)

Advanced solid cancers

NCT03010176 I Completed Ulevostinag (STING agonist) alone or in combination with
Pembrolizumab (anti-PD1)

Solid tumors and lymphoma

NCT03249792 I Active MK-2118 (STING agonist) alone or in combination with
Pembrolizumab (anti-PD1)

Solid tumors and lymphoma

NCT04096638 I N/A SB 11285 (STING agonist) alone or in combination with
Atezolizumab (Anti-PDL1)

Solid tumors, head and neck cancers and melanoma

NCT03616886 I/II Active Oleclumab (also known as MEDI9447, an anti-CD73 antibody)
in combination with Paclitaxel and Carboplatin
(chemotherapy) as well as Durvalumab (anti-PD1). Control
cohort will receive Paclitaxel, Carboplatin and Durvalumab

Triple negative breast cancers

NCT03875573 II Recruiting Paclitaxel and dose-dense doxorubicin-cyclophosphamide
(chemotherapy) with or without Oleclumab (anti-
CD73 antibody) or Durvalumab (anti-PD1)

Luminal B breast cancers

NCT03454451 I Active CPI-006 (anti-CD73 antibody) alone, in combination with
Ciforadenant (antagonist for adenosine 2A receptor), in
combination with Pembrolizumab (anti-PD1) or combined
with both Ciforadenant and Pembrolizumab

Renal cell, colorectal, cervical, ovarian, pancreatic,
endometrial and bladder cancers as well as TNBCs, non-small
cell lung cancers, sarcomas, squamous cell carcinoma of the
head and neck, metastatic castration resistant prostate cancers
and non-Hodgkin lymphoma

NCT05431270 I Recruiting PT199 (anti-CD73 antibody) alone or in combination with
anti-PD1

Advanced solid tumors

NCT05143970 I Recruiting IPH5301 (anti-CD73) alone or in combination with Paclitaxel
(chemotherapy) and Trastuzumab (anti-HER2 antibody)

Advanced solid and metastatic cancers

NCT05001347 II Active TJ004309 (anti-CD73) combined with Atezolizumab (Anti-
PDL1)

Ovarian, head and neck, gastrointestinal, non-small cell lung
cancers and TNBCs

NCT04148937 I Completed LY3475070 (selective CD73 inhibitor) alone or in combination
with Pembrolizumab (anti-PD1)

Advanced cancers

NCT03978663 N/A Recruiting Neoadjuvant radiation High risk cancers and locally advanced breast cancers

NCT01803503 II N/A Docetaxel (chemotherapy) with or without pre-treatment with
Sunitinib (angiogenesis inhibitor)

Solid tumors, Breast, prostate, gastric and non-small cell lung
cancers

NCT03184558 II Terminated Bemcentinib (AXL inhibitor) in combination with
Pembrolizumab (anti-PD1)

TNBC and inflammatory breast cancers

NCT04842812 I Recruiting CAR-T cells against various tumor antigens (Ex: HER2, AXL,
EGFR and others)

Liver, lung, breast, colorectal and brain cancers

NCT04355858 II Recruiting Depending on the patient’s molecular profile, different
therapeutics are administered

HR+ HER2- endocrine resistant breast cancer

• Patients with NF1 mutation: SHR7390 (MEK 1/2 inhibitor)
in combination with Famitinib (receptor tyrosine kinase
inhibitor)

• Patients with gBRCA mutation: SHR3162 (PARP inhibitor)
in combination with SHR6390 (CDK4/6 inhibitor)

• Patients with HER2 activating mutations: Pyrotinib (HER1/
2 receptor tyrosine kinase inhibitor) in combination with
Capecitabine (chemotherapy)

• Patients with PDGFRb mutation: Famitinib (receptor
tyrosine kinase inhibitor)

(Continued on following page)
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TABLE 1 (Continued) Summary of the clinical trials mentioned in this paper. Ordered based on appearance in the text.

Trial code Phase Status Agent tested Condition

• Patients with evidence of marked CD8 T-cell presence
(≥10% by IHC) will receive one of the following therapeutics
based on their medical history: Famitinib (receptor tyrosine
kinase inhibitor) or SHR1210 (anti-PD1), Nab paclitaxel
(chemotherapy), SHR6390 (CDK4/6 inhibitor), SHR1701
(anti-PDL1/TGFβRII bifunctional fusion protein),
Fulvestrant (selective estrogen receptor degrader),
Aromatase inhibitor, or Bevacizumab (VEGF inhibitor)

• Patient with a PAM pathway mutation: Everolimus (mTOR
inhibitor) in combination with Nab paclitaxel
(chemotherapy)

• Patient expresses Androgen receptor (AR≥10% by IHC):
SHR2554 (EZH2 inhibitor) and SHR3162 (PARP inhibitor)

NCT03805399 I/II Recruiting Depending on the patient’s subtype, different therapeutics are
administered

TNBC.

• Luminal androgen receptor (LAR) subtype with
HER2 activating mutations: Pyrotinib (HER1/2 receptor
tyrosine kinase inhibitor) in combination with Capecitabine
(chemotherapy)

• LAR subtype with a PIK3CA mutation but without
HER2 activating mutations: SHR3680 (AR inhibitor)
combined with Everolimus (chemotherapy)

• LAR subtype without PI3KCA nor HER2 activating
mutations: SHR3680 (AR inhibitor) combined with
SHR6390 (CDK4/6 inhibitor) or SHR2554 (EZH2 inhibitor)

• Immunomodulatory (IM subtype): SHR1210 (anti-PD1)
combined with Nab-paclitaxel (chemotherapy)

• Basal-like immune suppressed (BLIS) with a BRCA
mutation: SHR3162 (PARP inhibitor) combined with
Famitinib (receptor tyrosine kinase inhibitor)

• Basal-like immune suppressed (BLIS) without a BRCA
mutation: VP-16 (chemotherapy) in combination with
Apatinib (VEGFR2 inhibitor) or Famitinib (receptor
tyrosine kinase inhibitor). Patients may alternatively receive
BP102 (VEGF inhibitor) in combination with Nab-paclitaxel
(chemotherapy)

• Mesenchymal (MES) subtype without PI3K/AKT pathway
activation: Famitinib (receptor tyrosine kinase inhibitor) in
combination with VP-16 (chemotherapy)

• Mesenchymal (MES) subtype with PI3K/AKT pathway
activation: mTOR inhibitor in combination with Nab-
paclitaxel (chemotherapy)

NCT05600582 I Not yet recruiting CodaLytic (oncolytic virus) Metastatic or inoperable Breast cancers

NCT05081492 I Recruiting CF33-hNIS-antiPDL1 (oncolytic virus) Stage 4 breast cancer or metastatic TNBC.

NCT03004183 II Active ADV/HSV-tk (oncolytic virus) in combination with
Valacyclovir (anti-viral), stereotactic body radiation therapy
and Pembrolizumab (anti-PD1)

Metastatic TNBC and metastatic non-small cell lung cancers

NCT04445844 II Recruiting Pelareorep (Oncolytic virus) in combination with Retifanlimab
(anti-PD1)

Stage 4 breast cancer, metastatic TNBC and locally advanced
breast cancers

NCT02779855 I/II Active Talimogene laherparepvec (Oncolytic virus) in combination
with Paclitaxel (chemotherapy)

Breast cancer

NCT04185311 I Active Talimogene laherparepvec (Oncolytic virus) in combination
with Nivolumab (anti-PD1) and Ipilimumab (anti-CTLA4)

Breast cancer of any stage except stage 4

NCT05076760 I Recruiting MEM-288 (oncolytic virus) Solid or metastatic cancers, non-small cell lung cancer,
cutaneous squamous cell carcinoma. Merkel cell carcinoma,
melanoma, TNBC, head and neck and pancreatic cancers

(Continued on following page)
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require tailoring therapeutic regimens to increase their response to
immunotherapy.

An increase in number of T-cells infiltrating the tumor is associated
with better patient outcome when treated with chemotherapy only
(Denkert et al., 2018), chemotherapy with immunotherapies (Li et al.,
2021a) as well as in combination with anti-HER2 targeted therapies,
such as Trastuzumab (Loi et al., 2014). Therefore, it has become critical
to understand the mechanism governing the different TIMEs, which
may elucidate better drug targets which ultimatelymay improve patients
clinical progression.

In addition to absolute numbers of T-cells in the tumor being
predictive of therapeutic response, studies have demonstrated that the
spatial localization of immune cells might be critical in tumor classification
and predicted response to therapy (Gruosso et al., 2019; Hammerl et al.,
2021) Work by Gruosso et al. (Gruosso et al., 2019) on TNBCs clustered
tumors into four subtypes based on the spatial localization of CD8+

(cytotoxic) T-cells (Gruosso et al., 2019) (Figure 2). Immune cold
tumors were divided into two subcategories; immune dessert (ignored),
which have no CD8+ T-cells cells in the tumor core or margins, and
marginally restricted (or excluded), with CD8+ T-cells cells exclusively in

the margins. Immune hot tumors were divided into stromal restricted (or
excluded) with CD8+ T-cell only in the tumor associated stroma and fully
inflamed which have CD8+ T-cells both in the stroma and the tumor nest.
Profiling of TNBC tumors exhibiting inflamed, ignored, and excluded (in
the margins or stroma) T-cell infiltration phenotypes demonstrated
profound transcriptional changes and led to generation of gene
signatures that are predictive of T-cell infiltration patterns (Hammerl
et al., 2021).Moreover, it was demonstrated that immune inflamed tumors
(those with a high immune inflamed gene signature) responded
significantly better to anti-PD1 therapy assessed by better overall
survival compared those of the immune ignored and excluded
categories (Hammerl et al., 2021). These results suggest that
transcriptomic profiling of tumors may allow for prediction of the
immune landscape and thus response to immunotherapy, allowing
therapies to be tailored accordingly. In metastatic HER2+ breast cancer,
CD8+ T-cells reaching the tumor core, but not the invasive margin or the
stroma, was associated with longer survival with metastasis (Honkanen
et al., 2017). Overall, these findings argue that understanding themolecular
programs that regulate T-cell spatial localization are critical for improving
T-cell activity as well as improved response to immune based therapies.

TABLE 1 (Continued) Summary of the clinical trials mentioned in this paper. Ordered based on appearance in the text.

Trial code Phase Status Agent tested Condition

NCT04215146 II Active Pelareorep (oncolytic virus) in combination with Paclitaxel
(chemotherapy) or Paclitaxel and Avelumab (anti-PDL1)

Metastatic breast cancers

NCT03740256 I Recruiting CAdVEC (oncolytic virus) Bladder, salivary gland, lung, breast, gastric, esophageal,
colorectal cancers, head and neck squamous cancers and
pancreatic adenocarcinoma

NCT05180851 I Recruiting Recombinant L-IFN adenovirus (oncolytic virus) Melanoma, head and neck, breast, bladder, ovarian, cervical
and lung cancers

NCT04521764 I Recruiting Oncolytic Measles Virus Encoding Helicobacter pylori
Neutrophil-activating Protein (MV-s-NAP)

Stage 4, metastatic and recurrent breast cancers

NCT05378464 I Recruiting Adoptive T-cell therapy following dendritic cell vaccination
(DC1) in combination with Trastuzumab (anti-
HER2 antibody) and Pepinemab (anti-SEMA4D antibody)

HER2+ breast cancers

NCT02778685 II Suspended Palbociclib (CDK4/6 inhibitor) and Pembrolizumab (anti-
PD1) in combination with Fulvestrant (selective estrogen
receptor degrader) or Letrozole (aromatase inhibitor)

Stage 4 or metastatic breast cancer

NCT03573648 II Recruiting Patients will receive endocrine therapy alone or in combination
with Palbociclib (CDK4/6 inhibitor)

ER+ Breast cancers

For pre-menopausal women, endocrine therapy consists of
Tamoxifen and Goserelin or Leuprolide

For post-menopausal women, endocrine therapy consists of
Letrozole

NCT03294694 I Terminated Ribociclib (Cyclin D1 and CDK4/6 inhibitor) combined with
PDR001 (anti-PD1) with or without Fulvestrant (selective
estrogen receptor degrader)

Metastatic HR+ breast cancer, HER2- breast cancer and
metastatic epithelial ovarian cancer

NCT03195699 I Active TTI-101 (STAT3 inhibitor) Breast, colorectal, hepatocellular, non-small cell lung cancer,
head and neck squamous cell carcinoma, gastric
adenocarcinoma and melanoma

NCT05384119 I/II Recruiting TTI-101 (STAT3 inhibitor) in combination with Aromatase
inhibitor and Palbociclib (CDK4/6 inhibitor)

Breast cancer

NCT05491226 II Not yet recruiting Pembrolizumab (anti-PD1) in combination with radiation
therapy and Axatilimab (anti-CSF-1R antibody)

TNBC

NCT03448042 I Recruiting Runimotamab (anti-HER2/CD3 bispecific antibody) in
combination with Trastuzumab (anti-HER2 antibody) and
Tocilizumab (anti-IL6 antibody)

Solid cancers
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There is a developing consensus that both the number and the
spatial localization of T-cells (and potentially other immune cell types)
are an important predictor of survival as well as response to approved
immunotherapies in breast cancer, particularly in TNBCs (Hammerl
et al., 2021). While we described at least three different spatial immune
profiles; immune hot, immune cold and excluded (either margin or
stroma), most of the studies described in this manuscript rely on the
simplistic immune cold (low immune infiltrate in general) and
immune hot (inactive/exhausted T-cells). Therefore, for the rest of
this manuscript we will follow the nomenclature of the cited work.
Additionally, most of this work has been focused on TNBCs. Further
research is required to better categorize the TIME in HER2+ and ER+/
PR+ tumors and thus improve the prospect of immune based therapies
for these breast cancer subtypes, that account for the majority of cases
(Harbeck et al., 2019).

Approaches to treat immune cold
tumors

Given that increasing numbers of tumor infiltrating CD8+ T-cells
cells are associated with better prognosis and response to
immunotherapy, work aimed at promoting T-cell infiltration into

the tumor (core) could help improve patient outcomes as well as
sensitize them to already approved immunotherapies.

Induction of IFN expression through
sustaining STING activation

Immune cold tumors arise due to inadequate induction of an
innate immune response during early tumor progression
(Bonaventura et al., 2019). This is usually due to reduced
expression of interferons (IFNs) and interferon stimulated genes
(ISGs) (Bonaventura et al., 2019; Galon and Bruni, 2019; Liu and
Sun, 2021). Reduced expression of interferons leads to loss of major
histocompatibility complex (MHC) class 1 expression which impedes
recognition by T-cells (Dhatchinamoorthy et al., 2021). Loss of MHC
class 1 is observed in about 60% of TNBCs which may account for the
lack of response to immunotherapies in patients (Dusenbery et al.,
2021). One of the key regulators of the interferon response is
stimulator of interferon genes (STING) (Zhu et al., 2019; Decout
et al., 2021). STING is a cytosolic sensor of the cyclic dinucleotide 2′3′-
cyclic guanosine monophosphate–adenosine monophosphate (2′3′-
cGAMP), which is produced by cyclic GMP-AMP synthase (cGAS)
due to cytosolic DNA as a result of cell death or viral infection (Decout

FIGURE 2
Immune profiles of breast cancer. Inspired byGrusso et al. In the immune hot subtype, cytotoxic T-cells are able to fully infiltrate the tumor. Immune cold
tumors are fully devoid of cytotoxic T-cells. Stromally restricted tumors are infiltrated by T-cells only in the stroma but not tumor nest. Marginally rrestricted
tumors have T-cells limited to the tumor margin and not capable to reaching the tumor nest. Figure generated with biorender.com.
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et al., 2021). STING activates tank-binding kinase 1 (TBK1), leading to
activation of interferon response factor (IRF) three which acts as a
transcription factor for ISGs (Decout et al., 2021). Induction of
interferons act as a “red flag” for the immune system and results
recruitment of anti-tumor immune cells. Blocking this cascade at any
stage could result in an immune cold, interferon depleted tumor (Zhu
et al., 2019). It is important to note, that 2′3′-cGAMP functions as an
immune transmitter between different cancer cells as well as cancer
cells and immune cells (such as dendritic cells) whereby one cell can
activate STING in a neighbouring cell (Carozza et al., 2020) leading to
a positive feedback cascade and increased inflammation. However,
excessive inflammation, a hallmark of cancer (Hanahan and
Weinberg, 2011), leads to disruption of tissue homeostasis and
recruitment of inhibitory immune cells such as regulatory T-cells
(Tregs), myeloid derived suppressor cells (MDSCs), macrophages and
upregulation of immune checkpoint molecules which sustains an
immunosuppressed immune hot TIME.

As a mechanism of stimulating STING in immune cold tumors,
either 2′3′-cGAMP or agonists (small molecules that activate STING)
have been implemented to stimulate interferon expression and
promote an anti-tumor immune response (Deng et al., 2014).
Using the 4T1 TNBC model, the STING agonist, cyclic
diguanylate, lead to induction of IFNβ expression which was
coupled to an increase in activation of STING and its downstream
effectors (Yin et al., 2022). Cyclic diguanylate synergized with
atezolizumab (anti-PDL1) to reduce tumor growth through
activation of cytotoxic T-cells and suppression of Tregs (Yin et al.,
2022). Other work on a HER2+ model using the STING activator,
ADU-S100, demonstrated that STING activation can induce tumor
regression as well as protect against tumor rechallenge in non-
tolerized animals (Foote et al., 2017). The effect of ADU-S100 was
dependent on both CD8+ and CD4+ T-cells (Foote et al., 2017).
Moreover, blockade of immune checkpoints, OX40 receptor and
anti-PDL1 lead to a significant increase in ADU-S100 efficacy and
complete regression of tumors (Foote et al., 2017).

Several STING agonists are currently in early phases of clinical
trials as an adjuvant or in combination with other immunotherapies
(NCT05070247, NCT04144140, NCT03956680, NCT03843359,
NCT03010176, NCT03249792, NCT04096638). Additionally,
already approved poly ADP ribose polymerase (PARP) inhibitor,
Olaparib, in a TNBC mouse model demonstrated its capacity to
induce CD8+ T-cell infiltration via activation of STING (Pantelidou
et al., 2019) as well as promote upregulation of PDL1 in several human
derived cell lines (Jiao et al., 2017) suggesting that inducing DNA
damage may promote a strong anti-tumor immune response through
STING activation. Noteworthy, that increasing the tumor mutational
load is associated with favourable immune infiltration and response to
immunotherapies (Strickler et al., 2021), potentially due to elevated
basal activation of STING. However, only a very small fraction of
breast cancers have a high mutational load compared to immunogenic
tumors such as lung and melanoma (Thomas et al., 2018; Barroso-
Sousa et al., 2020). Additionally. HR + tumors harbour a smaller
proportion of tumors with a high mutational burden (Thomas et al.,
2018). Mechanisms that increase the mutational load might be
clinically beneficial, especially for HR + breast cancer. Indeed,
inactivation of the DNA mismatch repair (MMR) by targeting
MutL homologue 1 (MLH1) leads to an increased mutational load
due to reduced genomic stability, triggering an immune response that
sensitizes tumors to anti-PD1 (Germano et al., 2017).

In a cDNA library screen, HER2, which is highly expressed in
~25% of breast cancers (Harbeck et al., 2019), was found to impede
STING activation (Wu et al., 2019). Detailed analysis of this
phenomenon demonstrated that the intracellular domain (ICD) of
HER2 physically sequesters STING, preventing interaction with
TBK1/IRF3 (Wu et al., 2019). Additionally, AKT1 activation
downstream HER2, phosphorylates TBK1 at serine 510 which
inhibits its downstream activity and association with STING (Wu
et al., 2019). This data strongly argues that oncogene mediated
signaling can impact the innate immune response and result in an
immune cold TIME, which is amenable to receptor tyrosine kinase
inhibitors (RTKi) such as lapatinib (Wu et al., 2019). Interestingly,
activation of DNA sensing increased the HER2-AKT1 cascade (Wu
et al., 2019). We envision that this may behave as a mechanism of
resistance in tumors treated with STING activators.

Novel approaches at regulating STING have led to development of
small molecules targeting ecto-nucleotide pyrophosphatase/
phosphodiesterase 1 (ENPP1) which is an endoplasmic reticulum
and cell surface enzyme that degrades natural STING ligand 2′3′-
cGAMP as well as ATP/GTP to AMP and GMP (Li et al., 2014;
Carozza et al., 2022; Gangar et al., 2022; Goswami et al., 2022).
Inhibition of ENPP1 using a small molecule inhibitor was sufficient
to induce an active immune response which synergized with radiation
therapy (Carozza et al., 2020) potentially due to reduced degradation
of 2′3′-cGAMP produced by irradiated cells. Moreover, other studies
demonstrated that chromosomally unstable breast tumors suppress an
immune response against them via selective upregulation of
ENPP1 which degrades 2′3′-cGAMP that may be produced in
response to dsDNA released into the cytosol following nuclear
envelope ruptures (Li et al., 2021b). Indeed, knockout of ENPP1 in
TNBC syngeneic models reduced metastasis to the lung and led to a
massive increase in immune cell infiltration at the primary tumor (Li
et al., 2021b). Moreover, knockout of ENPP1 synergized with
PD1 blockade (Li et al., 2021b). Both patient tumors and mouse
models demonstrated that ENPP1 is elevated in relapsed tumors of the
TNBC andHER2+ subtypes (Ruiz-Fernandez de Cordoba et al., 2022).
ENPP1 promoted neutrophil extracellular trap (NET) formation via
tumor cell expression of haptoglobin, supporting relapse and
protecting the tumor from radiotherapy (Ruiz-Fernandez de
Cordoba et al., 2022). Additionally, both expression of interferons
and STING activation are associated with differentiation of the tumor,
reduced stem cell capacity and reduced expression of epithelial-
mesenchymal transition (EMT) gene signature (Cheng et al., 2020;
Cheon et al., 2022; Goswami et al., 2022). Targeting ENPP1 reduced
expression of EMT markers and signatures (Goswami et al., 2022).
Only one documented case of first-in-human ENPP1 inhibitor in
addition to anti-PD1 was performed (Csiki et al., 2022), but no large
scale trials have been preformed thus far. We posit that inhibition of
ENPP1 may provide strong clinical benefit especially to immune cold
TNBCs and HER2+ breast cancers. Combination of 2′3′-cGAMP
(Ohkuri et al., 2017) or radiation (Carozza et al., 2020) coupled to
ENPP1 inhibition may demonstrate a synergistic effect due to the
prolonged accumulation of 2′3′-cGAMP in the extracellular milieu.

AMP produced by ENPP1 is subjected to further hydrolysis by
CD73 (Allard et al., 2020). The resultant adenosine may then bind
adenosine receptors found on stromal or cancer cells to reinforce an
immunosuppressive microenvironment (Allard et al., 2020).
CD73 expression was found to be highest in TNBC compared to
other breast cancer subtypes and was significantly associated with
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worse prognosis (Loi et al., 2013). Activity of CD73 in TNBC induced
immunosuppression and promoted resistance to anthracyclines (Loi
et al., 2013). Targeting CD73 using a monoclonal antibody increased
the number of tumor specific CD8+ T-cells and induced INFγ
expression (Loi et al., 2013). Combination of anthracycline
(doxorubicin) with anti-CD73 delayed death due to metastasis of
animals post surgical resection of their primary tumor (Loi et al.,
2013). Moreover, anti-CD73 synergized with both anti-PD1 and anti-
CTLA4 (Loi et al., 2013). Expression of CD73 has also been correlated
with resistance to anti-HER2 targeted therapy, Trastuzumab (Turcotte
et al., 2017). Neutralization of CD73 synergized with anti-HER2
monoclonal therapy, eliminated HER2+ tumor growth in syngeneic
models as well as reduced pulmonary metastasis (Turcotte et al., 2017).
Anti-CD73 targeting antibodies as well as CD73 inhibitors are
currently in early phase clinical trials in combination with immune
checkpoint blockades and Trastuzumab (NCT03616886,
NCT03875573, NCT03454451, NCT05431270, NCT05143970,
NCT05001347, NCT04148937).

Use of chemotherapy and radiation

Chemotherapy in combination with anti-PD1 is approved for
PDL1+ TNBC (Cortes et al., 2022). While the idea of eventually
phasing out chemotherapy and radiation is highly tempting due to
their systemic adverse effects; they still remain viable options to prime
an immune response and potentially induce upregulation PDL1 and
other co-inhibitory molecules (Zitvogel et al., 2008).

DNA damage following radiation induces STING activation
which promotes recruitment of dendritic cells which act as antigen
presenting cells priming T-cell mediated immunity
(Dhatchinamoorthy et al., 2021) (impact is under clinical
assessment NCT03978663). Both chemotherapy and radiation can
induce cell and DNA damage, generating neoantigens and inducing
antigenicity which may sensitize tumors to immunotherapies
(Zitvogel et al., 2008; McGranahan et al., 2016; Galon and Bruni,
2019). Additionally, chemotherapy has been demonstrated to
selectively deplete MDSCs, Tregs and restores T- and natural (NK)
cell functions (Ghiringhelli et al., 2007; Vincent et al., 2010). DNA
damage following radiation induces STING activation which
promotes recruitment of dendritic cells that act as antigen
presenting cells to prime T-cell mediated immunity (Deng et al.,
2014). Clinical studies (NCT03978663) are currently underway to
correlate radiation treatment with immune cell recruitment and
patient outcome.

Resistance to radiation and chemotherapy posses an additional
challenge, as tumors need to respond to radiation or chemotherapy to
effectively prime an immune response. Resistance to radiation has
been linked to hypoxia (briefly discussed in the next section) where
lack of molecular oxygen prevents generation of free radicals to react
with DNA (Wang et al., 2021). Strategies aimed at promoting tumor
oxygenation by vasculature normalization have demonstrated the
capacity to sensitize tumors to radiation and improve
chemotherapy delivery in multiple tumor models (Telarovic et al.,
2021). Tyrosine kinase inhibitor Sunitinib is under clinical
investigation in combination with chemotherapy to induce
vasculature normalization to enhance chemotherapy delivery
(NCT01803503). Blood vessel normalization and perfusion is
driven by IFNγ expressing cytotoxic T-cells and is a predictor of

response to ICB, anti-PD1 and anti-CTLA4, and the anti-HER2
monoclonal, Trastuzumab (Baker et al., 2018; Zheng et al., 2018).
Therefore, strategies at improving vasculature perfusion may permit
increased cytotoxic T-cell infiltration, which establishes a positive
feedback loop, increasing vasculature perfusion further allowing better
delivery of chemotherapy and anti-tumor immune cells. Thus,
improved vasculature perfusion may also allow better tumor
oxygenation and improved immune responses.

Targeting hypoxia to promote immune cell
trafficking

Hypoxia is regarded as a critical phenomenon in breast cancer
(Zhang et al., 2021). Indeed, an abundance of work has
demonstrated that hypoxia and upregulation of hypoxia
inducible factor 1α (HIF1α) in the epithelium regulates breast
cancer progression and metastasis via promoting angiogenesis,
induction of cancer stem phenotypes and EMT (Muz et al.,
2015). Additionally, hypoxia promotes immune suppression
either by inhibiting T-cell activity or through exclusion of
immune cells by a barrier comprised of low pH, low glucose,
and low oxygen conditions (Wang et al., 2021; Zhang et al.,
2021). Interestingly, CD73 is under the control of hypoxia and
potentially contributes to hypoxia mediated immunosuppression
(Allard et al., 2020). Spatial analysis of 4T1 tumors demonstrated
that hypoxic areas (HIF1α+) are poorly infiltrated with T-cells as
expected (Ma et al., 2022). This work identified that through HIF1α,
hypoxia induced silencing of INFγ and tumor necrosis factor (TNF)
through histone deacetylase (HDAC) and enhancer of zeste
homolog 2 (EZH2) mediated epigenetic silencing in T-cells (Ma
et al., 2022). Inhibition or genetic ablation of HIF1α, HDAC or
EZH2 sensitized anti-PD1 resistant 4T1 tumors to anti-PD1 (Ma
et al., 2022). Knockout of HIF1α in the macrophages of polyoma
middle T (PyMT) tumors increased proliferation and cytotoxic
activity of T-cells, emphasizing that hypoxia may promote
immunosuppression through macrophage function as well
(Doedens et al., 2010).

While low oxygen stabilizes HIFs and regulates a hypoxia
induced response, receptor tyrosine kinases (RTKs) such as the
epidermal growth factor (EGFR) family, which are commonly
highly expressed in breast cancers can stabilize HIFs (Lauzier
et al., 2007; Lee et al., 2009; Nilsson et al., 2010; Turpin et al.,
2016). Interestingly, it was demonstrated that through HIF2α,
hypoxia can promote translation of EGFR mRNA (Franovic et al.,
2007; Uniacke et al., 2012) implying the presence of a positive
feedback loop between HIFs and EGFR. Knockout of AXL RTK
in a HER2+ driven mouse model reduced expression of hypoxic
markers, reactivated the immune response and improved vasculature
perfusion in the primary tumors leading to strong reduction in lung
metastasis (Goyette et al., 2021). Inhibition of AXL using
R428 synergized with PD1 blockade at blocking metastasis
(Goyette et al., 2021). Clinical trials assessing the AXL inhibitor,
Bemcentinib, with Pembrolizumab (anti-PD1) on TNBC was
attempted on a small cohort of patients (NCT03184558) but none
achieved complete response leading to termination of the trial.
Newer trials are currently underway to assess impact of chimeric
antigen receptor (CAR) T-cells against AXL as well as other RTKs
including HER2 and EGFR on advanced tumors (NCT04842812).
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Targeting EZH2 to induce inflammatory
cytokine expression

EZH2 acts as the catalytic subunit of polycomb repressive complex
2 (PRC2) and places a repressive methyl mark on lysine 27 of histone
3, H3K27me3 (van Mierlo et al., 2019). Progression of PyMT-driven
tumors is correlated with an increase in H3K27me3 repressive marks
(Cai et al., 2018). EZH2 knockout in PyMT and HER2-driven models
demonstrated profound impact on tumor initiation, progression, and
metastasis, supporting that EZH2 behaves as on oncogene by
suppressing expression of tumor suppressors (Hirukawa et al.,
2018; Smith et al., 2019). We have previously demonstrated that
inhibition of EZH2 in a HER2+ mouse model induces tumor cell
expression of endogenous retroviral elements that promote expression
of IFNs and sensitize tumors to anti-HER2 targeted therapy
(Hirukawa et al., 2019). Work using ovarian cancer models
demonstrated that inhibition of EZH2 induced expression of
inflammatory cytokines C-X-C ligand (CXCL) 9 and CXCL10 that
promoted recruitment of cytotoxic T-cells into the tumor (Peng et al.,
2015). Studies from other tumor models have demonstrated that
EZH2 inhibits expression of PDL1 (Xiao et al., 2019) and the
MHC class 1 antigen processing pathway (Burr et al., 2019). These

studies support that epigenetic inhibition may impact induction of a
robust immune response both through the tumor cell proper as well as
through direct action on immune cells. The EZH2 inhibitor,
SHR2554 is currently in clinical trials in combination with PARP,
androgen receptor and cyclin dependent kinases four and 6 (CDK4/6)
inhibitors (NCT04355858 and NCT03805399).

Oncolytic viruses to stimulate the immune
response

Oncolytic viruses (OVs) are naturally occurring or genetically
modified viruses that are capable of selectively infecting and
destroying tumor cells (Jin et al., 2021). OVs induce tumor cell
death, resulting in release of pathogen-associated molecular
patterns (PAMPs) and danger-associated molecular patterns
(DAMPs) that can stimulate the anti-tumor immune response (Jin
et al., 2021). While OVs are not currently approved, several are
currently under pre-clinical and clinical evaluation (Carter et al.,
2021; Jin et al., 2021). A herpes simplex virus (HSV)-based OV
designated G47Δ, reduced pulmonary metastatic growth (Wang
et al., 2012). Addition of IL-12 coding sequence to G47Δ

FIGURE 3
Strategies targeting immune cold TIME. Schematic of strategies used to target immune cold timors. Black arrows demonstrates a biologically activating
pathway. Black flat head demonstrates a biologically inhibitory pathway. Red arrow implies activating intervention. Red flat head implies inhibitory
intervention. Figure generated with biorender.com.
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(designated G47Δ-mIL12) killed both murine and human breast
cancer cells in vitro and in syngeneic models. It also led to
increased infiltration of cytotoxic T-cells and decreased MDSCs
infiltration into the tumors (Ghouse et al., 2020). Several OVs are
currently in clinical assessment in combination with other
immunotherapies such as anti-PDL1 and CAR-T cells
(NCT05600582, NCT05081492, NCT03004183, NCT04445844,
NCT02779855, NCT04185311, NCT05076760, NCT04215146,
NCT03740256, NCT05180851, NCT04521764).

Introduction of genetically engineered anti-
tumor immune cells

Given that T-cells are known for their ability to recognize and kill
cancer cells, efforts at expanding them ex vivo and reintroducing them
back into the patient in a process known as adoptive cell transfer
(ACT), has been successful in highly immunogenic tumors (Luo et al.,
2022). Recently, ACT of T-cells targeting mutant proteins (SLC3A2,
KIAA0368, CADPS2 and CTSB) detected in a patient tumor in
combination with interleukin two have been demonstrated to
induce tumor regression (Zacharakis et al., 2018). Clinical
investigations aimed at expanding anti-HER2 specific T-cells for
reintroduction into patients in combination with Trastuzumab
(NCT05378464) are currently actively recruiting. Moreover,
genetically engineered CAR-T cells have been developed targeting
commonly expressed breast cancer antigens such as HER2 (Szoor
et al., 2020), EGFR (Liu et al., 2019), EpCAM (Osta et al., 2004), AXL
(Zhao et al., 2020a) and c-MET (Tchou et al., 2017). Unfortunately,
CAR-T cells are met with the same challenges as regular T-cells where
the tumor microenvironment may not be permissive for their survival
or activity, presence of inhibitory immune cells as well as lack of
homing cues (Li et al., 2020). Studies have addressed this by
stimulating STING using 2′3′-cGAMP or DMXAA which
improved trafficking and CAR-T cells targeting HER2 in the TIME
of breast cancer (Xu et al., 2021). Tumor heterogeneity, whereby some
tumor cells may lack the antigen targeted by the CAR or loss of MHC
class 1 which is required for recognition of the tumor cell may hinder
the impact of CAR-T cells (Li et al., 2020; Luo et al., 2022).

Development of CAR-natural killer (CAR-NK) cells targeting
breast cancer tumor antigens (Liu et al., 2020; Portillo et al., 2021)
harbours several advantages over CAR-T cells, importantly not
requiring MHC matching (Khawar and Sun, 2021). Therefore,
CAR-NK need not be from the same patient, have a low risk of
graft vs. host disease and do not require MHC to be expressed on the
tumor cell (Khawar and Sun, 2021). Additionally, CAR-NKs
demonstrate enhanced tumor killing potential compared to CAR-T
cells coupled with reduced risk of cytokine release syndrome, which is
acute systemic inflammation that could be life threatening
(Shimabukuro-Vornhagen et al., 2018; Khawar and Sun, 2021;
Portillo et al., 2021).

CAR-macrophages (CAR-Ms) have similar advantages to CAR-
NKs with the addition of macrophages having better capacity at
infiltrating the tumor (Klichinsky et al., 2020). CAR-M targeting
HER2, decreased tumor burden and increased overall survival of
tumor bearing mice (Klichinsky et al., 2020). Moreover, they
induced expression of inflammatory cytokines capable of
converting tumor resident M2 macrophages to the M1 phenotype
and boosted anti-tumor T-cell activity (Klichinsky et al., 2020). To our

knowledge, no clinical trials are currently underway assessing CAR-
NKs or CAR-Ms in breast cancer.

Overall, while immune cold tumors represent a difficult to treat
tumor and are associated with poor patient outcome, there is
encouraging data suggesting that reactivation of the tumor
immunity cycle via STING agonists or targeting ENPP1 or
CD73 is sufficient to increase immune cell infiltration into the
tumor especially in combination with either chemotherapy or
radiotherapy. Targeting hypoxia both directly (through HIF
inhibition) and indirectly (through RTKs) may relieve T-cell
exclusion therefore, sensitizing patients to traditional therapies and
immunotherapies. Epigenetic rewiring of the tumor as well as the
immune cells themselves may increase their activation and infiltration
into the tumor. Oncolytic virus-based therapies may induce hotness in
the tumor due to DAMP and PAMP generation. Finally, to increase
the number of anti-tumor immune cells at the tumor generation of
genetically engineered T-cells, NKs and macrophages may help
reshape the TIME (Figure 3).

Targeting hormone receptor positive
breast cancer—An immune cold subtype

As evident in this review [as well as in others (Goldberg et al.,
2021)], significant effort has been focused on understanding the TIME
of TNBCs and to a lower extent HER2+ breast cancer given that they
represent the most aggressive subtypes. However, 70% of breast cancer
diagnoses are ER/PR+ (collectively referred to as hormone receptor
positive, HR+), thus understanding the TIME of these tumors is of
clinical importance (Goldberg et al., 2021). While endocrine therapy is
usually restricted to HR+ breast cancer, the ER is expressed in other
cell types, including immune cells (Chakraborty et al., 2023).
Moreover, in premenopausal women, significant levels of estrogen
may reach the mammary gland and reshape the TIME (Svoronos et al.,
2017).

Efforts at understanding the TIME in HR+ breast cancers have
been made through use of human breast cancer biopsies and clinical
trials. It is now widely accepted that HR+ (particularly HR+/HER2-)
status represents immune cold tumors that exhibit reduced T-cell
infiltrate (Goldberg et al., 2021). Aforementioned, HR+ breast tumors
harbour a lower tumor mutational burden (Thomas et al., 2018;
Barroso-Sousa et al., 2020) coupled to significantly lower
expression levels of MHC class I and PDL1 compared to other
breast cancer subtypes (Zhang et al., 2017; Onkar et al., 2023).
Consistent with this notion, activity of the ER is negatively
correlated with IFN expression while PR signalling dampens the
(signalling transducer and activator of transcription 1 (STAT1)-
IFN signaling axis (Lee et al., 2016; Goodman et al., 2019).
Additionally, increasing number of stromal T-cells in HR+ breast
cancer is a negative prognostic factor (Denkert et al., 2018) and having
lower T-cell counts after chemotherapy is associated with improved
relapse free survival in HR+ disease (Watanabe et al., 2018). Whether
the lower stromal T-cell count is due to increased infiltration into the
tumor nest remains to be fully addressed and would explain these
discrepancies. Overall, it has become abundantly clear that HR+
tumors are fortified with multiple mechanisms that allow them to
support an immune cold TIME.

Estrogen deprivation through inhibition of aromatase by letrozole
reduced levels of FOXP3+ Tregs (Generali et al., 2009) with a
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prominent increase in CD8+/Tregs ratio especially in responders (Chan
et al., 2012). Additionally, progesterone supplementation was found to
decrease natural killer cell and natural killer T-cell population in a
mouse model of PR+ disease (Werner et al., 2021), suggesting that
both female hormones may act in concert to generate an
immunosuppressive TIME. Tamoxifen is one of the most
prescribed breast cancer medications in the adjuvant setting.
Studies have demonstrated that tamoxifen treatment induced
proliferation of active T-cells (Komi and Lassila, 1998) and
increased natural killer cell activity (Richards et al., 2016). Ablation
of estrogen activity reduced recruitment of myeloid derived
suppressor cells and boosted T-cell activity through its action on
the JAK/SRC/STAT3 pathway in the immune cells (Svoronos et al.,
2017) indicating that anti-estrogens may have implications in non-
ER+ cancers as well. Indeed, estrogen has been demonstrated to
induce pro-tumor M2 macrophage polarization (Toniolo et al.,
2015) as well as inhibit production of IFNγ and increased
expression of indoleamine 2,3-dioxygenase (IDO) which is a T-cell
inhibitor, by mature dendritic cells (Liu et al., 2002; Xiao et al., 2004).
Attempts have further been made to bolster the anti-tumor immune
response generated by tamoxifen treatment through combination with
IFNβ and IL2, which prolonged survival of patients harbouring distant
metastasis (Nicolini and Carpi, 2005; Nicolini et al., 2005). However,
in autoimmune encephalomyelitis, tamoxifen induced upregulation of
Th2 cytokine expression (Bebo et al., 2009), as well as in vitro
neutrophil NET formation (Corriden et al., 2015). Prolonged
treatment of tumors with ER antagonist, fulvestrant, induced
upregulation of PDL1 that contributed to immune exhaustion
(Huhn et al., 2022). In summary, while tamoxifen and biosimilar
agents modulate the TIME positively by increasing immune infiltrate,
new accumulating evidence suggests that prolonged treatment with
such molecules may establish an immunosuppressive
microenvironment. While this immunosuppressive
microenvironment may allow for immune escape, it is highly
amenable to immunotherapy, further supporting the idea of
combination approach.

Activating mutations in the gene encoding the ER (ESR1) have
been identified in the context of metastatic breast cancer previously
treated with tamoxifen and aromatase inhibitors (Turner et al., 2020;
Zundelevich et al., 2020). Mutations in the ER are associated with
reduced progression free survival and overall survival (Turner et al.,
2020; Zundelevich et al., 2020) as well as resistance to the HR+ breast
cancer standard of care (Herzog and Fuqua, 2021; Liang et al., 2022).
Interestingly, it was recently demonstrated that tumors harbouring
mutations in the ER had elevated levels of inflammatory cytokines
S100A8 and S100A9, Tregs and PDL1 positive macrophages in addition
to expression of the immunosuppressive cytokine, chitinase-3-like 1
(CHI3L1) (Zhao et al., 2020b; Williams et al., 2021; Li et al., 2022).
Neutralizing antibodies against CHI3L1 have demonstrated strong
ability to revert immunosuppression and synergized with ICB in other
cancer models (Ma et al., 2021) suggesting that targeting CHI3L1in ER
mutant breast cancer may be a viable option to alleviate
immunosuppression that resulted due to excessive inflammation.
Overall, this data contends that while ER mutations promote
therapeutic resistance to the traditional standard of care, the switch
to an immune hot microenvironment may be associated with immune
vulnerabilities. Several clinical trials assessing next-generation,
selective estrogen receptor modulators or degraders are currently in
progress to identify ones that have a positive clinical impact on

patients harbouring mutant ER tumors/metastases [summarized in
(Herzog and Fuqua, 2021)].

CDK4/6 inhibition in combination with aromatase inhibitors or
ER modulators (such as letrozole and fulvestrant) is currently
emerging as the standard of care for HR+ breast cancers due to
improved patient survival in clinical trials (Im et al., 2019; Slamon
et al., 2020). Emerging clinical and preclinical evidence has suggested
that CDK4/6 inhibitors relieve immune suppression (Goel S et al.,
2017; Deng et al., 2018; Scirocchi et al., 2022) through increased
antigen presentation, expression of endogenous retroviral elements
and induction of a Type III IFN response (Goel S et al., 2017). This has
warranted the need for clinical trials to address the impact of
combined CDK4/6 inhibition, ER modulation and immunotherapy
such as anti-PD1 or anti-PDL1 (NCT02778685, NCT03573648 and
NCT03294694) (Rampioni Vinciguerra et al., 2022).

Overall, the TIME of HR+ breast cancer is highly complex.
Additionally, understanding the TIME to the same degree as
TNBC and HER2+ breast cancer is needed to better prognosticate
and improve treatment of the various TIME of HR + breast cancer that
potentially exists.

Targeting immune hot tumors and
metastasis by resolving inflammation

Chronic inflammation is a hallmark of cancer (Hanahan and
Weinberg, 2011). Indeed, several benign pathologies marked with
chronic inflammation, such as liver cirrhosis or inflammatory bowel
disease, are associated with an increased risk of developing cancer
(Sangiovanni et al., 2004; Grivennikov et al., 2010; Beaugerie et al.,
2013). Oncogenesis is promoted by an unresolved inflammatory
response which leads to the accumulation of stromal cells and loss
of tissue homeostasis (Hanahan andWeinberg, 2011; Quail and Joyce,
2013). Excessive inflammation and expression of cytokines such as
IFNs induce expression of immune checkpoint molecules such as
PDL1, which in turn negatively regulate anti-tumor immune cells,
leading to immunosuppression that is essential for tumor progression
(Hanahan and Weinberg, 2011; Galon and Bruni, 2019). Therefore,
strategies treating such tumors attempt to resolve excessive
inflammation while making efficient use of immunosuppressive
molecule inhibition to counteract tumor-induced T-cell dysfunction.

Tumor-intrinsic immunosuppression through
oncogenic pathway induction

Activation of the nuclear factor kappaB (NFΚB) inflammatory
pathway is observed predominantly in ER negative tumors through
activation of RTKs and/or cellular stress (Biswas et al., 2004; Frasor
et al., 2015; Wang et al., 2015). Moreover, active NFKB is correlated
with larger, more advanced tumors and correlates with lung and brain
metastasis (Wang et al., 2015). NFKB activity is associated with
expression of inflammatory cytokines that promote
Th2 polarization and maintaining a cancer stem cell population
that facilitates oncogenesis (Liu et al., 2010; Wang et al., 2015;
Zhang et al., 2022). Inhibition of NFKB delayed tumor onset and
abrogated tumor progression in a PyMT driven model of breast cancer
(Connelly et al., 2011). Recent work demonstrated that the
reticuloendotheliosis viral oncogene homolog A (RELA) subunit of
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NFKB recruits cat eye syndrome chromosome region candidate 2
(CECR2), an epigenetic factor that induces gene expression of several
inflammatory cytokines including colony stimulating factor 1 (CSF1)
(Zhang et al., 2022). This interaction was important in recruitment of
macrophages as well as their polarization to the M2 state in the lung
metastatic niche (Zhang et al., 2022). Targeting CECR2 in mice
harbouring orthotopically transplanted 4T1 cells reduced metastasis
through reduced M2 macrophage levels and concomitant increase in
cytotoxic T-cell activity (Zhang et al., 2022).

NFKB components have been shown to interact with STAT3 and
coregulate inflammatory oncogenic pathways in breast cancer (Fan
et al., 2013). In addition to STAT3’s ability to regulate the immune
microenvironment, STAT3 transcriptional targets regulate anti-
apoptotic pathways, EMT and expression of metalloproteinases
(MPPs) that act in concert to regulate growth and metastasis (Ma
et al., 2020). Interestingly, mammary specific knockout of STAT3 in
the PyMT model did not impact nascent tumors, but they were
eventually eliminated by an active innate and adaptive immune
response (Jones et al., 2016). This finding contends that targeting
STAT3 or one of its essential transcriptional targets may be sufficient
to induce a robust anti-tumor immune response that leads to complete
clearance of tumors. It is noteworthy that our STAT3 knockout was
restricted to the mammary epithelium (Jones et al., 2016), future
studies using STAT3 inhibitors (Zou et al., 2020) to address the role of
STAT3 in other cell types of the TIME are essential for understanding
the full role of STAT3 in immunosuppression. To this end,
STAT3 activation (assessed using expression of phosphorylated
STAT3) in astrocytes of the brain microenvironment supported
invasive growth of breast-to-brain metastasis in part through
reduced activation of T-cell activity and upregulation of
CHI3L1 expression (Priego et al., 2018; Dankner et al., 2022). TTI-
101, a STAT3 inhibitor, is currently in early phase clinical trials
(NCT03195699 and NCT05384119). Of note, active
STAT3 downstream interleukin (IL) six was demonstrated to bind
estrogen response elements and promote gene expression independent
of the ER or its coactivator forkhead box A1 (FOXA1) promoting
metastasis and resistance to anti-estrogen-based therapy (Siersbaek
et al., 2020).

Targeting macrophages

Macrophages are the most abundant immune cell type in the
TIME, thus representing an attractive therapeutic target. Work from
the PyMT mouse model demonstrated that as the tumor progresses,
there is a decrease in mammary resident macrophages and an increase
in tumor associated macrophages (Attalla et al., 2021). Macrophages
are recruited to the tumor site due to expression of inflammatory
cytokines, especially CSF1 and chemokine ligand (CCL) 2 (Lin et al.,
2001; Franklin et al., 2014; Linde et al., 2018; Neubert et al., 2018). The
importance of CSF1 was demonstrated using CSF1 knockout PyMT
mice which exhibited delayed disease progression as well as prevented
pulmonary metastasis through loss of vascular endothelial growth
factor (VEGF) and epidermal growth factor (EGF) expression (Lin
et al., 2001). Moreover, macrophages promote tumor cell migration
and metastatic dissemination through secretion of EGF and Wnt1
(Wyckoff et al., 2007; Linde et al., 2018). Macrophages, especially those
M2 polarized, establish the immunosuppressive microenvironment in
immune hot subtypes through expression of cytokines that promote

Th2 T-helper cell polarization and inhibition of cytotoxic T-cell
function (Liu et al., 2021) (Figure 4A). Moreover, macrophages
have been demonstrated to expresses PDL1 to promote exhaustion
of T-cells (Ahmed et al., 2020). Inhibition of CSF1 receptor (CSFR) by
small molecule (BLZ945) has demonstrated anti-tumor effects in
glioma and breast cancer models through loss of M2 polarized
macrophages and enhancement of T-cell recruitment to the tumor
(Pyonteck et al., 2013; Strachan et al., 2013). Phase II clinical trial for
TNBC combining Pembrolizumab (anti-PD1), radiation and
Axatilimab (anti-CSFR) is currently ongoing (NCT05491226).

Another macrophage marker that has demonstrated pre-clinical
interest is the “do not eat me” signaling axis consisting of signal
regulatory protein-alpha (SIRPα) expressed on the macrophage (and
other phagocytes) and CD47 expressed on cancer cells (Chen et al.,
2022). CD47 is transcriptionally regulated by inflammation, though
NFKB and TNF (Betancur et al., 2017) as well as hypoxia, through
HIF1α (Zhang et al., 2015). CD47 has also been demonstrated to be an
essential breast cancer stem cell marker (Zhang et al., 2015; Kaur et al.,
2016; Chen et al., 2022). Engagement of CD47 with SIRPα inhibits the
phagocytic capacity of macrophages (Chen et al., 2022). Antibody
neutralization of CD47, induced a shift towards M1 macrophages and
enhanced antigen presentation (Latour et al., 2001; Zhang et al., 2016;
Chen et al., 2022). CD47 blockade also synergized with trastuzumab
through enhancing antibody dependent cellular phagocytosis (Tsao
et al., 2019). Multiple anti-CD47 antibodies have been developed and
are under clinical assessment (Chen et al., 2022).

Targeting neutrophils

Neutrophils are the most common cell type in human blood and
have recently gained significant research interest. The neutrophil to
lymphocyte ratio in many solid tumors is correlated with patient
survival with a higher ratio being associated with worse patient
survival (Bartlett et al., 2020; Gago-Dominguez et al., 2020).
Neutrophils are recruited to the tumor (site of injury) through
secretion of inflammatory cytokines such as tumor growth factor β
(TGFβ), CXCL8 (also known as IL-8), CXCL1, CXCL2 as well as IFNs
(SenGupta et al., 2021). Furthermore, neutrophils secrete MMP9
(SenGupta et al., 2021) a prominent enzyme that degrades the
extracellular matrix, promoting cancer progression and tumor cell
dissemination (Owyong et al., 2019). Moreover, expression of
chemokine ligand CCL20 by the tumor cell induced expression of
PDL1 on neutrophils which reinforces an immunosuppressive
microenvironment via exhaustion of T-cells (Kwantwi et al., 2021).

Strikingly, neutrophils have been demonstrated to undergo a
process known as NETosis, during which a neutrophil secretes its
DNA into a weblike structure (Vorobjeva and Chernyak, 2020). NET
formation is promoted by cancer derived factors such as granulocyte-
CSF (G-CSF), CXCL5, CXCL6 (Ronchetti et al., 2021). NETosis has
been further demonstrated to contribute to cancer progression and
metastasis (Ronchetti et al., 2021). Interestingly, NETs have been
demonstrated to sequester circulating tumor cells to ensure their
successful metastatic colonization (Cools-Lartigue et al., 2013).
Depletion of neutrophils reduced metastatic dissemination via
reliving inhibition of cytotoxic T-cell activity (Coffelt et al., 2015).
Targeting NETosis using DNase I to dissolve the extracellular DNA or
inhibiting protein arginine deiminase 4 (PAD4), an enzyme required
for NET formation, using small molecules inhibited cancer growth,
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metastasis and recurrence in models of breast cancer (Park et al., 2016;
Ruiz-Fernandez de Cordoba et al., 2022). Moreover, inhibition of
PAD4 using GSK484 sensitizes TNBC xenografts to radiotherapy
(Wei et al., 2021) and synergizes with anti-PD1/anti-CTLA dual
therapy (Teijeira et al., 2020). Interestingly, NETs were
demonstrated to encapsulate tumors cells, preventing physical
contact between T-cells and tumor cells (Teijeira et al., 2020;
Shinde-Jadhav et al., 2021) and thus may promote T-cell exclusion
from the tumor (Figure 4B).

Accumulating evidence suggests that targeting pathway associated
with inflammation or cells accumulated at the primary tumor site due
to the inflammation can act in synergy with other already approved
immunotherapies to lead to collapse of the primary tumor or
inhibition of metastasis.

Development of bispecific antibodies for
treatment of breast cancer

Driven by the idea of combinational therapies, bispecific
antibodies (bsAbs) that simultaneously bind multiple tumor
specific antigens and/or immune cells leading to an anti-tumor
immune response have been generated (Dees et al., 2021). Most
bsAbs function as CD3+ T-cell engagers, that direct T-cells to the
tumor epithelium to elicit their anti-tumor function (Dees et al., 2021).

Therefore, bsAbs that target T-cells and commonly expressed breast
cancer cell surface antigens such as HER2 (Sen et al., 2001), EGFR
(Stamm et al., 2019), epithelial cell adhesion molecule (EpCAM)
(Kubo et al., 2018), trophoblast cell-surface antigen 2 (Trop2) and
carcinoembryonic antigen-related cell adhesion molecule 5
(CEACAM5) (Chang et al., 2017) have been developed to
specifically target tumors expressing these markers. Prominently,
CD3/HER2 targeting bsAb (Runimotamab) is under clinical
investigation for HER2+ breast cancer (NCT03448042). In addition
to T-cell engagers, novel natural killer (NK) cell redirectors have been
generated through the use of CD16 (Fc receptor expressed on natural
killers) to target the breast cancer antigen, mesothelin known as
MesobsFab (Del Bano et al., 2019). MesobsFab promoted
recruitment and penetration of NK cells into spheroids as well as
demonstrating anti-tumor effects in humanized mice (Del Bano et al.,
2019).

It is important to note that the success of these antibodies is highly
dependent on T-cells being capable of fully infiltrating the tumor. A
cold TIME or restriction of T-cells to the margin or stroma may
dampen the effect of these antibodies and render the tumors resistant.
Efforts aimed at improving the immunogenicity of tumors and
immune cell trafficking into the tumor (discussed in “Approaches
to Treat Immune Cold Tumors”) may enhance the effects of these
therapies. Additionally, bsAbs have demonstrated to work additively
with anti-PD1 treatment (Chang et al., 2017) especially because some

FIGURE 4
Strategies targeting immune hot tumors andmetastasis, (A) A loop betweenmacrophages promotes immunosuppression by activating inhibitory T-cells
such as Tregs and inhibition of cytotoxic T-cells. Inhibitory T-cells emphasize the suppression of cytotoxic T-cells, (B) At the primary tumor site, NETotic
neutrophils protect the tumors from cytotoxic T-cells, (C) At themetastatic site, neutrophils promote vascular permeability to allow extravasyion of the tumor
cells and macrophages support the immunosuppressive environment via MSP/RON. Figure generated with biorender.com.
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bsAbs have been demonstrated to induce expression of IFNγ (Sen
et al., 2001) which may increase expression of PDL1, suggesting that
bsAbs monotherapy may not be suffice due to T-cell exhaustion.

Targeting the immune compartment at
the metastatic site

Nearly all breast cancer deaths are a result of metastasis to essential
organs such as brain, lung and liver (Harbeck et al., 2019). Therefore,
efforts at both preventing and more importantly treating metastasis at
these sites is crucial for improving patient care. Studies using PyMT
mice demonstrated that neutrophils accumulate in the lung even
during the pre-metastatic stage and are essential for metastatic
colonization from the primary tumor site (Wculek and Malanchi,
2015). Additionally, it was demonstrated that tumor derived exosomes
carry RNA to the type II alveolar cells of the lung stimulating
expression of CXCL1, CXCL2, CXCL5 and CXCL12, through
engagement with the toll like three receptor (TLR3), which recruit
neutrophils (Liu et al., 2016). TLR3 knockout was sufficient to reduce
pulmonary metastasis, suggesting that targeting TLR3 perhaps by a
neutralizing antibody (Duffy et al., 2007) may be a viable option at
inhibiting metastasis.

Obesity, which is associated with an increase in systemic
inflammation is correlated with an increased incidence of
metastasis and disease aggressiveness (Carmichael and Bates, 2004).
Mouse modelling demonstrated that obesity due to a high fat diet or
using the genetic ob/ob model is associated with lung neutrophilia due
to upregulation of granulocyte/macrophage (GM)-CSF and
IL5 expression (Quail et al., 2017). Profiling of neutrophils
demonstrated that obesity was associated with an increase in
markers of mobilization and activation and was sufficient to
promote lung colonization of PyMT cells from a tail vein assay
(Quail et al., 2017) through neutrophil-mediated vasculature
permeability (McDowell et al., 2021). Inhibiting NETosis using
GSK484 reduced PyMT breast cancer cell extravasation (McDowell
et al., 2021) (Figure 4C). Taken together, these studies strongly
demonstrate the connection between obesity and lung colonization
by cancer cells through obesity mediated priming of the metastatic
niche. However, studies demonstrating whether targeting neutrophils
(or other immune cells) in an already established metastatic niche are
critical for improving patient care for those with metastatic cancer.

Mice harbouring breast-to-liver, but not breast-to-lung metastasis,
had a significant increase in low-density neutrophils (LDNs) which are
an “immature subset of neutrophils” recruited due to tumor
expression of G-CSF (Hsu et al., 2019). Knockdown of G-CSF in
liver metastatic cells reduced LDN recruitment and reduced liver
metastatic burden (Hsu et al., 2019). This work emphasizes that
neutrophils are a heterogenous population of granulocytes and
specific subsets may be required for organotropic metastasis.

Accumulating evidence for neutrophils regulating several stages of
cancer progression and therapeutic resistance makes them an
interesting clinical target. However, to our best knowledge no
clinical trial has been established to assess targeting neutrophils or
NETosis in breast cancer.

Macrophages represent another interesting target at both the
primary and metastatic site. Pulmonary administration of PLX-
3397, a CSFR inhibitor reduced metastatic burden in mice
harbouring orthotopic 4T1 tumors (Alhudaithi et al., 2020).

This was accompanied by a decrease in M2 macrophages and a
concomitant increase in M1 macrophages (Alhudaithi et al.,
2020). A series of work has identified the immunosuppressive
pathway of macrophage stimulating protein (MSP) to be essential
for immunosuppression and metastatic outgrowth (Eyob et al.,
2013a; Eyob et al., 2013b). MSP is released from the liver as an
inactive precursor which becomes activated once cleaved by
matriptase (ST14) found on the surface of cancer cells and
macrophages (Eyob et al., 2013a). Active MSP binds its
receptor, macrophage stimulating one receptor (MST1R/RON),
activating a series of downstream signaling in macrophages which
are essential for immunosuppression (Eyob et al., 2013a; Eyob
et al., 2013b; Lai et al., 2021). MSP overexpression in the PyMT
model promoted more aggressive primary tumor behaviour and
promoted osteolytic bone metastasis formation (Welm et al.,
2007). Targeting RON through genetic knockout or
pharmacological inhibition using BMS-777607/ASLAN002 in
the PyMT model prevented the formation of overt lung
metastasis through upregulation of a series of anti-tumor
cytokines; IL12 and IFNγ and downregulation of pro-tumor
cytokines; TNFα and IL10 (Eyob et al., 2013a). Inhibition of
RON promoted loss of M2 macrophages and induction of
cytotoxic and Th1 T-cell activities resulting in reduced growth
of pulmonary metastasis (Eyob et al., 2013b; Lai et al., 2021).
Moreover, inhibition of RON synergized with anti-CTLA based
therapy to inhibit pulmonary metastasis outgrowth (Ekiz et al.,
2018). It is important to emphasize that treatment of established
micro-metastasis with BMS-777607/ASLAN002, diminished
growth of the lesions (Eyob et al., 2013b; Ekiz et al., 2018).
This data indicates that inhibition of RON is a viable option
for treatment of metastatic disease.

Conclusions and future directions

It became increasingly clear that novel strategies are required to
better classify breast tumors based on a collection of histological,
molecular, and immune phenotypes is required to better prognosticate
and manage the disease. The breast TIME, at least in the TNBC
subtype, is broadly divided into immune hot and immune cold
subtypes as well as intermediate subtypes where T-cells are
excluded from the tumor nest. While elegant work has been done
in understanding the spatial profile of the tumors, functional work
identifying pathways to be targeted that lead to abrogation of T-cell
exclusion from the tumor nest are still required. Introducing inhibitors
that are sufficient to abrogate exclusion of T-cells into a clinical setting
may increase the number of responders to T-cell dependent
immunotherapy. We are still lacking similar observations to be
made in HR+ breast cancer which may allow better stratification of
patients and identifying those that respond to immunotherapy versus
non-responders. Sophisticated approaches such as single cell
sequencing, spatial transcriptomics and multiplex
immunohistochemistry and RNA in situ hybridization technologies
could be leveraged to better understand the complex immunbiology of
breast tumors. This may be a particularly interesting avenue especially
in the context of ERmutant disease. There is accumulating pre-clinical
evidence suggesting that T-cell infiltration and activation through
modulation of the STING/adenosine pathways and epigenetic
rewiring of the tumor in combination with chemo/radiotherapy
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may have a clinically positive impact on patient survival and outcome.
Oncolytic viruses are an upcoming avenue which may allow for
immune mediated elimination of tumors as well as sensitize
tumors to immunotherapies. Clinical evaluation of these
interventions may lead to introduction of novel clinical
interventions. For immune hot tumors, strategies aimed at
resolving inflammation due to oncogene activation as well as
eliminating immune cells that accumulate due to the chronic
inflammation may synergize with ICB as well as inhibit metastasis.
Emerging evidence strongly supports that immunotherapy coupled
with other precision oncology agents will eventually become part of
standard of care for breast cancer management.
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