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Telomerase is a ribonucleoprotein enzyme responsible for maintaining the
telomeric end of the chromosome. The telomerase enzyme requires two main
components to function: the telomerase reverse transcriptase (TERT) and the
telomerase RNA (TR), which provides the template for telomeric DNA synthesis. TR
is a long non-coding RNA, which forms the basis of a large structural scaffold upon
which many accessory proteins can bind and form the complete telomerase
holoenzyme. These accessory protein interactions are required for telomerase
activity and regulation inside cells. The interacting partners of TERT have beenwell
studied in yeast, human, and Tetrahymena models, but not in parasitic protozoa,
including clinically relevant human parasites. Here, using the protozoan parasite,
Trypanosoma brucei (T. brucei) as a model, we have identified the interactome of
T. brucei TERT (TbTERT) using a mass spectrometry-based approach. We
identified previously known and unknown interacting factors of TbTERT,
highlighting unique features of T. brucei telomerase biology. These unique
interactions with TbTERT, suggest mechanistic differences in telomere
maintenance between T. brucei and other eukaryotes.
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1 Introduction

Telomeres are the nucleoprotein structures found at the ends of eukaryotic
chromosomes. Conventional DNA polymerases are unable to fully replicate the ends of
linear DNA molecules, which leads to progressive telomere shortening after every cell
division (Shay and Wright, 2019). This problem is solved by the ribonucleoprotein enzyme,
telomerase. Proper maintenance of the telomeric end is critical for maintaining genome
integrity in eukaryotes. The telomerase enzyme has two essential components: the
telomerase RNA (TR), which provides the template required for telomeric DNA
synthesis (Greider and Blackburn, 1989); and the catalytic protein telomerase reverse
transcriptase (TERT) that catalyzes the de novo synthesis of the telomere G-rich strand.
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The action of telomerase counteracts progressive telomere
shortening after every cell division.

TERT and TR are the minimum components required for the
telomerase activity in vitro (Chen et al., 2000; Collins, 2006). TR can
form a large structural scaffold upon which many accessory proteins
can bind to and form the complete telomerase holoenzyme in vivo.
These accessory proteins are required for in vivo telomerase activity
and regulation (Wang et al., 2019). Interacting partners of the TERT
protein have been extensively characterized in yeast, human, and
Tetrahymena systems, but they have not been extensively studied in
parasitic protozoa including clinically relevant human parasites,
such as Trypanosoma brucei (T. brucei). T. brucei is the parasite
that causes African sleeping sickness in humans. During its life cycle,
T. brucei will shuttle between an insect vector and a mammalian
host. During this time, the parasite will differentiate into distinct
developmental stages: Bloodstream form (BF) parasites proliferate
in the mammalian host, and Procyclic form (PF) parasites
proliferate in the midgut of the insect vector. Unlike human
somatic cells, which tightly regulate telomerase activity, T. brucei
telomerase is constantly active, enabling continued cell division in
their hosts, leading to a chronic infection. BF T. brucei also has the
advantage of evading its host immune response through antigenic
variation. During this process, T. brucei regularly switches to express
different Variant Surface Glycoproteins (VSGs), its major surface
antigen. T. brucei has a very large VSG gene pool, but only one VSG
gene is expressed at any given time. VSGs are expressed exclusively
from VSG expression sites (ESs), which are large polycistronic
transcription units located at subtelomeric loci of the parasite’s
genome within 2 kb of telomeres (De Lange and Borst, 1982; Hertz-
Fowler et al., 2008). Therefore, telomerase activity is critical to
maintain the integrity of these VSG genes. In cells where the
TERT protein has been deleted (TbTERT−/−), extremely short
telomeres adjacent to the active ES leads to an increase in VSG
switching frequency (Dreesen and Cross, 2006; Hovel-Miner et al.,
2012). Telomeric binding proteins have also been shown to affect
VSG silencing and switching (Yang et al., 2009; Benmerzouga et al.,
2013; Jehi et al., 2014; Jehi et al., 2016; Nanavaty et al., 2017; Afrin
et al., 2020; Rabbani et al., 2022). Telomerase mediated telomere
maintenance in T. brucei is required for the maintenance of
subtelomeric VSG genes. Because of this, studies of telomerase
function and regulation in T. brucei could give novel insights
into the pathogenicity of this parasite.

The RNA component of T. brucei telomerase (TbTR) has a
unique structure and sequence composition compared to higher
eukaryotes (Sandhu et al., 2013; Podlevsky et al., 2016; Dey et al.,
2021). Our recent study on TbTR suggests mechanistic differences in
telomeremaintenance between T. brucei and higher eukaryotes (Dey
et al., 2021; Rabbani et al., 2022, underscoring the importance of
investigating the functional interactome of T. brucei telomerase.
Previous proteomic studies on ciliated single-cell protozoan
Tetrahymena identified several RNA binding proteins, including
p65 that copurifies with TR and TERT and promotes proper folding
of TR for telomerase holoenzyme assembly and activity (Witkin and
Collins, 2004; Berman et al., 2010; Singh et al., 2012; Upton et al.,
2017; He et al., 2021). Although homologs of p65 have not been
found outside ciliate ancestry, the complex of dyskerin, NHP2,
NOP10, and GAR1 that bind the H/ACA domain of human TR
are thought to be the functional analog of the p65 chaperone in

human telomerase (Berman et al., 2010; Roake and Artandi, 2020).
Indeed, these H/ACA binding proteins are known to facilitate
human TR folding by enabling the human CR4/5 domain to
adopt a particular conformation that interacts with TERT (Egan
and Collins, 2012; Chen et al., 2018). Interestingly, in TbTR, the
human H/ACA type snoRNP binding domain is replaced by a
unique C/D box snoRNA domain (Gupta et al., 2013). In
addition, TCAB1, another telomerase RNA-binding protein, was
previously discovered as a part of human telomerase complex by
mass spectrometry, which is important for intracellular trafficking
(Venteicher et al., 2008) and regulating the folding of CR4/5 domain
of human TR and telomerase activation. However, despite the fact
that TbTR possesses stage-specific structural changes in an active
telomerase complex (Dey et al., 2021), major interactors in this
complex remain unidentified.

In addition to the canonical function of the TERT protein to
protect telomeric ends of chromosomes, emerging evidences also
suggest that telomerase can contribute to oxidative stress
response in a telomere-independent manner. TERT has been
shown to shuttle to mitochondria under increased oxidative
stress and influence processes related to DNA damage and cell
death (Santos et al., 2004; Ahmed et al., 2008; Indran et al., 2011).
There are 5 respiratory chain complexes in human mitochondria
that can regulate redox processes and hTERT enhances complex I
activity (Ale-Agha et al., 2021). Beyond this, very little is known
about the involvement of mitochondrial proteins in TERT
function. Interestingly, T. brucei protein TbUMSBP2
(Klebanov-Akopyan et al., 2018), which binds to single-
stranded G-rich sequence at the replication origins of the
mitochondrial DNA of trypanosomatids, colocalizes with
telomeres at the nucleus, but whether this activity is
coordinated by telomerase mediated DNA repair is not known.

In order to gain a global view and mechanistic insight into
telomerase function and regulation in T. brucei, we identified the
interacting factors of T. brucei telomerase reverse transcriptase
(TbTERT) using an affinity-purification based mass spectrometry
approach. We identified previously known and novel interactors of
TbTERT and validated several key interactions. Studying the
interactome of TbTERT lays the foundation for future studies of
telomerase regulation in T. brucei.

2 Materials and methods

2.1 Culture of bloodstream form (BF) T.
brucei cells

T. brucei Lister strain 427 was used throughout this study. All BF
cells were grown in HMI-9 media supplemented with 10% heat-
inactivated Fetal Bovine Serum (FBS) at 37°C and 5% CO2. T. brucei
Lister 427 strain expressing the T7 polymerase and Tet repressor
(single marker, AKA SM) (Wirtz et al., 1999) was grown in media
containing 2 μg/mL of G418; TbTERT-FLAG-HA-HA (F2H) cells
grown with 2 μg/mL of G418, 0.1 μg/mL Puromycin; TbTR ΔC/D
box mutant cells were grown with 2 μg/mL of G418, 4 μg/mL of
Hygromycin, 2.5 μg/mL of Phleomycin, 5 μg/mL of Blasticidin,
0.1 μg/mL of Puromycin and 0.1 μg/mL of Doxycycline to
constitutively induce the TbTR mutations.
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2.2 Plasmids

The TbTR WT gene without 3’ C/D box region (nt 841–943)
together with 400 bp upstream and 380 bp of downstream TbTR
flanking sequences were cloned into the pLew111 plasmid to
generate pLew111-TbTR ΔC/D box plasmid.

2.3 Generation of the BF T. brucei ΔC/D box
mutant strain

To generate the TbTR ΔC/D box mutant strain, pLew111-TbTR
ΔC/D box plasmid (nt 841–943 deleted) was digested with NotI and
targeted to an rDNA spacer in the SM/TbTR−/− cells under the
phleomycin selection. Clones were confirmed by northern analysis.
XhoI digested pSK-TbTERT-3C-FLAG-HA-HA-PUR plasmid (Dey
et al., 2021) was subsequently transfected into the same cells under
the puromycin selection to generate the SM/TbTR ΔC/D box/
TbTERT+/F2H strain. Clones were confirmed by western and
Southern blotting.

2.4 Immunopurification of T. brucei
telomerase complexes

Immunoprecipitation of T. brucei telomerase was performed
using a custom made anti-TbTERT antibody (Dey et al., 2021) to
purify native telomerase complexes from BF Wild-type (WT) and
BF TbTR ΔC/D box cells. Approximately, 5 × 108 cells/300 mL were
collected by centrifugation at 1900 RPM for 6 min. Following
centrifugation, cells were lysed by homogenization in 500 µL of
1X immunopurified (IP) lysis buffer (25 mM Tris-HCl pH 7.5,
150 mM KCl, 1 mM EDTA, 10 mM MgCl2, 0.5% IGEPAL
CA630, 1X protease cocktail inhibitor, and 20 units of Ribolock
RNase inhibitor). Lysate was then cleared of cell debris by
centrifugation at 3000 RPM for 5 min at 4°C. The lysate was then
pre-cleared by incubated with 50 µL of pre-washed Dynabeads
protein G (10003D) for 1 h at 4°C on rotation. Pre-cleared lysates
were then incubated overnight at 4°C on rotation with 5 µg of a
custom anti-TbTERT antibody and an IgG antibody was added to
the control (Dey et al., 2021). The next day, 50 µL of pre-washed
Dynabeads protein G was added to the lysate antibody mixture and
incubated at 4°C for 2 h on rotation. After incubation, the beads were
collected in a magnetic stand and washed twice in ×1 IP lysis buffer.
After washing, the bound protein was eluted off the beads by boiling
in 100 µL of 1X SDS-PAGE dye for 5 min at 95°C. Eluted proteins
were then stored in −80°C until further use. Each experiment was
performed in biological triplicate (3 IPs and 3 IgG controls). Bound
complexes were assayed for the presence of TbTERT by using an
anti-FLAG antibody as the BF WT cells were TbTERT-FLAG-HA-
HA tagged. Briefly, 4 µL of 100 µL of sample was loaded onto 4%–
12% Novex Tris-glycine gel (Invitrogen, XP04120BOX). Western
blotting was done using an anti-FLAG antibody, diluted 1:500, and
the VeriBlot for IP Detection Reagent (HRP, ab131366) diluted to 1:
10,000. Detection was then done using Pierce ECL Plus
Chemiluminescence kit (Thermo Fisher Scientific, 32,106).
Imaging was then done using Bio-Rad ChemiDoc MP system.

Immunopurification was also performed using Pierce Anti-
DYKDDDDK magnetic beads (A36797). Approximately 6 × 108

cells/300 mL were harvested and lysed in 300 μL of immunopurified
(IP) lysis buffer (25 mM Tris-HCl pH 7.5, 150 mM KCl, 25 mM
NaCl, 1 mM EDTA, 10 mM MgCl2, 0.5% IGEPAL CA630, 1×
protease cocktail inhibitor and 20 units of Ribolock RNase
inhibitor). Lysate was cleared of debris by centrifugation at
3,000 rpm for 5 min at 4°C and incubated with pre-washed 50 μL
of Pierce Anti-DYKDDDDKmagnetic beads (A36797) at 4°C for 2 h
with rotation. Following incubation, the beads were washed twice by
ice cold IP buffer and once with ice cold DEPC water. The beads
were then resuspended in 50 μL of RNAse free water.

2.5 LC-MS/MS analysis

Proteins were separated by SDS-PAGE and Gel segments were
cut and subjected to in-gel digestion using trypsin. Peptides were
desalted using C18 ZipTips (Millipore). Peptides were analyzed on a
Q-Exactive HF hybrid quadrupole-Orbitrap mass spectrometer
(Thermo Fisher) equipped with an Easy LC 1200 UPLC liquid
chromatography system (Thermo Fisher). Peptides were first
trapped using trapping column Acclaim PepMap 100 (75 uM x
2 cm, nanoViper 2Pk, C18, 3 μm, 100A), then separated using
analytical column Acclaim PepMap RSLC (75 um × 25 cm,
nanoViper, C18, 2 μm, 100A) (Thermo Fisher). The flow rate
was 300 nL/min, and a 120-min gradient was used. Peptides were
eluted by a gradient from 3% to 28% solvent B (80% (v/v)
acetonitrile/0.1% (v/v) formic acid) over 100 min and from 28%
to 44% solvent B over 20 min, followed by a short wash at 90%
solvent B. For DDA acquisition, the precursor scan was from mass-
to-charge ratio (m/z) 375 to 1,600 and the top 20 most intense
multiply charged precursors were selected for fragmentation.
Peptides were fragmented with higher-energy collision
dissociation (HCD) with normalized collision energy (NCE) 27.

2.6 LC-MS/MS data and statistical analysis

The resulting raw data files were searched against a concatenated
library (TbruceiTREU927 release 32 databases with 11,202 entries)
using MaxQuant (Tyanova et al., 2016). Carbamidomethyl Cysteine
was set as a fixed modification. Oxidation of methionine and
N-terminal acetylation were set as variable modifications.
Tolerance for precursor ions was set to 4.5 ppm and 20 ppm for
fragment ions. A maximum of two missed cleavages was allowed.
MaxQuant was set to match in between runs and report LFQ. All
other parameters were at the default setting. The proteinGroups.txt
file generated by MaxQuant was further processed using Perseus.
Reverse and possible contaminants were removed from the protein
groups. Samples were separated into an experimental group
consisting of the pull downs of isotype matched IgG (control)
and a group consisting of the TbTERT Immuno-Precipitation
pull downs (3 IPs and 3 IgG controls). Protein groups were
filtered to contain at least three quantifications in one
experimental group. The remaining missing quantifications were
imputed with random numbers from a normal distribution (width
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0.3, shift = 1.8). A two-sided Student’s t-test was performed across
replicates between each experimental group.

2.7 MS bioinformatics analysis

The mass spectrometry proteomic data was analyzed by a range
of approaches. Volcano plot was generated using GraphPad Prism
software version 9.3.1. The STRING database was used for
classifying proteins based on functional categories and gene
ontology (GO) terms. Protein-protein interaction network
analysis was done using STRING version 11.5 (https://string-db.
org/) and visualized by using the Cytoscape software version 3.9.1.

2.8 Structure-guided predictions

Proteins identified by mass spectrometry contained several hits
that have very little primary sequence identity with proteins from
other phyla, so their functional orthologs were not entirely evident
from simple sequence homology. To identify whether structural
homology exists between the local folds of these proteins and those
reported in other organisms, we obtained predicted structure models
of these T. brucei proteins from AlphaFold (Jumper et al., 2021)
using their Uniprot IDs and then queried these ‘PDB’ entries using
programs PDBeFold (Krissinel and Henrick, 2004) and DaliLite
(Holm and Rosenström, 2010). The top scoring and only relevant hit
with a DaliLite Z score cut-off of >2 is considered as biologically
informative structural neighbor of the protein of interest
(Supplementary Table S1).

2.9 Western blotting and SDS-PAGE analysis

All TbTERT western blots were done using either an anti-FLAG
antibody (1:500) or a custom anti-TbTERT C terminus antibody (1:
500) unless otherwise indicated. Nucleolar protein 58 (NOP58) was
detected using an anti-NOP58 antibody (Thermo Fisher Scientific,
PA5-54321) diluted 1:500 and an anti-Rabbit HRP conjugated
secondary antibody diluted to 1:10,000. To qualitatively check
protein levels, 4 µL of IP eluate was separated on a 4%–12%
Novex Tris-glycine gel and stained with Coomassie Brilliant Blue
R-250 Dye (Thermo Scientific, 20,278) for 30 min. The gel was then
destained until bands were visible in destain solution (40% MeOH,
10% acetic acid).

2.10 TbTR detection and telomerase activity
assay

TbTERT IP was performed as described in the methods Section
2.4. To detect the presence of TbTR in the IPed complex, total RNA
was isolated from the protein G magnetic beads using the TRIzol
reagent (Thermo Fisher Scientific, 15596026) following the
manufacturers protocol. 100 ng of isolated RNA was then used
for cDNA synthesis utilizing the SuperScript II reverse
transcriptase (Thermo Fisher Scientific, 18064022) following the
manufacturers protocol. The generated cDNA was then used for

qRT-PCR analysis using TbTR specific primers (Fwd: CTGTGG
AAATTTGTCGTAAGTG, Rev: AGTAGGGTTAGGGATCGT
ATAG).

To determine the activity of the Immunopurified T. brucei
telomerase complex, a modified version of the exponential
isothermal amplification of telomere repeat (EXPIATR) assay was
performed (Tian and Weizmann, 2013; Dey et al., 2021)Briefly, A
master mix was prepared on ice consisting of Nicking Telomerase
Substrate (NTS, GTGCGTGAGAGCTCTTCCAATCCGTCGAGC
AGAGTT), Nicking Probe (NP, AGCAGGAAGCGCTCTTCCTGC
TCCCTAACCCTAACCC), 1X EXPIATR buffer (30 mM Tris-HCl,
pH 8.3, 1.5 mM MgCl2, 100 mM KCl, 1 mM EGTA, 0.05% v/v
Tween20), 200 µM dNTPs, Bst 2.0 Warm start DNA polymerase
(0.96 units) and Nt. BspQ1 NEase (5 units). 17 μL of the master mix
was aliquoted to PCR tubes containing, 3 µL of anti-FLAG bead-
bound T. brucei telomerase, RNase A treated or heat-inactivated
telomerase RNP bound beads, telomerase positive control (TPC8,
GTGCGTGAGAGCTCTTCCAATCCGTCGAGCAGAGTTAGG
GTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT
AGGG) (0.5 μM) and blank beads as a negative control. Telomerase
activity was initiated by initial incubation of tubes at 28°C for 45 min
for Nicking telomerase substrate (NTS) extension followed by
amplification of resultant telomerase products at 55°C for 30 min.
The amplified products were then analyzed on 12%Native PAGE gel
by loading 10 μL of the reaction mixture.

3 Results

3.1 Affinity-purification mass spectrometry
(AP-MS) of BF T. brucei telomerase reverse
transcriptase

Characterizing the global interactors of a protein of interest can
be done through affinity-purification mass spectrometry (AP-MS).
Identifying the interactome of a protein is key in understanding its
function in the cell and how it is regulated. To identify the global
protein interactors of T. brucei telomerase, we utilized AP-MS to
identify the global interactome of TbTERT at the BF stage. We first
immunopurified (IP) TbTERT using a custom anti-TbTERT
antibody along with its associated proteins and performed LC-
MS/MS (Figure 1A). For immuno-affinity purification, 500 ul of
lysate containing 1 mg of total protein was used per IP sample.
TbTERT was pulled down from the lysate using a custom anti-C
terminus TbTERT antibody (Dey et al., 2021). In addition to
verifying the specificity of the custom antibody for binding to
TbTERT, the presence of some non-specific cross-reactive bands
were also observed. The presence of the immunopurified TbTERT
was confirmed using western blotting and SDS-PAGE analysis
(Figures 1B–D). Immunoblot analysis (anti-FLAG antibody) of
the IP fractions from TbTERT-F2H cells showed that TbTERT
was enriched in the pulldown products from anti-TbTERT C
terminus antibody IPs but not from control groups. The anti-
TbTERT C-terminus antibody IP samples were then subjected to
SDS-PAGE and in-gel protease digestion, followed by mass
spectrometry as described in ‘Materials and Methods’. To further
validate the presence of telomerase components in the IP, RNA was
extracted from IP beads and subjected to qRT-PCR analysis to
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confirm the presence of the telomerase RNA in the complex
(Figure 1E). To determine if the immunopurified telomerase
complex was catalytically active, we performed a telomerase
activity assay (EXPIATR) using the IPed complex (Figure 1F).
The result confirmed that the immunopurified T. brucei
telomerase complex was catalytically active. To independently

validate our proteomic screen, another set of affinity enrichment
of TbTERT protein using an anti-FLAG antibody was performed in
duplicates in TbTERT-F2H cells (two biological replicates) and
screened for known TbTERT interactors. Both the TbTERT IP-
MS and TbTERT FLAG pulldown MS data were compared. Since
TbTERT and several other proteins that were previously linked to

FIGURE 1
Affinity-purification mass spectrometry of bloodstream form T. brucei telomerase reverse transcriptase. (A) Experimental workflow for proteomic
analysis. BF T. brucei cells expressing a FLAG tagged version of TbTERT were grown and TbTERT complexes were purified using a custom anti-TbTERT C
terminus antibody. An IgG isotype antibody was used as a control. Purified TbTERT complexes were then digested with trypsin. These peptides were then
analyzed by LC-MS/MS. (B)Western blot confirming the presence of immunopurified TbTERT. IP samples were obtained and run on SDS-PAGE gels
and immunoblotted with anti-FLAG antibody to detect TbTERT. (C)Western blot confirming the presence of TbTERT. IP samples were obtained and run
on SDS-PAGE gels and immunoblotted with an anti-TbTERT C terminus antibody to detect TbTERT. (D) SDS-PAGE analysis of immunopurified TbTERT. A
small aliquot was also resolved on SDS-PAGE and stained with Coomassie stain to qualitatively check TbTERT protein levels. (E) RT-qPCR detection of
TbTR from Immunopurified TbTERT complexes. (F) Telomerase activity of the bead-bound telomerase enzyme was analyzed by telomerase primer
extension assay.

FIGURE 2
(A) Volcano plot was performed with an x-axis representing the difference in logarithmic protein intensities between the TbTERT
immunoprecipitation elution and the isotype matched IgG control (Elution and Control experimental groups). The y-axis is the negative log of the two-
sided Student’s t-test. The volcano plot serves as a visual representation of the protein groups that are significantly enriched between the elution and
control groups. These enriched groups contain the bait protein TbTERT and several candidates interacting with a p-value ≤ 0.05. (B) Protein-protein
interaction network of relevant TbTERT hits identified by MS. Network was generated using the STRING database and visualized using Cytoscape. Colors
of nodes represent the protein’s biological function. The thickness of the lines denotes the strength of the interaction (confidence PPI, threshold: 0.4,
medium confidence).
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telomerase were identified in both of the FLAG and C-terminus IP
mass spec data sets (Figure 2; Supplementary Table S1), it was
apparent that the ribonucleoprotein complex identified by this
approach is biologically relevant to telomerase function.

3.2 Proteomic analysis of BF T. brucei
telomerase reverse transcriptase

We identified 1,056 proteins with 2 or more peptides. After
stringent filtering of this dataset for those proteins highly enriched
(Log2(fold change) > 1.9) in the IP vs. control (Supplementary Table
S1), 66 high-confidence proteins remained. To study the
interactome of TbTERT, the relative abundance (log2(fold
change)) and statistical significance -log10(P-value) of the
proteins from the IP samples and controls were calculated (3 IP
samples and 3 IgG controls samples) (Figure 2A). This resulted in
the enrichment of 56 proteins for the anti-TbTERT IP samples
(Supplementary Table S2). The protein samples that were
significantly enriched in the IP samples versus the controls
(Student’s t-test, -log10(P-value) > 1.3) included both nuclear and
mitochondrial proteins that have previously been shown to interact
with TERT or play a role in telomere maintenance, such as T. brucei
telomerase reverse transcriptase (TbTERT, Tb927.11.10190), yeast
telomerase cell cycle turnover-related (anaphase promoting
complex) proteins, CDC16 (Tb927.6.2150) and CDC27
(Tb927.10.10330) homologs (Sealey et al., 2011; Ferguson et al.,
2013), mitochondrial stress-response protein, human
HSP60 homolog (Tb927.11.15040) which is known to accumulate
with hTERT in the same fractions of human mitochondria (Sharma
et al., 2012), Splicing factor 3B subunit 1 (SF3B1) homolog
(Tb927.11.11850) involved in various cellular functions including
DNA damage response (Te Raa et al., 2015) and telomere
maintenance (Wang et al., 2016), damage specific DNA binding
protein 1 (DDB1) homolog (Tb927.6.5110), involved in ubiquitin-
mediated TERT protein degradation (Jung et al., 2013), and several
other proteins involved in telomerase and telomere metabolism
(selected proteins shown in Figure 2A; Table 1).

To highlight the connectivity of candidate TbTERT interactors,
we used the STRING database and Cytoscape to generate a
functional protein-protein interaction network of TbTERT
(Figure 2B; Supplementary Figure S1). To further determine the
functions of proteins in the network, STRING GO analysis was done

and proteins were grouped by biological process, and cellular
component (Figures 3A, B). Terms for biological process that
were enriched included, telomere maintenance by telomerase, cell
cycle control, DNA repair, and response to stress. Enriched cellular
component terms included, box C/D snoRNP complex, DNA
replication factor C, anaphase-promoting complex, and cullin-
RING ubiquitin ligase complex. Notably, proteins that are
important for telomerase RNA biogenesis, processing and
trafficking were significantly enriched in these GO terms.

An independent set of IP-MS using an anti-FLAG antibody to IP
TbTERT also validated a majority of the proteins identified in the
mass spec run described above from the anti-C terminus TbTERT IP
because these proteins were identified with both IP approaches. A
false discovery rate (FDR) of 1% was used as cut off for this data
(Supplementary Table S3).

3.3 Known and novel interactors are part of
the active telomerase RNP in T. brucei

Homologs of telomerase-associated proteins which are known
regulators of telomerase functions were found to be part of the IP
telomerase complex in T. brucei. Typically, three types of known
telomerase-associated proteins were reported to co-purify with
TERT. The foremost of the three are the telomerase RNA-
binding proteins that are involved in TR biogenesis, trafficking
and TR-TERT assembly. These include, for example, dyskerin in
vertebrates (Mitchell and Collins, 2000; Mochizuki et al., 2004), Sm
proteins in yeasts (Tang et al., 2012), and La-motif proteins, such as
p65, in ciliates (Singh et al., 2012). Interestingly, dyskerin binding
H/ACA domain of human TR is replaced by a novel C/D box
domain in T. brucei (Gupta et al., 2013). Several unique C/D box
snoRNA binding proteins (snoRNPs) were identified in our
TbTERT immunopurified complex which are described in the
next section. In addition, a T. brucei La protein, Tb927.10.2370,
which shows 24% amino acid sequence identity and a Z-score of
8.6 with Tetrahymena thermophila, TR binding protein p65 was also
identified in the IP-MS. Telomerase RNP assembly also requires
molecular chaperones, such as AAA+ family of ATPases, known as
Pontin and Reptin, which can directly interact with TERT and play
critical roles in telomerase RNP accumulation (Venteicher et al.,
2008). Both the Pontin (Tb927.4.1270) and Reptin (Tb927.4.2000)
homologs, annotated as RuvB-like DNA helicases in the T. brucei

TABLE 1 Significantly enriched proteins identified in TbTERT complex.

Protein Accession number Spectral counts Unique peptides (UniProtKB)

TbTERT Q383RO 10 5

HSP60 Q381Tl 6 5

DnaJ Q38C15 19 5

APC3 Q389U4 21 6

CDC16 Q584Ul 30 12

SF3Bl Q382Z6 26 14

DDBl Q586I3 21 13
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genome database, were also identified by this TbTERT AP-MS
analysis. Additionally, another AAA+ ATPase protein, a yeast
CDC48 homolog, Tb927.10.5770, was also identified. CDC48,
which was previously identified in a molecular complex that
recognized and bound ubiquitinated proteins (Schuberth et al.,
2004), was also found to be associated with yeast telomerase as a
novel regulator of telomere length homeostasis. Notably, TERT
turnover is dependent on ubiquitin-proteasome mediated
degradation process (Jung et al., 2013) and therefore proteins
that are important for ubiquitination were previously identified
in the telomerase complexes, such as several isoforms of
E3 ubiquitin ligases (Lin et al., 2015). Interestingly, several
ubiquitin-family proteins were also identified in the IP-MS data
including ubiquitin ligases, although the roles of these proteins in T.
brucei telomerase biology remains uncertain until the ubiquitination
status of TbTERT is determined.

Mammalian studies have identified chaperone proteins p23 and
HSP90 as two important proteins that are physically and
functionally associated with telomerase activity (Holt et al.,
1999). The proteomic mapping also identified a mammalian
HSP90 homolog, Tb927.3.3580, with enrichment of several
unique peptides in TbTERT IP samples identified by MS.
Poly(A)-specific ribonuclease (PARN) is a 3′-exoribonuclease that
is known to play important role in the maturation of telomerase
RNA (Moon et al., 2015). A T. brucei homolog of PARN,
Tb927.9.13510 was identified in this proteomic mapping data
that may relate with the fact that T. brucei telomerase RNA is a
Pol II transcript (Sandhu et al., 2013) that may require PARN
processing for maturation. All these known telomerase homologs of
T. brucei are listed in Supplementary Table S1. In terms of proteomic
identification, it should be noted that several of the above proteins
were identified in the range of low scoring functions or higher FDR
%, however, these proteins are identified in all four of the biological
replicates analyzed by AP-MS and therefore could be biologically
relevant. Importantly, all the above proteins identified were part of
the IP sample that was able to extend T. brucei telomeric repeats
using synthetic TTAGGG as substrates in activity assays (Figure 1F),
indicating that the proteins in this IP are potentially part of an active
telomerase complex.

3.4 The unique C/D box domain in T. brucei
telomerase RNA is bound by snoRNPs

In contrast to hTR, the telomerase RNA in T. brucei contains a
unique C/D snoRNA-like domain (Figure 4A bottom). Core C/D
box RNPs, like NOP58, have previously been shown to interact with
TbTR (Gupta et al., 2013). NOP58 is a 57 KDa protein that contains
a coiled-coil (CC) domain and a NOP domain (Figure 4A top).
NOP58 is highly conserved across eukaryotes and plays important
roles in ribosomal RNA (rRNA) processing (Barth et al., 2008). In
our AP-MS analysis of TbTERT, we identified three core C/D box
binding proteins: NOP58, NOP56, and Fibrillarin (NOP1) (Table 2;
Supplementary Table S3). To validate the interaction with NOP58,
we performed a co-immunoprecipitation (Co-IP) assay of TbTERT
and detected TbTERT and NOP58 through western blotting
(Figure 4B top). For further confirmation of this interaction, we
performed Co-IPs of TbTERT in both WT and ΔC/D box mutant
cell lines. In the WT cells, NOP58 is present in the IP product, while
in the ΔC/D mutant cells, the interaction with NOP58 is greatly
diminished (Figure 4B bottom). This data supports the fact that the
C/D box motif is important for the interaction between TbTR and
NOP58.

4 Discussion

Eukaryotic microbes, such as T. brucei, rely on constitutive
telomerase activity to sustain their proliferation in their hosts
and to maintain the integrity of their subtelomeric virulence
genes. Studying these interacting partners of telomerase in T.
brucei is necessary to characterize the mechanism of telomerase
mediated telomere maintenance in these parasites. Like any other
RNA component of telomerase, T. brucei telomerase RNA in the
holoenzyme acts as a structural scaffold that accessory proteins can
bind to (Dey and Chakrabarti, 2018). Interacting proteins of
telomerase in T. brucei have not been extensively studied. We
have utilized a mass spectrometry approach to identify and
characterize endogenous interactions of TbTERT in BF T. brucei
cells. However, characterization of dynamic RNA-protein

FIGURE 3
GO analysis of T. brucei TERT interactome. STRING GO analysis (A) Enrichment by Biological process. The top 15 enriched GO terms are shown. (B)
enrichment by Cellular component. The top 9 enriched GO terms are shown.
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interactions like the one in telomerase complex comes with a
challenge – that several of these interaction partners could be
only transiently bound and therefore may not represent the
complex interactions in its entirety. Non-etheless, this affinity
purification based proteomic characterization of T. brucei
telomerase RNP complex provides a global view of the cellular
protein interactome landscape that can be used for in-depth
functional characterization of telomerase complex proteins in
parasites.

Some potential limitations of this study are the use of affinity
purification methods. These methods are good at isolating strong
interactions of our bait protein TbTERT, but as mentioned above,
weaker or more transient interactions may be missed by this
analysis. Also, proteins of low abundance, such as TERT, could

be difficult to enrich in affinity purified complexes even by targeted
approaches like RNA-targeted APEX based proteomic approach
recently employed for human telomerase (Han et al., 2020). For that
reason, it is possible that several TbTR and TbTERT associated
proteins that are identified in this proteomic screen showed low level
of enrichment in the IP complex, as evident from MS. Since IP
experiments using MS provide a sensitive and accurate way of
characterizing protein complexes, the quality of antibody may
also play a role in isolating and analyzing specific interactions.
The custom anti-TbTERT polyclonal antibody used in the IP
experiments was cross-reactive to other proteins (data not
shown), however, the binding specificity to the endogenous bait
protein TbTERT was successfully confirmed using Co-IP and
Western blot as TbTERT was detected as a single, discrete band.

FIGURE 4
NOP58 interacts with the T. brucei telomerase complex. (A)Domain structure of humanNOP58. Predicted secondary structuremodels for T. brucei
and human NOP58 obtained from AlphaFold (Jumper et al., 2021) Predicted protein structures are shown in the same orientation. Dark blue represents a
very high model confidence (pLDDT >90), light blue confident (90 > pLDDT >70), yellow low confidence (70 > pLDDT >50), orange very low confidence
(pLDDT <50). Secondary structure model of T. brucei telomerase RNA. The C/D box binding motif is highlighted. [(B), top] Co-IP assay using WT T.
brucei cell lysate. IP antibody: anti-TbTERTC terminus; Western blot antibodies: anti-FLAG and anti-NOP58. [(B), bottom] Co-IP using bothWT and ΔC/D
box mutant cells. IP antibody: anti-TbTERT C terminus; western blot antibodies: anti-FLAG and anti-NOP58.

TABLE 2 Core C/D snoRNPs identified in TbTERT complex.

Protein Accession number (UniProtKB) Spectral counts Unique peptides

NOP58 Q38F23 25 12

NOP56 Q580Z5 24 10

Fibrillarin/NOPl Q388EO 8 3
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Additionally, detection of the telomerase-associated proteins in all
biological replicates added confidence to the current approach.

Our proteomics experiments also identified proteins that have
no known relationship with telomerase and therefore these hits
could be false positives or newly discovered interactors of TbTERT.
For example, an RNA cytidine acetyltransferase, NAT10 homolog
(Tb927.5.2530) was found enriched in all proteomic datasets.
NAT10 was previously shown to have predominantly nucleolar
localization, association with human telomerase, and is primarily
involved in telomerase RNA biogenesis (Fu and Collins, 2007). One
more example is the putative NOT1 deadenylase (Tb927.10.1510),
part of the CCR4-NOT deadenylase complex, which plays important
regulatory roles both at the transcriptional and post-transcriptional
levels, such as heterochromatic repression of sub-telomeric genes in
fission yeast (Cotobal et al., 2015) and rapid deadenylation of m6A-
containing RNAs by the CCR4–NOT deadenylase complex in
mammalian cells (Du et al., 2016). Given that a majority of
expressed virulence genes (VSGs) in T. brucei are subtelomeric
(Saha et al., 2020) and human telomerase RNAs are known to
contain m6A signatures (Han et al., 2020), the role of
Tb927.10.1510 remains unexplored but relevant to T. brucei
telomere biology.

In our proteomics screen, several mitochondrial proteins were
highly enriched, including TbUMSBP2, which has been shown to
associate with telomeres in T. brucei (Klebanov-Akopyan et al.,
2018). This protein’s canonical function is the replication and
segregation of T. brucei’s mitochondrial DNA, but it has been
shown to also play a role in chromosome end protection in T.
brucei (Klebanov-Akopyan et al., 2018). Significantly enriched GO
terms from the analysis of the TbTERT interactome included,
telomere maintenance via telomerase, cell cycle control, and
chaperone binding. Similar terms and protein interactors have
been previously observed for Saccharomyces cerevisiae telomerase
(Lin et al., 2015). Telomere maintenance via telomerase is consistent
with TbTERT’s known role in extending telomeres (Dreesen et al.,
2005). Enrichment of proteins involved in cell cycle control
highlight potential factors involved in the cell cycle specific
regulation of TbTERT. Specifically, APC3 and CDC16 were
significantly enriched in the TbTERT interactome. APC3 and
CDC16 are core components of the anaphase-promoting
complex (APC), which is a 1.5 MDa ubiquitin ligase complex
that regulates sister-chromatid separation and the cells exit from
mitosis (Peters, 2006). In S. cerevisiae, the APC has been shown to
degrade the telomerase recruitment subunit, Est1p to regulate
telomere maintenance (Ferguson et al., 2013). Whether an
analogous mechanism exists in T. brucei remains to be explored.

Chaperone proteins such as DnaJ, which is a major co-chaperone
for HSP70 and HSP60 were also found to be significantly enriched in
the TbTERT interactome. Both DnaJ and HSP60 have previously been
found to associate with human telomeres (Nittis et al., 2010). HSP60 is a
predominately mitochondrial chaperone, where it works to maintain
protein homeostasis (Caruso Bavisotto et al., 2020). In human cells,
TERT has been previously reported to localize to the mitochondria and
guard cells against oxidative stress (Ahmed et al., 2008). Human TERT
has also been shown to associate with HSP60 and act independently of
the TR in themitochondria (Sharma et al., 2012). TbTERT’s association
withHSP60 suggests a pool ofT. brucei telomerasemay also be localized
in the mitochondrion.

In addition to proteins involved in cell cycle control and
chaperones, core C/D snoRNP proteins, NOP58, NOP56, and
Fibrillarin (NOP1) were also identified in the TbTERT
interactome. Our co-IP western blot data validates the interaction
of NOP58 with the T. brucei telomerase complex. NOP58 interacts
with NOP56 and NOP1 to form a subcomplex, which participates in
rRNA processing (Barth et al., 2008). Core C/D box binding
proteins, like NOP58, have been previously shown to interact
with the TbTR (Gupta et al., 2013). Our study supports these
findings and shows that NOP58 interacts with the C/D box motif
in the TbTR. The C/D box motif in TbTR is unique and lacking in
higher eukaryotes. The TR in Leishmania also contains a C/D box
motif (Vasconcelos et al., 2014). The conservation of the C/D box
motif in the TR of these parasites could indicate a novel mechanism
for telomerase biogenesis and processing, mediated by C/D box
binding proteins, in these kinetoplastid parasites.

The work described here provides the first analysis of the
TbTERT interactome. We have identified previously known and
novel interactors of TbTERT. We were able to confirm NOP58’s
interaction with the T. brucei telomerase complex, which supports
earlier studies (Gupta el al., 2013). Taken together our study lays
the foundation for future studies into the mechanism of telomerase
mediated telomere maintenance in T. brucei. Future improvements
are needed to develop a telomerase RNA -tagged proteomic
mapping approach in T. brucei to validate endogenous
interactions identified by this method and also detect new
RNA-specific interactions. Future studies should also benefit
from investigating interactomes from other T. brucei
developmental stages since it appears from our recent study
that T. brucei telomerase function is developmentally regulated
(Dey et al., 2021). Therefore, characterizing stage-specific
interactomes can provide novel insights into regulatory
mechanisms that can affect rate of proliferation and telomerase
activity in T. brucei.
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