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Complementary forward and reverse genetic approaches in several model systems
have resulted in a recent burst of fertilization gene discovery. The number of
genetically validated gamete surface molecules have more than doubled in the
last few years. All the genetically validated sperm fertilization genes encode
transmembrane or secreted molecules. Curiously, the discovery of genes that
encode oocyte molecules have fallen behind that of sperm genes. This review
discusses potential experimental biases and inherent biological reasons that could
slow egg fertilization gene discovery. Finally, we shed light on current strategies to
identify genes that may result in further identification of egg fertilization genes.
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1 Introduction

1.1 The big questions and fertilization gene discovery

Understanding the genetic underpinnings of fertilization is essential for developing
infertility treatments, contraceptive targets, understanding speciation, and mechanisms of
cell-cell interactions (Schultz and Williams, 2002; Krauchunas et al., 2016; Bhakta et al., 2019;
Findlay et al., 2019). In the last several years there has been a rapid increase in the discovery of
genetically validated fertilization molecules in several key model systems (Deneke and Pauli,
2021; Mei and Singson, 2021). While fertilization is studied in many model systems, forward
and reverse genetic approaches in worms, zebrafish, and mice have recently led the charge.
Sterile mutants obtained through mutant screens or genetic knockouts are the modern gold
standard to demonstrate the requirement of a gene to encode a factor in fertilization. The
progress from genetic screens and knockouts has also established that there are fertilization
genes that are deeply conserved from nematode worms to mammals (Mei and Singson, 2021).
For example, there are several immunoglobulin superfamily molecules that were independently
identified with roles in fertilization in several different species (Ellerman et al., 2003;
Krauchunas et al., 2016; Binner et al., 2022). The DCSTAMP sperm molecules spe-42 and
spe-49 (Kroft et al., 2005; Wilson et al., 2018) have essentially the same sperm sterile mutant
phenotype to DCST1/2 mutants in flies, fish, and mice (Inoue et al., 2021; Mei and Singson,
2021; Noda et al., 2022). Progress in fertility gene discovery has also uncovered a high degree of
molecular complexity required for sperm egg interactions. This was the inspiration for the
concept of the fertilization synapse as the intellectual framework to understand how many
newly discovered fertility gene products work in conjunction at the interface of sperm and egg
plasma membranes (Krauchunas et al., 2016). Sperm and egg interactions have parallels with
other cellular synapses (neural and immune) that include specialized cell structures, integrated
with adhesion, secretion, and cell signaling. Understanding the fertilization synapse will require
knowing what molecules interact either in cis with other molecules on the same gamete or in
trans with molecules of the opposite gamete. The realization of the fertilization synapse also
opens new questions. How are all the sperm and egg components assembled into complexes and
at the right time and place? Genes are being discovered that may impact the processing and
assembly of the fertilization synapse (Gleason et al., 2006; Contreras et al., 2022; Schreier et al.,
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2022). For example, Frey can regulate the assembly of Izumo1, a key
protein involved in fertilization on the surface of the sperm (Contreras
et al., 2022). It does this by helping to assemble Izumo into the correct
protein complex. The road to the identification of genes involved in
fertilization faces many challenges which researchers must overcome.

1.2 Difficulties in determining genes involved
in fertilization

Unlike some other biological processes, fertilization comprises
multiple cellular processes including gamete activation, recognition,
binding, and fusion. These processes must be executed very precisely
to combine one sperm and one egg. This requires that the space, time,
and the concentration of proteins during fertilization be exact. The
transient interactions and combination of proteins at the correct level
can be difficult to recapitulate in vitro. Genes must be expressed
specifically on the surface of the cell and often shift after fertilization.
As there are multiple processes that require very specific interactions,
it is of no surprise that the sperm and egg also require multiple protein
interactions. Beyond the transient interactions, redundancy,
pleiotropy, and maintaining sterile mutants have been roadblocks
for gene discovery on both gametes.

1.3 Current fertilization molecules and open
questions

As of writing this review, going by the sterile mutant gold
standard, there are ten mouse genes (Bianchi and Wright, 2020;
Deneke and Pauli, 2021) and 12 C. elegans genes that encode
transmembrane or secreted proteins that are required for
fertilization and are components of the fertilization synapse (Mei
and Singson, 2021) (Figure 1). For complete recent information about
the fertilization proteins, please see recent reviews by Deneke and
Pauli (2021); Mei and Singson (2021). Anyone would agree that when
it comes to fertilization, it takes two to tango as sperm and egg are the
ultimate in complementary cells. However, gazing at the molecules in
the emerging fertilization synapse of worms, fish, and mouse shown in
Figure 1 there is a striking asymmetry. Most currently known
fertilization genes encode sperm factors. Ten of twelve genes in
worms and seven of ten genes in mice are on the sperm surface
(Figure 1). Here we review why we currently observe this gene
discovery asymmetry between known sperm and egg genes. As of
writing this review, only five egg surface molecules have been
discovered: egg-1/2 in C. elegans, Bouncer in Zebrafish, and Juno
and CD9 in mouse (Naour et al., 2000; Kadandale et al., 2005; Bianchi
et al., 2014; Herberg et al., 2018) (Table 1). These genes encode a
multitude of different types of proteins. Egg-1 and egg-2 have LDL
receptor repeats, Bouncer a Ly6/uPAR protein, Juno, is related to
folate receptors, and CD9 is a tetraspanin (Naour et al., 2000;
Kadandale et al., 2005; Bianchi et al., 2014; Herberg et al., 2018).
However, these genes are not sufficient for all the different functions of
fertilization. Therefore, the search for egg genes continues. There are
other proteins such as Phospholipid C zeta which is a sperm specific
soluble enzyme that can trigger oocyte activation (Yoon et al., 2008;
Yoon et al., 2012; Hachem et al., 2017; Sanders et al., 2018). This
review in particular focuses only on proteins that are expressed on the
surface of the gamete. This asymmetry underscores the importance of

studies in females. Female processes have been historically
understudied. This has been a focus of the NIH since 2016 when
they published their policy on sex as a biological variable (Arnegard
et al., 2020). The gap in egg gene discovery is an important subject that
we, as researchers, should examine and work to close. In this review,
we discuss different biological mechanisms such as redundancy,
pleiotropy, and how the evolution of sperm expressed genes have
impacted the identification of fertilization genes in the oocyte. A likely
source of lagging egg gene discovery is also experimental bias either in
methods or the model organisms. Potential experimental biases could
include maintenance and propagation of sterile mutants, screening
strategies, and difficulty in identifying fertilization phenotypes. While
many of these experimental biases are not an exclusive challenge to
discovering egg genes, we think that these are important ideas to bring
to the forefront of the research community. Finally, we conclude by
discussing new experimental approaches and options that could
address the question of where are all the egg genes?

2 Challenges in the identification of egg
genes

2.1 Fertilization and redundant genes

Fertilization is an essential process and redundant genes can help
protect against deleterious mutations. The same protection that
redundancy provides may make it more difficult to identify egg
genes with genetic approaches. For sexually reproducing organisms,
loss of fertility is evolutionarily devastating, rendering animals unable
to pass on their genes to future generations. One random mutation
could render an animal sterile and subsequently bring their fitness
level to zero. Therefore, like other genes that have essential functions,
gene duplication and redundant copies can decrease the likelihood of
extinction occurring over many generations. This has been observed
across many different organisms in fertility and particularly in the
previously identified egg genes. In C. elegans, egg-1 and egg-2 function
redundantly with one another. The loss of egg-1which encodes an LDL
receptor repeat-containing protein that functions redundantly with
egg-2 another LDL receptor. These genes encode a protein with 67%
similarity (Kadandale et al., 2005). The initial observation by RNAi of
egg-1 also knocks down egg-2 generating a sterile phenotype, however
genetic loss of only egg-1 or egg-2 decreases fertility but does not cause
sterility.

On the oocyte surface, one abundant group of proteins that were at
the forefront of fertilization research for many years were integrins on the
egg surface. Interest in this group of proteins arose due to a disintegrin
domain in ADAM2/Fertilin that was found on the sperm surface (Blobel
et al., 1992). Investigation of this class of integrin proteins which were
expressed in eggs revealed 24 different integrin combinations. The
complexity made this a difficult area to study (Evans, 2002).
Individual knockouts of integrins generated modest decreases in
fertility and multiple knockouts generated other fertility defects such
as embryonic lethality making this challenging to elucidate their exact role
during fertilization (Miller et al., 2000; Hynes, 2002; He et al., 2003;
Vjugina and Evans, 2008). While redundancy is not the singular reason
that it has been difficult to identify egg genes, we hypothesize that it is one
of the most prevalent reasons.

On the sperm side of the equation, there have also been genes that act
redundantly with one another. One example is the CRISP (Cysteine-RIch
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Secretory Protein) gene family which regulates calcium channels in
fertilization. In mouse, there are four CRISP family members,
knockout of one member of the family reduces fertility but does not
completely abolish it, however knockout of three or four of the family
members completely disrupts male fertility demonstrating their
redundant or compensatory functions (Ros et al., 2008; Curci et al.,
2020). Interestingly in humans there are three CRISP genes which are all
located on the same chromosome, therefore it would take a large deletion
or rare collection of point mutations in all three genes to remove all
function rendering them infertile (Gibbs et al., 2008; Curci et al., 2020).
Redundant or compensatory genes may be a big challenge in our field in
discovering egg genes as well as additional sperm genes. With the rise of
CRISPR/Cas9 gene editing, it may be valuable to look for homologues and
potential gene families and then knockout multiple genes in these family
groups to examine for fertility phenotypes.

2.2 Less gene expression and pleiotropy

Oocytes enter a period of transcriptional quiescence usually
during which fertilization, egg activation, and early embryonic
development must occur (Kim and You, 2022). This contrasts with
sperm cells which have a short period of quiescence, however their
function largely ends after fertilization. The oocyte must provide all
the proteins necessary for these very diverse cellular processes. One
way that this could be accomplished is through pleiotropy, where one
gene regulates multiple functions. As the first genomes were
sequenced, researchers were surprised that there are far fewer genes
than previously predicted, pleiotropy is one explanation for this
phenomenon (Lander et al., 2001).

A related reason that it might be difficult to identify egg genes is
that there may be tissue or stage specific isoforms of genes. This is

FIGURE 1
Known components of the mouse, C. elegans, and Zebrafish fertilization synapse. (A). Mouse fertilization synapse, (B). C. elegans fertilization synapse,
and (C). Zebrafish fertilization synapse. For (A–C) each of the molecules that are denoted have been experimentally validated though loss of function
mutations. Proteins on the left of each synapse in red contain an immunoglobulin domain, proteins in green are secreted, proteins in purple are in the uPAR/
Ly6 family and on the right in blue are conserved DCSTAMP proteins.
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where one isoform of a gene functions in development and another
during adulthood, or one isoform in a somatic cell and other functions
in the germline. For example, Juno in mouse is widely expressed in
tissues other than just oocytes including the thymus, spleen, and lung
however loss of Juno in these tissues does not appear to solicit
additional loss of function phenotypes (Spiegelstein et al., 2000;
Bianchi et al., 2014). If multiple phenotypes are exhibited this can
complicate our ability to interpret gene functions. For example, in C.
elegans, nhr-23 is expressed during the process of molting which takes
place during larval development and precedes much of germ cell
differentiation. Later in development nhr-23 also functions as a
transcription factor during spermatogenesis (Ragle et al., 2020).
The earlier molting defects exhibited by nhr-23 had been
established for many years prior to its function during
spermatogenesis. The function during spermatogenesis was not as
evident as animals arrested prior to adulthood (Kostrouchova et al.,
1998; Kostrouchova et al., 2001). Finally, as mentioned before in
Section 2.1, loss of integrins on the egg surface identified pleiotropic
functions in oogenesis and embryonic development. Mutant
phenotypes that are exhibited in other tissues or earlier in
development can make the isolation of specific genes involved in
fertilization more difficult and these pleiotropic defects may obscure
specific genes roles in fertilization. The limited number of genes that
are expressed in the oocyte make this a compelling reason why egg
expressed gene roles have been difficult to identify.

2.3 Differential cell expression, opposing sex
specific expression patterns, and homotypic
interactions can make elucidating gene
function difficult

Another reason that identifying egg genes could be difficult is that
different proteins or protein domains maybe used in various species.
Further it may be where two identical structural elements of individual
monomers are interchanged to stabilize protein complexes (Bennett
et al., 1994). The puzzle of molecular swapping between two gametes
underscores the importance of studying fertilization in different
organisms to understand the mechanism of cell-cell interactions
between sperm and oocytes.

For example, Bouncer, a Ly6/uPAR protein in Zebrafish is
essential for sperm-egg interactions which facilitate sperm binding
to the oolemma when expressed on the egg surface (Herberg et al.,
2018). SPACA4, the mammalian homologue of Bouncer is actually
expressed on the sperm surface in mice and functions to penetrate the
Zona Pellucida (ZP) for binding to the egg surface in mouse (Fujihara
et al., 2021). At this point, the mechanism underlying opposing sex
specific expression patterns for Bouncer and SPACA4 is not clear.
Hypotheses surrounding this include it being due to different
environments for fertilization as Zebrafish have a micropyle and
therefore the sperm do not need to pass through the egg surface
whereas mammals need penetration of the ZP and the acrosome
reaction to occur. Another hypothesis is that this is a sperm specific
loss of function that was retained in the egg during evolution.

In the same vein, homotypic interactions where either two
proteins or protein domains interact with one on each of the
opposing sperm and egg cells acting to signal for binding or fusion
to occur. No homotypic interactions have been observed in
fertilization thus far. However, this has been observed in cadherin

signaling for polarity in Drosophila (Chen et al., 2008). Polarity is also
required for fertilization and establishing egg activation. Another
example related to cell-cell fusion is EFF-1 in C. elegans which
mediates cell-cell fusion in the Soma (Segev et al., 2018). The EFF-1
interactions are structurally homologous to HAP2/GCS1 in flowering
plants which is a sperm-egg fusogen in plants (Brukman et al., 2022).
Homotypic interactions and sex specific expression patterns can make it
difficult for identification of egg molecules as homotypic mutant animals
would be sterile in both sexes and be very difficult to generate and
maintain.

2.4 De novo gene formation in the testis and
the co-evolution of fertilization receptors
create complex genetic dynamics

Gene duplication and deletion events often drive evolution and
establish new biological functions and phenotypes. Interestingly, it has
been shown that de novo gene synthesis occurs muchmore often in the
male lineage particularly through the testes (Kondo et al., 2017). This
may also be referred to as the out of the testis hypothesis. It can be
hypothesized that the abundant number of new genes in the male
lineage may provide opportunities for these newly synthesized genes
to be adopted into fertilization synapse complex working to stabilize
this process and further define speciation. The male germline has
several attributes that can facilitate new gene synthesis. These include
histone modifications, demethylation of CpG islands, and increased
expression of transcription associated proteins, as well as increased
selective pressure from sperm competition (Kleene, 2001; Haerty et al.,
2007; Kondo et al., 2017; Nyberg and Carthew, 2017). In contrast to
gene synthesis, in gene loss, genes which no longer have biological
functions can occur. Gene loss is less likely to occur in oocytes and
primarily impacts multi-copy gene families (Assis, 2019). These results
may demonstrate that while over time more sperm surface genes may
be involved in fertilization, the genes on the oocyte side of the equation
are less likely to change and may have strong levels of conservation
and be involved in multiple processes such as both oogenesis and
fertilization. It has also been hypothesized from observations in
marine invertebrates that there is a co-evolution “arms race” of the
male and female fertilization proteins in different species which may
drive species specificity and could make identification of conserved
fertilization molecules more difficult to identify (Wilburn and
Swanson, 2016). The long-term evolutionary consequences of these
changes in genes can both drive speciation and impact the genes that
are involved in fertilization. These, however, are unlikely to be
phenotypes that can be picked up in genetic screens but would
require analysis of different species and genomes.

2.5 Sterile animals require active maintenance
in the lab

As anyone who works in fertilization and gamete activation
knows, maintaining mutant animals that are sterile or have lethal
mutations requires active thought and coordination by researchers for
each generation. To overcome these difficulties, there are a few very
clever ways to maintain sterile animals for experimental analysis. One
example is the identification conditional mutations. These conditional
mutants can be temperature sensitive (ts) mutations that can be more
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easily screened for in microbes, worms, and flies. These ts animals are
sterile when cultured at high temperatures but fertile when cultured at
lower temperatures (also see Section 2.7 below) (Suzuki and Procunier,
1969; O’Connell et al., 1998; Mei and Singson, 2021). A second
approach is through inducible systems such as Cre-Lox, GAL4/
UAS, and Auxin Inducible Degrons which use either site specific
recombinases, DNA binding activation sites, or chemical induction to
induce sterile phenotypes (Brand and Perrimon, 1993; Zhang et al.,
2015; Kim et al., 2018). Finally, we can use balancer chromosomes
which are rearranged chromosomes often with morphological and
fluorescent tags which can be used to maintain recessive lethal or
sterile mutations as heterozygotes without recombination (Dejima
et al., 2018; Miller et al., 2019). Unfortunately, all of these techniques
have their limitations. Temperature sensitive mutations rely on
protein misfolding at differential temperatures and there are
relatively few model organisms where this is a practical approach
(body temperature conforms to ambient temperature). Furthermore,
not all genes are able to be mutated to become temperature sensitive,
this favors proteins with hydrophobic residues and higher free energy
levels (Varadarajan et al., 1996). Inducible systems require knowledge
of the specific gene and favor reverse genetic approaches which can
bias gene identification. Some balancer chromosomes rely on active
maintenance of mutant animals as heterozygotes. Finally, collecting
enough mutant animals for analysis may require specific breeding
schemes as in the case of mice and the amount of space and resources
required can limit the amount of exploration that can occur. For egg
surface genes, extra care must be taken in order to maintain a set of
fertile-heterozygotes in order to generate mutants for the next
generation. This sibling selection may require constant costly and
laborious molecular genotyping.

2.6 Gametogenesis and fertilization are often
inherently temperature sensitive, egg genes
might be more specifically unable to become
temperature sensitive

One way that researchers working on worms, flies, and fish have
managed to keep sterile animal lines going is through temperature
sensitive mutations as described in Section 2.5 (Mei and Singson,
2021). While this has been an extremely useful tool, not all proteins
can be mutated to become temperature sensitive. In fact, spermatogenesis
and sperm activation are inherently more temperature sensitive than egg
processes (Nakamura et al., 1987; Kurhanewicz et al., 2020; Hirano et al.,
2022). The ability of oocytes to buffer temperature may make it more
difficult to identify mutations but may also reveal information about the
biology of oocytes. In many male-female organisms, oocytes are available
in a limited number, therefore protecting the viability of oocytes becomes
essential for an animal’s reproductive success, consequently our
techniques of temperature stress may not be as efficient for egg
specific genes.

2.7 Egg fertilization genes may be
mischaracterized as embryonic lethal and
meiosis mutants

Despite the difficulties in maintaining sterile animals, the field still
engages in both forward and reverse genetic screens identify additional

genes involved in fertilization. This has often required creative
techniques such as temperature sensitive mutants, sibling selection,
balancing all mutants prior to analysis, and using CRISPR/Cas9 to
knock out all candidate genes to capture sterile alleles for future
analysis (Mei and Singson, 2021). After mutagenesis one limitation is
that it can be difficult to differentiate between genes that are
embryonic lethal or have meiosis defects from fertilization specific
genes at a high level since they often display similar terminal
phenotypes. This can lead to a bottleneck in assessing mutations in
a screen. Furthermore, on the flipside, when researchers are
conducting screens for other phenotypes, they may encounter
sterile mutants but not have the experimental tools to keep these
mutations from getting dropped out of the population. It is possible
that the egg surface genes that we are interested in may have been
discarded in screens looking for embryonic lethal or meiosis genes.

2.8 Laboratory environments may not mimic
environmental conditions that the animal
might experience in the wild

Labs are often sterile environments that researchers work hard to keep
free from contamination. However, this does not mimic the natural
environment that our experimental organisms experience in the wild.
Animals in laboratory environments do not face competition for food,
contamination by parasites and bacteria, the temperature is stable, and
light-dark cycles are controlled. These environmental stresses can often
decrease fertility in the wild through changes in immune response, diet,
and seasonality (Amaral et al., 2014). Therefore, in laboratory
environments, we may be unable to recapitulate the environmental
stressors that may impact fertility by modulating gene responses.

2.9 Egg fertility proteins may be sensitive to
one mutant copy and quickly become sterile

In contrast to the idea that we’re unable to capture egg genes due to
redundancy where there is no observable phenotype because there’s
another copy of the gene which is compensating for the loss of one
copy is a dominant sterile mutation. In a dominant sterile mutation,
the loss of one copy of a gene through mutation renders an animal
sterile or lethal (Erdélyi and Szabad, 1989). Capturing dominant sterile
mutations may occur in genetic screens but lead to a dead end. It is
incredibly difficult to keep dominant sterile strains alive. Maintaining
a dominant sterile mutation requires the gene to have sex restricted
expression where one sex is not sterile. For example, a dominant
negative sperm mutation would not impact females, therefore the
mutation could be carefully maintained in the maternal lineage and
then crossed to a wild-type male and analyze their male progeny which
would have one copy of the gene. One example of this is wee-1.3 in
C. elegans. The wee-1.3 gene encodes a kinase that functions during
spermatogenesis, a dominant mutation in this gene renders an animal
infertile (Lamitina and L’Hernault, 2002). The hermaphrodite-male
androdiecious reproductive mode in C. elegans is the only way that
these mutant animals were able to be maintain. These limitations
therefore preclude anything, that is, homotypic and expressed in both
gametes. If prepared, it is possible to generate conditional mutants,
however this excludes forward genetic screens and simple knockouts
for analyses.
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2.10 Small proteins are less likely to be
mutated in genetic screens and less likely to
be identified with biochemical methods

In fertilization small genes (less than 200 amino acids) have been shown
to have important roles for fertilization. In Zebrafish, Bouncer, the Ly6/
uPARprotein on the egg surface is 80 amino acids (Herberg et al., 2018).On
the sperm side of the equation, spe-13 in C. elegans is 130 amino acids
(Singson Lab unpublished observation) and fimp-1 in mouse with
111 amino acids are also small proteins involved in fertilization
(Fujihara et al., 2020). Despite their important roles, small proteins are
more likely to be missed in both genetic screens as well as mass
spectrometry or ribosomal profiling (Jorgensen and Mango, 2002;
Harney et al., 2019). In genetic screens the smaller number of
nucleotides in each gene decreases the probability that individual base
pairs will be mutated in the right region for sterility to occur. For mass
spectrometry and ribosome profiling, this is also an issue as RNA based
methods are more likely occurring with amplified RNAwhich can filter out
smaller RNAs, and small transcripts may be beyond the sensitivity of the
equipment (Ahrens et al., 2021). The emergence of the importance of small
proteins may be a good avenue for future analysis.

2.11 Mutations in egg fertilization genes may
generate extremely subfertile animals but not
be labeled fertilization defects

The question of what constitutes a sterile phenotype may also mire
the picture of what genes are involved with fertilization on the egg’s
surface. Infertility is clinically defined as failure to conceive after
12 months of unprotected intercourse (Mélodie and Christine,
2018). This also discounts couples that may be able to have one
child but then experience secondary infertility. A significant drop in
the number of progeny that an animal produces due to a genetic
mutation while not completely sterilizing an animal could make it
difficult to determine if involvement is technically in fertilization.
There is some debate in what should be considered subfertile or sterile,

particularly in animals with larger broods and faster rates of ovulation.
For example, mice ovulate at 8 times the rate of humans with more
than one egg at a time, a decrease in litter size here could look like
clinical infertility in humans (Vjugina and Evans, 2008). Similarly in
C. elegans which have a brood size of ~300 progeny in their
reproductive lifetime, a decrease to two progeny in their lifetime
would be very likely to be considered clinically infertile if modeled
in humans. Thus, we encourage careful analysis of animals with
fertility defects and a careful analysis of the phenotypes in
determining their role at the molecular level.

2.12 Previous biochemical analysis has often
been unable to be genetically validated

Previous biochemical analysis primarily in sea urchin and
abalone identified a multitude of proteins such as Bindin,
speract and resact, VERL and lysin through analysis of cell
extracts using monoclonal antibodies to inhibit fertilization
(Vacquier and Moy, 1977; Hansbrough and Garbers, 1981).
These approaches were valiant and groundbreaking to our
understanding of protein candidates for fertilization. However,
when genetic knockouts were examined for many of these genes,
the animals were still fertile (Deneke and Pauli, 2021). Monoclonal
antibodies to gamete surface antigens were helpful in identifying
and validating IZUMO (Okabe et al., 1988). CD81 was also
identified through monoclonal antibodies but is not essential
but still can contribute to fertilization (Takahashi et al., 2001;
Rubinstein et al., 2006). As we continue our search for all the genes
that are involved in fertilization these contributions help us to
understand the redundancy of the process and the contributing
factors.

2.13 Historical narratives surrounding the
roles of females may impact current egg gene
discovery

Both historically and currently, females are understudied (Ah-
King et al., 2014). Despite awareness and advocacy of this issue from
individual researchers to as well as organizations such as the NIH,
this gap has persisted (Arnegard et al., 2020). Commonly described
reasons for why females continue to be understudied include that
there is a stronger interest in male processes of reproduction, and
that eggs are presumed to be less complex and passive receivers of
sperm whose biology has already been fully characterized (Méndez

TABLE 1 Egg surface fertilization molecules.

Gene Species Protein domains and features References

egg-1 C. elegans Transmembrane protein with LDL repeats Kadandale et al. (2005)

egg-2 C. elegans Transmembrane protein with LDL repeats Kadandale et al. (2005)

Juno Mouse GPI anchored folate receptor Bianchi et al. (2014)

CD9 Mouse Tetraspanin Naour et al. (2000), Bianchi et al. (2014)

CD81 Mouse Tetraspanin Tanigawa et al. (2008)

Bouncer Zebrafish GPI anchored, Ly6 Superfamily Herberg et al. (2018)

TABLE 2 Solutions to identifying egg genes.

Unbiased forward genetic screens utilizing genetic tools such as balancer chromosomes
to identify non-conditional mutants

Systematic knockout of all oocyte expressed genes and gene pairs using CRISPR/Cas9

Immunoprecipitation and proximity labeling to identify candidates followed by genetic
validation
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and Córdoba-Aguilar, 2004). These reasons are not evidence based
and fail to take into account recent gene discovery in fertilization, egg
activation, and blocks to polyspermy which still have largely
unknown mechanisms and complex cell signaling and
organization. Perpetuating these ideas minimizes the role of
females and can be potentially harmful in the treatment of female
reproductive health.

3 Addressing the sperm and egg gene
discovery question

To address the difficulty in identifying egg genes (and in fact
sperm genes), there are several approaches that can be and are
currently being taken (Table 2). For example, in C. elegans we are
employing an approach which will involve doing random
mutagenesis and then using balancer chromosomes to generate
stable balanced lines of mutants, in contrast to previous screens
which have identified temperature sensitive mutants that are
typically not genetic nulls. This approach in invertebrate
systems can allow for higher throughput of mutations to be
screened as well as help differentiate embryonic lethal and
meiosis mutants. In parallel with characterization of genetic
mutants, Whole Genome Sequencing (WGS) can be employed
to identify the causative mutation. Another approach being
undertaken is to use CRISPR-Cas9 to generate knockouts of all
testes expressed genes as is being undertaken by several labs to
ascertain which knockouts impact fertilization (Miyata et al., 2016;
Abbasi et al., 2020). A similar approach could be taken to knock out
all oocyte expressed genes. This is however an expensive approach
and can miss redundant or pleiotropic genes. Redundancy and
pleiotropy remain problems which are difficult to address. A
bioinformatic approach identifying potential gene pairs could
aid in prioritizing generating double mutants could partially
address this issue. Finally, for pleiotropic genes, conditional
systems such as those mentioned in Section 2.6 can be
employed. One caveat to this approach is that it is limited in
the number of candidates that this would be feasible for as these can
be labor intensive strains to build. Complementary to these
approaches, utilizing biochemical approaches such as
immunoprecipitation and proximity labeling will help us to
better understand other proteins that are involved in
fertilization. Taking advantage of biochemical approaches now
supported by complementary genetic approaches will bring all
available tools to bear on our understanding of how nature does
conception.

4 Conclusion

Is this question of where are all the egg genes an experimental
problem or a true biological asymmetry?We imagine that it might be a
combination of both possibilities. Will this asymmetry of sperm and
egg molecules also be seen in other species such as fish, frogs, and
humans? We have great faith in the determination and productivity of
the reproductive biology community to continue with its rapid and
transforming fertility gene discovery. Exciting new experimental
approaches to aid in egg gene discovery are rapidly coming into
play. The future discoveries of egg genes will greatly enhance our
understanding of fertilization to aid in the development of infertility
treatments and novel contraceptive techniques as well as provide
further understanding of how two morphologically distinct cells
interact with each other.
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