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Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy,
accounting for over 200,000 deaths worldwide per year. EOC is a highly
heterogeneous disease, classified into five major histological subtypes–high-
grade serous (HGSOC), clear cell (CCOC), endometrioid (ENOC), mucinous
(MOC) and low-grade serous (LGSOC) ovarian carcinomas. Classification of
EOCs is clinically beneficial, as the various subtypes respond differently to
chemotherapy and have distinct prognoses. Cell lines are often used as in vitro
models for cancer, allowing researchers to explore pathophysiology in a relatively
cheap and easy to manipulate system. However, most studies that make use of
EOC cell lines fail to recognize the importance of subtype. Furthermore, the
similarity of cell lines to their cognate primary tumors is often ignored.
Identification of cell lines with high molecular similarity to primary tumors is
needed in order to better guide pre-clinical EOC research and to improve
development of targeted therapeutics and diagnostics for each distinctive
subtype. This study aims to generate a reference dataset of cell lines
representative of the major EOC subtypes. We found that non-negative matrix
factorization (NMF) optimally clustered fifty-six cell lines into five groups,
putatively corresponding to each of the five EOC subtypes. These clusters
validated previous histological groupings, while also classifying other previously
unannotated cell lines. We analysed the mutational and copy number landscapes
of these lines to investigate whether they harboured the characteristic genomic
alterations of each subtype. Finally we compared the gene expression profiles of
cell lines with 93 primary tumor samples stratified by subtype, to identify lines with
the highest molecular similarity to HGSOC, CCOC, ENOC, and MOC. In summary,
we examined the molecular features of both EOC cell lines and primary tumors of
multiple subtypes. We recommend a reference set of cell lines most suited to
represent four different subtypes of EOC for both in silico and in vitro studies. We
also identify lines displaying poor overall molecular similarity to EOC tumors,
which we argue should be avoided in pre-clinical studies. Ultimately, our work
emphasizes the importance of choosing suitable cell line models to maximise
clinical relevance of experiments.
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Introduction

Ovarian cancer (OC) is the most deadly cancer of gynaecological
origin, with over 300,000 new cases and 200,000 deaths occurring in
2020 (Sung et al., 2021). In the United States alone, OC accounts for
approximately 20,000 new cases and 13,000 deaths per year (Siegel
et al., 2022). Epithelial ovarian cancer (EOC) represents the majority
of ovarian malignancies (Jayson et al., 2014) and is further classified
into five major subtypes–high grade serous (HGSOC), clear cell
(CCOC), endometrioid (ENOC), mucinous (MOC) and low grade
serous (LGSOC) ovarian carcinomas (Prat et al., 2018). These

subtypes differ in their genetic profiles, precursor lesions,
response to therapy and clinical outcome (Table 1). For example,
LGOSC, CCOC and MOC display poor responses to traditional
platinum based chemotherapies, whereas ENOC and HGSOC
display initial chemosensitivity (Sugiyama et al., 2000; Schmeler
and Gershenson, 2008; Gershenson et al., 2009; Mackay et al., 2010;
Kim et al., 2012; Prat et al., 2018; Lheureux et al., 2019a; Babaier and
Ghatage, 2020). Furthermore, the lack of BRCA1/2 mutations and
hormone receptor (HR) deficiencies in non-HGSOC/high grade
ENOC subtypes limits the use of poly (ADP-ribose) polymerase
(PARP) inhibitors in disease management (Lheureux et al., 2019a;

TABLE 1 Incidence, mutational landscape, precursor lesions, chemotherapy response, and prognoses of the five major subtypes of EOC.

HGSOC CCOC ENOC MOC LGSOC References

Incidence 70% 10% 10% 3% <5% Prat et al. (2018)

Commonly
mutated genes

Near-ubiquitous TP53
mutations

ARID1A most frequently
mutated (50%–60% of
cases)

ARID1A mutated in
up to 30% of cases

KRAS and NRAS
frequently mutated

BRAF, KRAS and
NRAS commonly
mutated

Shaw et al. (2002),
Risch et al.(2006),
Jones et al. (2010), The
Cancer Genome Atlas
Research Network,
(2011), McAlpine et al.
(2012), Emmanuel
et al. (2014), Kanchi
et al. (2014), Hunter
et al. (2015),
Friedlander et al.
(2016), Itamochi et al.
(2017), Maru et al.
(2017), Murakami et al.
(2017), Kim et al.
(2018), Shibuya et al.
(2018), Cybulska et al.
(2019), Cheasley et al.
(2019), Morice, et al.
(2019), Gorringe et al.
(2020), Pierson et al.
(2020), Cheasley et al.
(2022)

BRCA1/2 germline
mutations or
inactivation

PIK3CA, KRAS, PTEN,
SMARCA4 also mutated

PIK3CA, KRAS,
PTEN, CTNNB1 also
mutated

Mutations in ARID1A
and PIK3CA

TP53mutations rare

TP53 mutations in up to
20% of cases

TP53 mutations in
~17% of cases

Amplification of ERBB2
and copy number loss of
CDKN2A

TP53mutations in up to
64% of cases, often
confined to later stages

Precursor
lesions

Serous tubal
intraepithelial
carcinoma (STIC)
lesions in the fallopian
tube

Endometriosis and
retrograde menstruation,
adenofibroma

Endometriosis and
retrograde
menstruation,
adenofibroma

Mucinous benign
cystadenomas and
mucinous borderline
ovarian tumors (MBTs)

Serous borderline
tumors (SBTs) in
60%–80% of cases

Lee et al. (2007),
Medeiros et al. (2006),
Kurman and Shih,
(2010), Wiegand et al.
(2010), Erickson et al.
(2013), Ahn et al.
(2016), Prat et al.
(2018), Cheasley et al.
(2019), Shih et al.
(2021)

Response to
chemotherapy

Initially responsive
(80%) but 20%–30%
of tumors relapse
6 months after
treatment and can
develop resistance

Poor response (15%) and
resistance to platinum
chemotherapy noted

High grade ENOCs
initially sensitive to
platinum
chemotherapy

Intermediate response
(15%–60%) and
resistance to platinum
chemotherapy noted

Poor response
(26%–28%)

Sugiyama et al. (2000),
Gershenson et al.
(2009), Alexandre et al.
(2010), Berns and
Bowtell, (2012), Kim
et al. (2012), Prat et al.
(2018), Lheureux et al.
(2019a), Morice et al.
(2019)

Clinical
outcome

Poor survival rates due
to overall later stage
diagnosis and
recurrent tumors after
chemotherapy

Intermediate, with a greater
risk of venous
thromboembolism than
other subtypes. Late stage
CCOC has a poorer
prognosis than late stage
HGSOC

Low grade ENOC
more prevalent and
favourable, poorer
outcomes in high
grade ENOC cases

As 65%–80% are
diagnosed at an early
stage, survival is
favourable, later stages
have a poorer prognosis
than late stage HGSOC

Most favourable
outcomes of all
subtypes, along with
low-grade
endometrioid
carcinoma

Mackay et al. (2010),
Berns and Bowtell,
(2012), Peres et al.
(2018), Prat et al.
(2018), Ricciardi et al.
(2018), Soyama et al.
(2018), Morice et al.
(2019)
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Babaier and Ghatage, 2020). Targeted therapies aimed at exploiting
subtype-specific mutations are currently being developed (Coward,
et al., 2015; Lheureux et al., 2019a) but have yet to be widely applied
clinically. As such, in order to develop novel and targeted therapies
for HGSOC and non-HGSOC EOCs and to effectively study the
pathogenesis of these heterogeneous subtypes, it follows that pre-
clinical studies should make use of models that are both stratified by
subtype and reflective of their respective primary tumors.

Cell lines are often utilized to study cancer biology, as a cheaper
and less time-consuming alternative to patient derived explants or
animal models. There exists over 100 OC cell lines, with around
70 commercially available through the American Type Culture
Collection (ATCC), European Collection of Authenticated Cell
Cultures (ECACC), Rikagaku Kenkyusho (Institute of Physical
and Chemical Research, RIKEN), Leibniz Institute DSMZ,
CellBank Australia (CBA) and/or the Japanese Collection of
Research Biosources Cell Bank (JCRB) (Beaufort et al., 2014;
Ciucci et al., 2022). Cancer cell lines are relatively cheap, easy to
maintain, and facilitate rapid results compared to more complex
organoid, animal and tumor-on-a-chip platforms (Ciucci et al.,
2022). However, the utility of cell lines in translational and pre-
clinical research has been questioned. Studies in liver cancer (Chen
et al., 2015), breast cancer (Jiang et al., 2016) and in particular,
ovarian cancer (Anglesio et al., 2013; Domcke et al., 2013; Beaufort
et al., 2014; Barnes et al., 2021) have demonstrated the limited
capabilities of cell lines in accurately representing their
corresponding tumor types. Importantly, these studies highlight
that this poor applicability of models is exacerbated when
histological subtype is not taken into account, emphasizing the
importance of choosing suitable cell lines to maximize translation
into the clinic. Indeed, a number of clinical trials have failed due to a
lack of consideration for EOC subtype in pre-clinical studies
(Coward et al., 2011) and the need for subtype-specific research
in EOC to improve drug development and patient outcome has been
emphasized (Alvarez et al., 2016; Lheureux et al., 2019b). This lack of
subtype-specific research has been perpetuated by a lack of accurate
cell line annotations, with the origin and subtype of most OC cell
lines being poorly defined. Furthermore, the similarity of these
models to their respective primary tumors is often not
investigated or taken into account.

Since cell lines do not possess the morphological traits necessary
for histological subtyping, current studies utilize molecular
characteristics in order to determine the subtypes of these EOC
models. A seminal study by Domcke et al. (2013) observed striking
molecular differences between the most commonly cited cell lines
and HGSOC tumor samples. By comparing copy number changes,
mutational landscape and gene expression between 47 EOC cell lines
and thousands of HGSOC tumor samples, the authors recommend a
set of cell lines that best represent HGSOC primary tumors. Yu et al.
(2019) also correlated molecular data of cell lines and tumors for
22 cancer types, including HGSOC, identifying the cell lines most
correlated to their respective primary tumors. Efforts have also been
made to identify CCOC cell lines (Anglesio et al., 2013). In this
study, Anglesio and colleagues combined a panel of
immunohistochemical biomarkers and a predictive algorithm to
establish a subset of well-suited CCOC cell lines, as well as analyzing
some HGSOC, ENOC and MOC models. Taking a wet-lab based
approach, Beaufort et al. (2014) characterized 39 EOC cell lines in

terms of gene expression and therapeutic response, partitioning cell
lines in terms of both putative histological subtype and morphology.
More recently, Barnes et al. (2021) expanded on the aforementioned
work by utilizing non-negative matrix factorization (NMF) to
separate 44 EOC cell lines into five groups that were suggested to
correspond to all five EOC subtypes, expanding knowledge on cell
line classification to other, non-HGSOC subtypes.

These studies have made remarkable progress in identifying the
most suitable in vitro models to study different subtypes of ovarian
cancer. However, there exists no study that compares the molecular
profiles of EOC cell lines to primary tumor tissue of multiple EOC
subtypes. Here, we integrate and analyse EOC cell line molecular
data from multiple different sources, with the aim of generating a
reference dataset of lines representative of the major EOC subtypes.
We apply non-negative matrix factorisation (NMF) to a panel of
56 EOC cell lines. This resulted in five stable clusters that largely
validated results obtained in previous studies, while also suggesting
new subtype annotations for five previously unannotated cell lines.
Additionally, genetic profiles of EOC cell lines were compared to
93 EOC primary tumor samples, from multiple independent
datasets, stratified by subtype. We investigate the molecular
similarity of cell lines to not only HGSOC primary tumors, but
also CCOC, ENOC, and MOC. Ultimately, we identify the most and
least representative cell lines to represent these EOC subtypes,
generating a reference dataset for future in silico and in vitro
studies. Consequently, our work highlights the need for the
generation of additional, subtype specific datasets, in particular
for the LGSOC and ENOC subtypes.

Materials and methods

An overview of the methodology followed is displayed in
Figure 1.

RNA-seq data acquisition and filtering

Ovarian cancer cell line RNA sequencing (RNA-seq) data was
obtained from three sources: Klijn et al. (2015), the Cancer Cell
Line Encyclopedia (CCLE, Ghandi et al., 2019) and Reyes et al.
(2019). Raw sequence files from Klijn et al. (2015) were obtained
with permission from the Genentech Data Access Committee
(dataset ID EGAD00001000725) and downloaded from the
EMBL-EGA servers using the pyEGA3 download client. For
the CCLE and Reyes datasets, raw sequence files in FASTQ
format were obtained from the European Nucleotide Archive
(accessions PRJNA523380 and PRJNA470980). Klijn et al.
(2015), CCLE and Reyes et al. (2019) provide RNA-seq data
for 48, 47 and 12 OC cell lines respectively. In total, RNA-seq
reads were available for 69 unique OC cell lines. An overview of
datasets used and associated metadata are detailed in
Supplementary Table S1.

OC cell lines that were misclassified, engineered or non-
epithelial in origin were removed from analysis (n = 11,
Supplementary Table S2). Two cell lines (DOV13 and
OVCAR433) could not be processed due to errors with the EGA
download client pyEGA3. 56 EOC cell lines remained for further
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analysis. A literature search on site of origin, original subtype
annotation, TP53 mutational status and treatment for each cell
line and is detailed in Supplementary Table S3.

Ovarian primary tumor tissue data was obtained from three
independent datasets (Corona et al., 2020; Kang et al., 2021; Akasu-
Nagayoshi et al., 2022). Corona et al. (2020) provides both RNA-seq
and chromatin immunoprecipitation sequencing (ChIP-seq) data
on EOC tumors of various subtypes: CCOC (n = 5), HGSOC (n = 5),
ENOC (n = 4) and MOC (n = 5). RNA-seq data for these 19 primary

tumors were analyzed in this study. Kang et al. (2021) generated
transcriptomic profiles for 51 HGSOC tumors of various stages and
sensitivities to chemotherapy. Finally Akasu-Nagayoshi et al. (2022)
conducted RNA-seq on stage III and IV primary tumor tissue of
various subtypes: CCOC (n = 11), HGSOC (n = 8) and ENOC (n =
4). There is no publicly available RNA-seq data for LGSOC primary
tumors (although a number of array-based sequencing datasets are
available). In total, transcriptomic data for 16 CCOCs, 64 HGSOCs,
8 ENOCs and 5 MOCs were used.

FIGURE 1
Transcriptomic data for 56 EOC cell lines and 93 primary tumor samples were processed using the same bioinformatics pipeline. NMF was used to
stratify the cell lines into putative histological subtypes while patient samples had undergone histological assessment. Mutations and copy number
variations of cell lines were investigated to identify the lines most similar to EOC tumor subtypes, as delineated in the literature. Correlation analysis was
also carried out on the cell line and tumor gene expression data to assess similarity between the two groups.
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RNA-seq data processing

Quality control checks were performed on all FASTQ files using
the FastQC package (Andrews, 2010). Forward and reverse reads for
each cell line were mapped using the Spliced Transcripts Alignment
to a Reference (STAR) software, version 2.7.9a (Dobin et al., 2013).
The reads generated by Akasu-Nagayoshi et al. (2022), were

single-end, which was taken into account during the alignment
step. Reads were mapped to the human reference genome sequence
(GRCh38) from Gencode (Frankish et al., 2021). Genome indices
were generated using the comprehensive Gencode v39 gene
annotation. Separate indices were required for each read length
(Supplementary Table S1). Transcript level counts were generated
using htseq-count (Anders et al., 2015). Strandedness of each dataset

FIGURE 2
Non-negative matrix factorization separates 56 EOC cell lines into five stable clusters. (A) Consensus map detailing cell line clustering for 200 NMF
runs using a factorization rank of 5. The colors of each heatmap tile represent the likelihood of two cell lines clustering together. Rows and columns of the
map are symmetrically ordered by hierarchical clustering using the consensus matrix as a similarity measure. Above the heatmap are the associated
dendogram, basis profile, consensus and silhouette scores. (B) Factorization rank survey on both original and permuted data shows high quality
metrics for a five-group split. Left displays cophenetic correlation coefficient and right details the residual sum of squares for both the original and
randomized data. Color and shape of points represent the type of measure used. (C) PCA plot of the 56 EOC cell line samples, colored by inferred NMF
subtype, shows clustering of putative subtypes.
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was taken into account during this step. Counts were compiled into a
single matrix using R studio (v4.1.1). ComBat (Leek et al., 2012) was
used to correct for batch effects between the three independent
sources of data.

Non-negative matrix factorization

NMF was carried out on the processed count matrix, filtered to
retain only cell lines, in R studio (v4.1.1). A variance stabilizing
transform was applied to read counts using the DESeq2 package
(Love et al., 2014). In order to retain the most variable genes,
transcripts were filtered to exclude those with a median absolute
deviation of less than 1.5. There were 2233 transcripts with median
absolute deviation of ≥1.5; these were used as input for the NMF R
package (Gaujoux and Seoighe, 2010). Estimation of factorization
rank (r) was carried out by running NMF for values of r from 2 to 8,
using 50 random initiation points. Quality measures including the
cophenetic correlation coefficient, residual sum of squares and
dispersion were used to select the most suitable value of r. In the
presented data, clustering for r values of 2 and 5 displayed high
quality metrics (Figure 2). After selection of a suitable r value,
200 runs of NMF were carried out with a factorization rank of 5 and
a fixed random seed. Samples were assigned to one of five clusters
based on maximum coefficient matrix values. The most likely
subtype of each NMF cluster was inferred by comparison with
previous studies and literature annotations.

Mutational landscape of EOC cell lines and
tumors

For cell lines present in the CCLE study, mutational and copy
number landscape was originally determined by Ghandi et al. (2018)
and visualized using cBioportal (Cerami et al., 2012; Gao et al.,
2013). Mutational profiles of cell lines not present in the CCLE were
determined from multiple sources (Anglesio et al., 2013; Beaufort
et al., 2014; Tate et al., 2019). Copy number data was not available for
59M, UWB1289, OVCA420, OVCA432, PE01, HEY, RMGII,
TYKNUCPR, COV413A, COV413B, GTFR230, VOA1056 or
OVCA429. Mutational data was not available for a subset of
genes in the RMGII, TYKNUCPR, COV413A, OVCA431,
COV413B, GTFR230, VOA1056, and OVCA429 cell lines. A
literature search was also performed to investigate the mutation
frequency of 26 cancer driver/tumor suppressor genes in each of the
five subtypes of EOC (Supplementary Table S4)

Correlation analysis

The uniformly processed EOC cell line and tumor tissue counts
were upper quartile normalized. ComBat (Leek et al., 2012) was then
used to correct for batch effects between different sources of data.
The normalized and batch corrected counts were filtered to keep the
2233 most variable transcripts in EOC cell lines (as identified
earlier). The Spearman correlation was then calculated between
cell lines and tumor tissues. Results were plotted as a correlation
matrix using the corrplot package (Wei et al., 2021) and as boxplots

using the ggplot2 package (Wickham, 2016), ordered by median
correlation.

Results

NMF separates EOC cell lines into five
clusters that reflect histological subtyping

Non-negative matrix factorization is a method of unsupervised
learning often applied to gene expression data to extract biologically
relevant information (Brunet et al., 2004; Gaujoux and Seoighe,
2010; Barnes et al., 2021). It functions by transforming a large, non-
negative matrix (such as read counts) into a lower dimensional
space: two smaller matricesW andH. The basis matrixW delineates
the contribution of a small subset of genes to what are termed
‘metagenes’. This is essentially a decomposition of genes into those
whose co-expression influences cluster assignment (Brunet et al.,
2004). The coefficient matrix H details the co-expression pattern of
metagenes in each sample, and can be used to cluster samples into a
defined number of groups (r). Seeding is used to initialize the
starting point for the NMF algorithm (i.e., to provide starting
values for the basis and consensus matrices). The NMF package
contains a number of built in seeding methods. Here the ‘random’

method is used, whereby these initial values are obtained from a
uniform distribution with the same range as the input matrix. For
reproducibility, a numerical value is passed into the seed function to
seed the random number generator. In order to achieve a stable
result from this random seeding method, multiple runs of NMF are
required.

The number of metagenes and sample clusters are defined by the
factorization rank (r), a critical parameter that is selected by the
user-ideally, r should be small enough to reduce noise but large
enough to preserve biologically relevant information. Brunet et al.
(2004) suggests that the factorization rank should be chosen as the
smallest value of r for which the cophenetic correlation coefficient
starts decreasing. The cophenetic correlation coefficient indicates
the robustness of clusters for a given choice of r. Frigyesi and
Höglund (2008) suggest investigating methods other than the
cophenetic correlation coefficient. It is argued that an increase in
r is only relevant if the information captured by factorization is
greater than that derived from permuted data, otherwise this
increase will lead to overfitting. They suggest using the smallest
value of r where the decrease in residual sum of squares (RSS) is
lower than the decrease observed in randomized data. By comparing
the residual error of NMF from the original data to that of permuted
data, a solution is identified that is more information than noise,
while preventing overfitting.

The consensus matrix also provides insight into the stability of
the clusters. The entries of the consensus matrix reflect the
probability two samples belong to the same cluster. The
dispersion of the consensus matrix measures the reproducibility
of clusters obtained fromNMF; 1 for a perfect consensus matrix, and
between 0 and 1 for a scattered consensus matrix. A consensus map
can be plotted, which is a consensus matrix computed over multiple
independent NMF runs, which is the average of the connectivity
matrices of each separate run (Figure 2A). Quality of clustering can
also be assessed using silhouette scores. This takes into account how
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similar a particular sample is to the other samples in its assigned
cluster (mean intra-cluster distance), as well as the similarity to
samples in other clusters (mean neighboring-cluster distance). A
silhouette score close to 0 indicates the sample is on or near the
decision boundary of two clusters whereas a silhouette score of
1 shows that the sample is distinct from clusters to which it does not
belong. A negative silhouette score indicates a given sample has
likely been erroneously assigned to a given cluster.

r was estimated by performing NMF with 50 runs of each value
of r from 2 to 8. This was also completed for variance stabilized
counts that had been permuted using the randomize function from
the NMF package (Gaujoux and Seoighe, 2010). In the presented
data, clustering for r values of 2 and 5 displayed high quality metrics
(Figures 2A, B). Cophenetic correlation coefficients for r = 2 and
5 show robustness, and a drop in cophenetic correlation coefficient
for r = 3 and r = 6 indicates less stability. For r = 6 the decrease in RSS
in the observed data is less than the decrease in RSS in the
randomized data. Therefore, a factorization rank of 5 was chosen
for NMF analysis. The most likely subtype of each of the 5 NMF

clusters was inferred by comparison with previous studies and
literature annotations. In order to investigate the intra-cluster
similarity, principal component analysis was carried out on the
variance stabilized counts (Figure 2C). Each cluster assigned by
NMF largely grouped together on the PCA plot. The ENOC and
CCOC lines clustered away from the other samples, whereas there
was some overlap between certain MOC, LGSOC and HGSOC cell
lines. This suggested that some cell lines may have been
misannotated by NMF or may display transcriptional
characteristics of multiple EOC subtypes.

NMF validates previous subtype
classifications and assigns subtypes to five
previously unannotated cell lines

The results obtained in using NMF analysis predominantly
validated subtypes assigned in other studies (Supplementary
Table S3). This study analyzed 43, 42, 22, and 20 EOC cell lines

FIGURE 3
Oncoprint detailing the mutational and copy number landscape of 56 EOC cell lines in 27 genes commonly mutated in ovarian cancer, ordered by
mutation frequency. Commonly mutated genes in each of the five subtypes were determined from a literature search (Supplementary Table S4) and
shown in the leftmost column. Colored boxes on the top of the Oncoprint delineate the putative subtype of cell line samples as assigned by NMF.
Mutation and/or copy number data was unavailable for a number of samples (see Materials and Methods) and are delineated with a dark grey box.
Overall frequency of alteration/mutation for each gene in EOC cell lines by putative subtype are displayed in the rightmost columns.
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in common with Barnes et al. (2021), Domcke et al. (2013), Beaufort
et al. (2014) and Anglesio et al. (2013), with subtype assignment
agreeing in 39, 36, 15, and 14 cases respectively. Disagreements
between our classifications and those of other studies added clarity
to certain subtype assignments. We also utilized NMF to assign
subtypes to five previously unannotated cell lines.

There were a number of differences between the subtypes
assigned to certain cell lines in this study compared to other
previous works, often adding clarity to stratifications. OAW42,
while classified as serous by Beaufort et al. (2014), was found to
cluster with CCOC lines both here and by Barnes et al., (2021).
Domcke et al. (2013) also classed this line as unlikely to be of
HGSOC origin. The fact that OAW42 is TP53 wild type, and
possesses characteristic CCOC mutations (ARID1A and PIK3CA,
Figure 3), suggests that this line is likely a model of CCOC.
OVCAR8 was classified as LGSOC both here and in Barnes et al.
(2021), unlikely to be HGSOC by Domcke et al. (2013) and as
HGSOC by Anglesio et al. (2013). Although this line has a
TP53 mutation and MYC amplification (both of which are
common to HGSOC), it also possesses KRAS and ERRB2
mutations (Figure 3), suggesting it is more likely a model of
LGSOC, in agreement with Barnes et al. (2021) and Domcke
et al. (2013). HEY was classified here as LGSOC, which directly
contradicted with Anglesio et al. (2013), where this line was
determined to be of HGSOC origin. HEYA8 is another cell line
analyzed, which was derived from the peritoneal cavity of mice
injected with HEY cells (Supplementary Table S3). HEYA8 was
categorized as a LGSOC line both here and by Barnes et al. (2021). It
is likely that HEY is of LGSOC origin, as it possesses characteristic
LGSOC mutations (KRAS and BRAF, Figure 3), and it is the clonal
ancestor of the HEYA8 cell line. Finally, OV56 was classified as
LGSOC in Barnes et al. (2021), unlikely HGSOC in Domcke et al.
(2013) and ENOC/CC in Beaufort et al. (2014). It is important to
note that although classified as LGSOC by Barnes et al. (2021), the
authors suggest that OV56 more likely represents CCOC, due to the
presence of KRAS, ARID1A, PIK3R1 and PTEN mutations
(Figure 3). Indeed, we found this to be true in our analysis, with
OV56 clustering with the CCOC cell lines.

Five cell lines (GTFR230, OVCA420, OVCA429, OVCA432,
and TYKNUCPR) have not been investigated in terms of EOC
subtype since their creation, with original annotation data
unavailable for four of these lines (OVCA420, OVCA429,
OVCA432, and TYKNUCPR). Additionally, these cell lines are
rarely cited in literature and as such, mutational and copy
number data was largely unavailable (Figure 3). TYKNUCPR is
from a population of TYKNU cells exposed to cisplatin
chemotherapy, so it is likely that these cell lines share a common
subtype. Indeed, both lines were shown to cluster together, with
putative ENOC cell lines. GTFR230 was originally derived from a
stage IC MOC, although we show here that it clustered with LGSOC
lines with a relatively high silhouette score (Figure 2A). As no
mutational or copy number data was available for this line, an
investigation into the similarity of GTFR230 to LGSOC and MOC
tumors could not be carried out. This highlights the importance of
other methods to determine subtype molecular similarity.
OVCA432 was assigned as HGSOC in this study, while
OVCA420 and OVCA429 both clustered with MOC lines.
Mutational data was available for OVCA420, which showed that

this line may possess characteristics of both HGSOC (TP53, BRCA1,
CDK12, RB1 mutations) and ENOC/CCOC/MOC (ARID1A)
(Figure 3). Ultimately, we assign potential subtypes to these five
cell lines based on NMF cluster membership. However, we note that
due to the lack of additional mutational and copy number data,
further investigation is needed to confirm classification of not only
these lines, but all lines analyzed in this study.

Integration of cell line molecular data
highlights the most and least suitable
models for subtype specific research

As discussed previously, subtype assignment of certain cell lines
can prove difficult to resolve using transcriptional data, especially
when mutational or copy number data is unavailable. Comparison
of cell lines to tumor tissue is required to determine the suitability of
these in vitro models. Some progress has been made in identifying
suitable cell lines to utilize as HGSOC models. Both Domcke et al.
(2013) and Yu et al. (2019) compared various molecular
characteristics of cell lines to primary tumors of HGSOC origin,
providing researchers with recommendations of the most suitable
HGSOC lines. As of yet however, no study has extended analysis of
this nature to multiple subtypes, to compile a reference set of cell
lines representative of other EOC subtypes.

Publicly available transcriptomic data was available for primary
tumors of HGSOC, CCOC, ENOC and MOC origins (93 samples in
total, Supplementary Table S1). No RNA-seq data was available for
LGSOC primary tumors, therefore this subtype could not be
included in correlation analysis. Following normalization and
batch corrections, we calculated correlation of gene expression
profiles between EOC cell lines and primary EOC tumors
(Figures 4, 5). Median correlations ranged from 0.28 to 0.59,
with a similar range observed in Yu et al. (2019). In general, we
observed that cell lines we assigned as HGSOC, CCOC and MOC
were highly correlated to their respective primary tumor subtypes,
whereas ENOC lines were poorly correlated to EOC overall (Figures
4, 5). We also note that most cell lines classified as LGSOC correlated
poorly with tumors of HGSOC, CCOC, MOC and ENOC origin.
Our data suggests that these lines may be useful models of LGSOC,
although further analysis is needed to compare similarity to actual
LGSOC tumor samples.

All HGSOC cell lines (apart from Fuov1) were within the top
20 most correlated cell lines to HGSOC primary tumors, with
Caov4, COV413A, OVCA432, OVCAR3 and OVKATE
representing the most highly correlated cell lines (Figure 5A).
This study represents the first instance of subtype assignment of
OVCA432, demonstrating its high similarity to HGSOC tumors. To
validate that our ranking of HGSOC lines was consistent with both
Domcke et al. (2013) and Yu et al. (2019), we first calculated the
mean correlation of all cell lines with the 56 primary HGSOC
tumors. We filtered this to include only the 39 cell lines analyzed
by both Domcke et al. (2013) and Yu et al. (2019), and ranked cell
lines in order of mean correlation with HGSOC tumors. Our
suitability ranking was highly correlated with that observed by
both Yu et al. (2019) (Spearman’s rho = 0.89, p-value <2.2e-16)
and Domcke et al. (2013) order (Spearman’s rho = 0.58, p-value =
9.592e-05). A lower rho value was observed between our ranking,
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produced using gene expression data only, compared to that
produced by Domcke et al. (2013), which took into account copy
number alteration andmutational landscape. A higher rho value was
observed between our ranking and that detailed in Yu et al. (2019),
which was expected, as both studies also analyze transcriptomic
data. However, in this study we analyze a completely independent
set of 56 HGSOC tumors yet produce a similar suitability ranking.

Similar to HGSOC, cell lines classified here as CCOC possessed
the highest ranking median correlations to CCOC tumors
(Figure 5B). The 12 CCOC lines fell within the top 13 most
correlated lines to CCOC tumors, with OVCAR4 (a HGSOC cell
line) ranking 11th. The top 5 cell lines with highest mean correlation
to CCOC tumors are RMGII, RMGI, OVISE, IGROV1 and OAW42.
Although no mutational data is available for RMGII, its high
correlation to CCOC tumors warrants its use as a CCOC model;
however, mutational and copy number analysis on this line would be
extremely useful to confirm this similarity. TOV21G and JHOC5 are
also highly correlated to CCOC tumors, supporting
recommendations for their use as CCOC models from Anglesio

et al. (2013). It is important to note that Domcke et al. (2013)
observed hypermutated genomes in TOV21G and IGROV1.
Therefore, although these cell lines are highly correlated with
CCOC tumors, caution should be taken when using these in
experiments due to their hypermutated genomes. High
correlation of OVCAR4 with CCOC tumors could be explained
by the fact that this line harbors mutations that are seen in both
HGOSC and CCOC (BRCA2, MYC amplifications), as well as those
that are generally not observed in HGSOC (MET and PTEN
amplifications, mutations in CDKN2A) (Figure 3). This high
mutational overlap with CCOC may influence the high position
of OVCAR4 in this ranking.

None of the six lines classified as ENOC ranked within the top
20 most correlated lines to ENOC tumors (Figure 5C). In fact, these
cell lines were poorly correlated to tumors of HGSOC, CCOC and
MOC. The most striking observation relates to A2780, a cell line
reported to represent over 90% of citations in EOC studies (Domcke
et al., 2013). A2780 has been previously reported to poorly model
HGSOC tumors, and our results show that is a poor model of

FIGURE 4
Correlation matrix comparing similarity of cell line models to primary tumor tissue of each subtype. Each column represents a cell line, with the
putative subtype assigned by NMF delineated by colored boxes (top). Each row represents a tumor sample, with the subtype of samples as identified by
histological assessment shown by colored boxes (left). Each tile shows the correlation of gene expression between a cell line and tumor sample, ranging
from 0.15 to 0.67 (blue to red).
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FIGURE 5
Distribution of correlations between cell lines and primary tumors of varying subtypes. Each boxplot is ordered in decreasing rank of median
correlation between a particular cell line and all tumors of each subtype, (A) HGSOC tumors, (B) CCOC tumors, (C) ENOC tumors and (D)MOC tumors.
Each box is colored based on subtype assigned to each cell line by NMF.
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ENOC, the EOC tumor type it is expected to represent. Expression
based clustering by Domcke et al. (2013) also showed that
A2780 clusters closer to cancers of non-ovarian origin (such as lung,
liver, stomach and small intestine) than to those of ovarian origin. Our
analysis bolsters this observation, demonstrating that not only does
A2780 display poor correlation with HGSOC tumors, but of EOC
tumors of multiple subtypes. Based on our evidence, we recommend
that use of A2780 for in vitro EOC studies should be avoided, and
importantly, there is a striking need to develop additional ENOC cell
lines. We observe a similar pattern for other lines classified as ENOC.
Cell lines classified as HSGOC and CCOC may represent the best

available models of this subtype, as they possess the highest median
correlations to ENOC primary tumors (Figure 5C). Indeed HGSOC
tumors have been noted to be highly similar to ENOC tumors of higher
grades (Gilks et al., 2008; Karnezis et al., 2013; Lim et al., 2016) and
CCOC tumors display a high mutational overlap with characteristic
ENOC genomic alterations (Supplementary Table S4).

All lines classified as MOC (apart from JHOM2B) fell within the
top 20 most highly correlated lines to MOC primary tumors
(Figure 5D). COV644, MCAS, OVCA420, OVCA429, and
RMUGS were amongst the lines with highest similarity. Again,
this is the first reported instance of subtype assignment for

FIGURE 6
Consensus table displaying cell line subtype classification in this study, Barnes et al. (2021), Domcke et al. (2013), Beaufort et al. (2014) and Anglesio
et al. (2013), and recommendations for future use. Overall, there are 16 models of HGSOC, 12 models of CCOC and seven models of MOC. Seven lines
represent potential models of LGSOC, although further comparisons to tumor samples are needed to confirm this. Fourteen lines should be avoided in
future in vitro and in silico studies due to i) poor correlation to EOC tumors overall (A2780, OVK18, OC314, EFO27, TYKNU, TYKNUCPR), ii)
classification as a certain subtype but displaying poor correlation to respective primary tumors (Fuov1, JHOM2B), iii) high correlations to multiple EOC
subtypes (SNU8), iv) classification as LGSOC but displaying high correlations to other EOC subtypes (COV504, VOA1056, COV413B, COV362) and
GTFR230 due to origination from a MOC tumor but classification as LGSOC. *Caution should be taken when utilizing TOV21G and IGROV1 as models of
CCOC due to their hyper mutated genomes.
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OVCA420 and OVCA429, showing that these lines possess high
molecular similarity to MOC tumors, despite a lack of mutational
and copy number data. We also note here that GTFR230, while
classified in this study as LGSOC, originated from a stage IC MOC
tumor (Supplementary Table S2). We observed that this line ranks
48th (out of 56 lines) in terms of median correlation to MOC
tumors, much lower than any putative MOC cell line (Figure 5D).
We therefore suggest that this cell line is more representative of
LGSOC, due to clustering with LGSOC lines. Further studies are
needed to confirm this.

Most cell lines classified as LGSOC (HEY, HEYA8, JHOM1,
OVCAR8, 59M, OV7, and ES2) were poorly correlated to primary
tumors of HGSOC, CCOC, ENOC, and MOC origin (Figures 3–5).
Additionally, these lines possess the major genomic alterations of
LGSOC (Figure 3), and have been suggested to represent the LGSOC
subtype by Barnes et al. (2021). We therefore hypothesize that these
lines may potentially represent models of LGSOC. However, a
comparison of these lines to primary LGSOC tumors is needed
to confirm this, highlighting the need for additional datasets to be
generated for this rarer EOC subtype.

Overall, we show that correlation of gene expression patterns
between EOC cell lines and primary tumors can identify models
with high molecular similarity to specific subtypes and aid in
subtype identification, with the use of techniques such as NMF.
In summary, we generated a reference dataset of cell lines most
representative of HGSOC, CCOC, and MOC (Figure 6). We also
highlight potential LGSOC models and those that are unsuitable for
use in subtype specific studies.

Discussion

In this study, we utilized publicly available transcriptomic,
mutational and copy number data to investigate the molecular
characteristics of 56 EOC cell lines. We demonstrated that cell
lines optimally clustered into five stable groups that likely represent
the five histological subtypes of EOC. We also compared the gene
expression profiles of these cell lines to primary tumors of four EOC
subtypes, generally observing that HGSOC, CCOC and MOC cell
lines were highly correlated to their respective primary tumors. We
noted that ENOC cell lines, especially A2780, were poorly correlated
overall to not only ENOC tumors but EOC overall. We identified cell
lines that feature the major genomic and transcriptomic features of
each particular subtype and are therefore the most suitable in vitro
models, at least for gene expression-based studies. Potential cell line
models of LGSOC were also reported. Finally, we highlight the need
for generation of additional subtype-specific datasets to help identify
suitable models of less studied EOC subtypes, including LGSOC.

While this study is the first to correlate gene expression between EOC
cells and primary tumor tissues stratified by multiple subtypes, it is not
without its limitations. This study is purely an in silico investigation that
lacks experimental validation. However, we note that our results are in
agreement with other studies of this nature (Domcke et al., 2013; Yu et al.,
2019) and are similar to other experimentally based studies of cell line
subtype identification (Anglesio et al., 2013; Beaufort et al., 2014).
Another potential limitation of this study is that we did not adjust for
tumor purity in our correlation analysis, which has been identified as a
confounder in previous studies (Yu et al. 2019). Finally, as our analysis

was conducted using available genomic profiles, we did not include any
LGSOC tumors. We also noted an overrepresentation of HGSOC tumor
datasets compared to other subtypes. Since HGSOC is themost common
and aggressive form of EOC (Prat et al., 2018), there is a disproportionate
number of datasets representing this subtype, and comparably fewer
examples of similar datasets for rarer, more indolent subtypes.

This evaluation on suitability of cell lines is by nomeans exhaustive,
and is solely tailored to research questions involving gene expression. As
our analysis was directed at correlation of transcriptomic profiles, we
anticipate our results are most applicable in designing studies aimed at
identifying biomarkers with elevated or reduced expression levels in
certain subtypes of EOC. In general, determining the optimal tumor
model depends on a myriad of considerations and circumstances. For
example, future work should focus on identifying the most suitable set
of cell lines for methylation or proteomic profiling studies, based on
similarity with corresponding tumor genomic data. Additionally, the
mutational status of genes other than BRCA1/2 included in clinical lab
panels for genetic testing of heritable cancer syndromes could prove
useful in identifying histotype-specific models. These include genes
commonlymutated in Lynch Syndrome (MLH1, MSH2,MSH6, PMS2,
and EPCAM), genes involved in homologous repair (RAD51C,
RAD51D, BRIP1), or genes found to be associated with an increased
risk of developing EOC overall (STK11, CHEK2, PALB2, NBN,
MRE11A, and RAD50) (Harley et al., 2008; Li et al., 2019; Wagner
et al., 2019; Amin et al., 2020).

It is possible that the use of two-dimensional, monocultures of
individual cell lines may become greatly reduced or outdated in
cancer research, due to the rising popularity of three dimensional
in vitro models such as spheroids, multicellular organoid systems and
tumor-on-a-chip models (Ciucci et al., 2022). Cell lines underrepresent
the heterogeneity of tumors and the involvement of the tumor
microenvironment, including other cells such as stromal cells
(Wangsa et al., 2018, a colorectal cancer example). Cell lines also have
higher somatic mutation rates than tumors, acquiringmutations through
the culturing process (Kasai et al., 2016). In any case, there will be distinct
disadvantages associated with any model system, and the ease of use and
affordability of cell lines solidifies them as attractivemodel systems for lab
researchers as starting points for drug screening or experimental
optimization. Therefore, it is imperative to maximize the utility of
these models, by selecting those that most accurately represent the
tumor type to address the research question at hand.

In conclusion, although major technological progress and
healthcare improvements have facilitated more effective cancer
treatments, the last 20 years have only seen modest improvements
in OC survival rates (Allemani et al., 2018; Arnold et al., 2019). Indeed,
OC is a poor prognosis cancer, due in part to non-specific symptoms, a
primarily imperceptible pre-invasive phase and development of
resistance to traditional chemotherapies (Goff et al., 2004). Solutions
to these problems have yet to be developed, owing to a lack of
consideration for EOC subtypes in pre-clinical studies (Alvarez
et al., 2016). In this work, we provide a potential reference for gene
expression-based EOC studies to assist researchers in selecting
appropriate cell lines to represent EOC subtypes. We concurrently
highlight the need for more datasets, representing all subtypes to
contribute towards the overall goal of expanding subtype-specific
research in the field of EOC. A greater understanding of these
diverse subtypes will no doubt lead to more targeted therapies, novel
diagnostics and increased survival for patients affected by EOC.
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