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The eyes are relatively immune privileged organs, making them ideal targets for
stem cell therapy. Researchers have recently developed and described
straightforward protocols for differentiating embryonic and induced
pluripotent stem cells into retinal pigment epithelium (RPE), making
diseases affecting the RPE, such as age-related macular degeneration
(AMD), viable targets for stem cell therapy. With the advent of optical
coherence tomography, microperimetry, and various other diagnostic
technologies, the ability to document disease progression and monitor
response to treatments such as stem cell therapy has been significantly
enhanced in recent years. Previous phase I/II clinical trials have employed
various cell origins, transplant methods, and surgical techniques to identify
safe and efficacious methods of RPE transplantation, and many more are
currently underway. Indeed, findings from these studies have been
promising and future carefully devised clinical trials will continue to
enhance our understanding of the most effective methods of RPE-based
stem cell therapy, with the hope to eventually identify treatments for
disabling and currently incurable retinal diseases. The purpose of this review
is to briefly outline existing outcomes from initial clinical trials, review recent
developments, and discuss future directions of clinical research involving
stem-cell derived RPE cell transplantation for retinal disease.
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Background

The use of stem cells in research and therapy has been the subject of controversy since the
isolation of human embryonic stem cells (hESCs) in 1998 at the University of Wisconsin-
Madison (Thomson et al., 1998). At that time, scientists were able to create a cell line from
human blastocyst-derived cells that proved to be immortal and pluripotent. While promising
for science insofar that researchers had discovered a supply of cells that could be easily grown
and stimulated to differentiate into various cell types, there were obvious and significant
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ethical concerns regarding the use of cells obtained from human
embryos. Indeed, in 2001, shortly after the discovery of hESCs, the
United States government halted funding and support for the
creation of further hESCs for research purposes. While research
involving previously obtained hESCs was authorized, the restriction
ultimately limited availability of hESC lines to less than one
hundred, impacting the direction of research approaches (Shevde,
2012).

However, in 2006, researchers in Japan discovered induced
pluripotent stem cells (iPSCs) by transforming mouse fibroblasts
into pluripotent stem cells (Takahashi and Yamanaka, 2006). Less
than a year later, iPSCs were formed from human cells (Takahashi
et al., 2007).

Induced pluripotent stem cells possess two significant
advantages over embryonic stem cells (ESCs). First, iPSCs
eliminate the need for ESCs as they are reprogrammed from
mature adult somatic cells. Second, iPSCs can be made
autologously, meaning that each individual can theoretically
have their own iPSC line. The disadvantages include a slow rate
of reprogramming somatic cells into iPSCs, the possibility of
introducing mutations into target cells by transcription factors
required for reprogramming, and the potential for tumor
generation due to the expression of oncogenes triggered
intentionally and unintentionally by viruses used to
genomically alter cells. Indeed, c-Myc, an oncogene found in
many cancers, was initially one of four genes required to create
iPSCs (Takahashi and Yamanaka, 2006). However, in 2008,
researchers demonstrated the ability to create iPSCs without
c-Myc, albeit at a slower rate (Nakagawa et al., 2008; Wernig
et al., 2008). Furthermore, researchers showed that iPSCs can
be created without the use of viruses through the utilization of
plasmids that can eventually be removed and, most recently,
proteins, chemicals, and miRNA molecules that mimic the
actions of transcription factors without the associated
mutagenic potential (Soldner et al., 2009; Hu, 2014).

Despite the advances made with iPSCs, and possibly because
of the high cost and time needed for their development, interest
in using ESCs for research remained high. Indeed, in 2009,
restrictions on federal funding for human stem cell research
changed and the Food and Drug Administration approved the
first clinical trial using hESCs (Alper, 2009; Shevde, 2012). Since
then, ESC-based treatments have been proposed for a diverse
range of disorders including myocardial infarction, stroke,
amyotrophic lateral sclerosis, Pelizaeus-Merzbacher disease,
Alzheimer’s disease, and Parkinson’s disease (Schwartz et al.,
2015; Aznar and Tudela, 2016).

The eyes are of particular interest in stem cell-based
treatments. The subretinal space is protected by the blood-
ocular barrier, resulting in a muted immune response to foreign
antigens compared with other sites in the body. As such, the eye
is a relatively safe target for novel cell-based treatment
approaches such as those involving ESCs. Retinal pigment
epithelial (RPE) cells are particularly suitable substrates for
transplantation, as these cells can be differentiated and
reproduced relatively easily as compared to other types of
cells. Furthermore, optical coherence tomography and
microperimetry enable researchers and clinicians to precisely
measure the structural and functional success of treatment

postoperatively (Kashani et al., 2018; Mehat et al., 2018).
Given these factors, in combination with the prevalence of
diseases affecting RPE such as age-related macular
degeneration (AMD), Stargardt disease, and retinitis
pigmentosa, the development of safe and effective means of
RPE stem cell transplantation has become a desirable
achievement in ophthalmology and vision research. The
purpose of this review is to broadly illustrate outcomes of
prior clinical trials, review recent developments, and discuss
future directions of clinical research involving stem-cell derived
RPE cell transplantation for retinal disease.

Initial studies

In 2010, researchers began the second clinical trial involving
hESCs and the first involving hESC-derived RPE, this time
targeting dry AMD and Stargardt disease (Schwartz et al.,
2012). Patients received a suspension of hESC-derived RPE
cells in the subretinal space. The results of this study were
encouraging insofar that the investigators observed increased
pigmentation in 13 of 18 patients and improved visual acuity in
10 of 18 patients after transplantation of RPE cell suspensions
into the subretinal space, although no correlation was observed
between vision improvement and increased subretinal
pigmentation (Schwartz et al., 2015). Adverse events related
to the transplanted tissue were not observed (Schwartz et al.,
2012; Schwartz et al., 2015; Song et al., 2015; Brant Fernandes
et al., 2022).

With the advent of iPSCs and the potential of adult stem cells, some
researchers transitioned their focus to iPSC-basedmodels and treatments,
which circumvent the need for cells derived from a human embryo.
While overall there are currently more active clinical studies involving
hESCs than iPSCs, there are more iPSC-based clinical studies in the
recruitment phases, possibly reflecting the gradual transition to a
predominantly iPSC-based approach. Translation and use of the
findings from hESC studies provides significant potential to guide
further iPSC-based inquiries and approaches.

While the majority of therapeutic research with iPSCs has
involved in vitro and animal models, the first clinical trial with
iPSCs was started in 2014 and in that same year a patient with
neovascular AMD received the first iPSC-based treatment for
any indication (Mandai et al., 2017). A second transplant was
considered in this pilot study but was withheld due to the
detection of genomic alterations (Mandai et al., 2017).
Although the patient’s vision did not improve, the treatment
was considered a groundbreaking success insofar that it
demonstrated the feasibility and safety of iPSC
transplantation in retinal disease, providing evidence and a
stimulus for further iPSC-based retinal research. Indeed, in
2019, investigators at the NEI illustrated their success in
transplanting mutation-free iPSC-derived RPE patches from
AMD patients into pigs and rodents with models of AMD. A
corresponding clinical trial using this protocol began in 2020
(Sharma et al., 2019; Wiley, 2020). First reports of trials using
hESC-derived RPE cells and a similar approach (Kashani et al.,
2020) indicate positive outcomes with respect to safety,
tolerability and efficacy (Kashani et al., 2021).
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Recent findings

There are two prevailing methods for transplanting RPE cells
into the eye. The first and more traditional method involves the
injection of a suspension of stem cells into the subretinal space. As
alluded to above, in 2015, Schwartz and colleagues reported on the
transplantation of suspensions of hESC-derived RPE into nine
patients with dry AMD and nine patients with Stargardt disease.
Visual acuity improved in ten patients and no serious safety issues
related to the transplantation were reported (Schwartz et al., 2015).
Similarly, in 2015, Song and colleagues reported results of a similar
protocol involving two patients with AMD and two patients with
Stargardt disease. Three of the four patients experienced
improvements in visual acuity and there were no adverse events
related to the transplanted cells (Song et al., 2015). In 2018, Mehat
et al. demonstrated the findings from 12 patients with advanced
Stargardt disease treated with hESCs via the suspension approach.
The authors found no evidence of functional visual benefit as
measured via microperimetry, visual acuity or subjective
questionnaire. There were areas of increased pigmentation at the
site of transplantation. However, in some instances, these areas were
associated with reduced macular sensitivity, implying that while
subretinal hyperpigmentation may reflect the presence viable
transplanted cells, it also may represent released pigment from
dead cells (Mehat et al., 2018). The authors hypothesized that the
lack of functional benefit may have been secondary to the advanced
stage of disease in the study population and that further studies may
seek to include patients with milder disease. A recent phase I clinical
trial using subretinal injection of hESC-RPE cells in suspension
reported similar outcomes with a non-significant improvement in
visual acuity (Brant Fernandes et al., 2022).

The second method of transplantation involves implanting cells
as a monolayer on a scaffold. While the traditional suspension
method has a lower risk of complications such as retinal detachment
and subretinal hemorrhage, cells usually do not form a polarized
monolayer, may not cover atrophic areas sufficiently, and display
inferior survival and functional outcomes compared to scaffolds
(Tezel and Del Priore, 1997; Hu et al., 2012). Da Cruz and colleagues
reported on the first transplantation using an RPE patch in two
patients with neovascular AMD. These patients demonstrated
hyperpigmentation, functioning RPE phagocytosis, and visual
recovery measured by visual acuity, macular sensitivity, and
reading speed. There were no serious adverse events related to
the RPE patch (da Cruz et al., 2018). In the same year, Kashani
and colleagues reported the results from transplantation of an RPE
patch into four eyes with dry AMD, demonstrating an improvement
in visual acuity in one eye and fixation improvements in two eyes.
Mild to moderate self-resolving subretinal hemorrhages occurred in
all patients while one patient experienced a more significant
subretinal hemorrhage that resolved with administration of a
single dose of bevacizumab (Kashani et al., 2018). Furthermore,
in 2019, researchers at the NEI illustrated a protocol for functionally
validating a clinically compatible autologous human iPSC RPE
manufacturing process using biodegradable patches derived from
multiple patients. They also compared the safety and efficacy of
these RPE patches to cell suspensions transplanted in pigs and rats,
demonstrating superior integration and functionality with the
patches (Sharma et al., 2019). Recent studies using decellularized

human amniotic membrane as a scaffold for hESC-derived RPE cell
monolayers showed mixed results with a failure to form a consistent
RPE layer and basement membrane (Daniele et al., 2022). The
authors hypothesized that this failure occurred because of a
mismatch between surface molecules on the amniotic membrane
and RPE cell receptors. Further research is necessary to evaluate the
relationship between these variables and the impact of other factors
such as donor characteristics and cryopreservation methods.

In addition to being classified as induced pluripotent or
embryonic, stem cells can be characterized as autologous or
allogenic. Autologous stem cells are those derived from the
patient’s own tissue while allogenic stem cells are from another
human. While the eye is a relatively immune-privileged tissue,
rejection is possible in diseases in which the RPE and thus the
blood-retinal barrier is affected (West et al., 2020). Since autologous
stem cells have the antigenic makeup of the patient receiving the
therapy, they carry less potential for an immune response. Indeed, in
2014, Kamao et al. demonstrated the ability to consistently produce
hiPSC RPE cell sheets under good manufacturing practices and
subsequently transplant these sheets into animals. The authors were
able to do so without the use of an artificial scaffold, which may be a
source of inflammation and impaired physiologic function, instead
using extracellular deposits to maintain the integrity of the RPE cell
monolayer. Furthermore, the authors found no cancer-causing
mutations in their study (Kamao et al., 2014). One human
subject was enrolled with successful implantation and no adverse
events but no improvement in visual acuity or retinal sensitivity after
4 years, likely secondary to preexisting photoreceptor damage and
scarring (Mandai et al., 2017; Takagi et al., 2019). While promising
insofar that the graft in the aforementioned study survived for
4 years, it was ultimately determined that the production of
autologous iPSC-based tissue for transplantation was cost- and
resource-prohibitive and future directions would focus on the
large-scale production and testing of pre-validated allogenic
HLA-matched iPSC cells (Sugita et al., 2016; West et al., 2020).
Indeed, investigators recently demonstrated the ability to produce
and transplant allogenic hiPSC-derived RPE cells and allografts
without inducing a T-cell response or rejection in MHC-matched
animals (Sugita et al., 2016).

However, as alluded to above, in 2019, researchers at the NEI
outlined a protocol for the consistent and efficient production of
autologous human-derived iPSC RPE patches using good
manufacturing practice protocols that can be safely transplanted
into rodents and pigs with therapeutic effects (Sharma et al., 2019).
A phase I/IIa clinical trial using this protocol to treat geographic
atrophy associated with AMD began in 2020 (Wiley, 2020). Indeed,
both allogenic and autologous stem cells may have a role in RPE
transplantation. As such, further research using both cell types is
warranted to evaluate the safety and practicality of both forms of
transplantation. With advances in molecular profiling of stem cell-
derived RPE cells (Petrus-Reurer et al., 2022), safety and efficacy
measures are improving, thereby, further supporting the feasibility
of transplantation approaches.

In addition to cell source and substrate, the surgical method of
transplantation is an important variable to evaluate, as it is often a
source of adverse events. While the traditional approach involves a
pars plana vitrectomy and retinotomy, in 2014, Ho et al.
demonstrated the ability to perform transplantation without these
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procedures. They employed an ab externo approach involving
subretinal cannulation with subsequent visual acuity
improvements in transplanted patients. However, a high
incidence of complications occurred with this approach,
including retinal detachment and retinal perforation (Ho et al.,
2017). More recently, in 2020, Riemann and colleagues
demonstrated data from two patients who received
transplantation via a revised ab externo approach using
suprachoroidal cannulation, with promising safety and efficacy
results, including no instances of retinal detachment or retinal
perforation (Riemann et al., 2020). Indeed, further research is
needed to identify the most non-invasive yet effective surgical
techniques for retinal stem cell transplantation.

Artificial scaffolds, while potentially a source of RPE
dysfunction themselves, aid in delivery of the patch and are
needed to maintain integrity of the polarized RPE monolayer.
Scaffolds also provide support to RPE cells, as age-related
changes in Bruch’s membrane, the interface between the
choroid and the RPE, may hinder its natural ability to support
transplanted RPE survival and differentiation (Gullapalli et al.,
2004; Gullapalli et al., 2005). Many groups are evaluating the use
of various materials including parylene and polyesters such as
polyethylene terephthalate, poly (lactic-co-glycolic acid),
polycaprolactone, and poly-L-lactic acid as scaffolds for RPE
sheets (Lu et al., 2012). These scaffolds would act to maintain cell
integrity and would prevent interaction with native Bruch’s
membrane. As an alternative, some are also evaluating the use
of temporary, degradable scaffolds that would act to facilitate
RPE cell attachment to native Bruch’s membrane while limiting
ongoing inflammation (Liu et al., 2014; Hotaling et al., 2016;
Sharma et al., 2019; Wiley, 2020). Other groups have investigated
the use of additional substances such as amniotic membrane and
femtosecond laser intrastromal lenticule extraction-derived
lenticules, in addition to manufacturing sheets without a
scaffold using materials such as peptide-modified alginate
hydrogels (Table 1) (Brant Fernandes et al., 2022; Mandai
et al., 2017; Gu et al., 2019; Ben M’Barek et al., 2017;
Soroushzadeh et al., 2022).

In addition to RPE cells, investigators have evaluated the
safety and efficacy of non-RPE cell transplantation within the eye.
In 2018, Zhang and colleagues demonstrated closure of refractory
macular holes in six of seven patients treated with umbilical cord-
derived mesenchymal stem cells (UC-MSCs) or exosomes

derived from UC-MSCs, with an inflammatory response in
one patient (Zhang et al., 2018). In 2020, Kahraman and Oner
injected UC-MSCs into the suprachoroidal space of 124 eyes with
retinitis pigmentosa and demonstrated improvements in visual
acuity, visual field, and electroretinogram parameters at
6 months with no serious adverse events (Kahraman and
Oner, 2020). In the same year, Zhao and colleagues
demonstrated improved visual acuity in 91% of retinitis
pigmentosa patients treated with intravenous UC-MSCs in
addition to a significant improvement in NEI Visual Function
Questionnaire scores and no serious adverse events (Zhao et al.,
2020). Wharton’s jelly-derived mesenchymal stem cells have also
demonstrated effectiveness in improving visual acuity, visual
field, and outer retinal thickness in patients with retinitis
pigmentosa when administered in the sub-tenon space
(Ozmert and Arslan, 2020).

Furthermore, in 2018, Gu and colleagues demonstrated
improvements in visual acuity without any significant adverse
events in patients with non-proliferative diabetic retinopathy
after treatment with intravenous bone marrow-derived
mesenchymal stem cells (Gu et al., 2018). In 2020, Sung and
colleagues performed sub-tenon transplantation of human
placenta-derived mesenchymal stem cells and demonstrated and
increase in visual acuity in all patients and an increase in the
expression of Tuj1 and Gfap, suggesting a neuroprotective effect
on retinal ganglion cells and the optic nerve. There were no
significant adverse effects at 12 months (Sung et al., 2020). In
2021, Tuekprakhon and colleagues demonstrated stability of
visual acuity, visual field, and central subfield thickness between
1.5 and 7 years after treatment of 14 patients with advanced stage
retinitis pigmentosa with bone marrow-derived mesenchymal stem
cells, with one severe but manageable adverse event (Tuekprakhon
et al., 2021). Wiącek and colleagues demonstrated improvements in
visual acuity, visual field, and electroretinogram parameters after
intravitreal injection of bone marrow-derived lineage-negative cells
in 30 patients with retinitis pigmentosa although 3 cases of local
tractional retinal detachment were observed (Wiacek et al., 2021).
Retinal detachments were suspected to occur due to the
susceptibility of retinitis pigmentosa patients to vitreoretinal
junction pathologies. The authors suggest that their rate may be
decreased by maintaining RPE integrity during cell administration
(Wiacek et al., 2021). Improvements in visual acuity have also been
observed in AMD patients treated with subscleral injection of
autologous adipose-derived stem cells (Limoli et al., 2014; Limoli
et al., 2016).

Future directions

Functional outcomes in clinical trials thus far have been
relatively limited as expected due to the advanced stage of
disease and poor baseline vision of the study populations
required for phase I and II studies. However, safety results
have been promising insofar that, while adverse events have
arisen, none have been directly related to the transplanted
tissue. Indeed, many of the adverse events were secondary to
the surgeries themselves or the immunosuppression required for
treatment. With the advent of less invasive surgical techniques,

TABLE 1Materials used as scaffolds for the transplantation of stem cell-derived
retinal pigment epithelial cell monolayers.

Polyethylene terephthalate

Parylene

Poly (lactic-co-glycolic acid)

Polycaprolactone

Poly-L-lactic acid

Amniotic membrane

Femtosecond-derived lenticule
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more precise HLA matching, and more efficient autologous
differentiation and validation protocols, a reduction in the
incidence of adverse events is likely.

There are currently at least ten active phase I/II clinical trials
using hESCs to treat retinal disease and at least two active preclinical
trials using iPSCs. Active iPSC studies include those investigating
themanufacturing of hiPSC RPE from patients with Best disease and
the transplantation of iPSC RPE to repair degenerative vessels in
diabetic retinopathy.

Eventually, phase III studies will begin, requiring larger
patient populations and multi-centered designs. As such,
logistical factors including the development of
cryopreservation techniques that can be easily employed on a
large scale and in a diverse range of settings will be essential.
Developing such processes now will promote further refinement
of these protocols to ultimately increase accessibility for a wide
range of patient populations and demographics. This is
particularly important given the extensive prevalence of retinal
disease such as AMD.

Conclusion

The studies referenced above provide promise for the future
of RPE-based stem cell therapy and represent the foundation for
a new approach to retinal disease. However, many questions
remain, which will likely be answered in the near future. Further
comparative study will reveal the most appropriate cell types for
transplantation including autologous or allogenic and induced
pluripotent or embryonic. Given the widespread need for
treatment of retinal disease, future study will also determine
the safest, most effective, and practical variables in RPE stem cell
therapy including transplant type, surgical methods, and
cryopreservation techniques. Indeed, the answers to these
questions are critical foundations for the development of
treatments that have the potential to significantly decrease
morbidity and improve quality of life for patients suffering
from disabling and currently irreversible forms of retinal damage.
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