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Characterization of cancer cells and neural stem cells indicates that tumorigenicity
and pluripotency are coupled cell properties determined by neural stemness, and
tumorigenesis represents a process of progressive loss of original cell identity and gain
of neural stemness. This reminds of a most fundamental process required for the
development of the nervous system and body axis during embryogenesis,
i.e., embryonic neural induction. Neural induction is that, in response to
extracellular signals that are secreted by the Spemann-Mangold organizer in
amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the
ectodermal cells lose their epidermal fate and assume the neural default fate and
consequently, turn into neuroectodermal cells. They further differentiate into the
nervous system and also some non-neural cells via interaction with adjacent tissues.
Failure in neural induction leads to failure of embryogenesis, and ectopic neural
induction due to ectopic organizer or node activity or activation of embryonic neural
genes causes a formation of secondary body axis or a conjoined twin. During
tumorigenesis, cells progressively lose their original cell identity and gain of neural
stemness, and consequently, gain of tumorigenicity and pluripotency, due to various
intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be
induced to differentiation into normal cells and integrate into normal embryonic
development within an embryo. However, they form tumors and cannot integrate
into animal tissues/organs in a postnatal animal because of lack of embryonic
inducing signals. Combination of studies of developmental and cancer biology
indicates that neural induction drives embryogenesis in gastrulating embryos but a
similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature
the manifestation of aberrant occurrence of pluripotent state in a postnatal animal.
Pluripotency and tumorigenicity are both but different manifestations of neural
stemness in pre- and postnatal stages of animal life, respectively. Based on these
findings, I discuss about some confusion in cancer research, propose to distinguish
the causality and associations and discriminate causal and supporting factors involved
in tumorigenesis, and suggest revisiting the focus of cancer research.
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1 Introduction

Understanding the nature of cancer initiation and progression
has experienced wild fluctuations, from the initial chaos of
phenomenological description of cancer to the attempts of
simplifying cancer regulation to single molecular events, and then
followed by indefinite complexity of genetic and phenotypic
heterogeneities and regulatory mechanisms (Weinberg, 2014). At
present, about five million cancer literatures have been published.
They showed that almost all aspects of biological research play a role
in cancer, and nearly every gene is associated with cancer (de
Magalhães, 2022). Some hypotheses/concepts have been proposed
to generalize the rules behind the complexity of tumorigenesis,
including notably the mutation theory, aneuploidy and
chromosome instability, Warburg effect, epithelial-to-
mesenchymal transition (EMT), etc. However, none of them can
integrate the complexity of cancer because they explain
tumorigenesis in some aspects but meet serious challenges in
others (Soto and Sonnenschein, 2011; Paduch, 2015; Hanselmann
and Welter, 2016). Notably, cancer was proposed as a disorder of
developmental dynamics (Rubin, 1985), and the key signaling
pathways involved in early embryogenesis also play important
roles in cancers, for instances, the TGFβ, Wnt, FGF, Notch
pathways. But how the complex process of embryogenesis is
intrinsically linked with the complex process of tumorigenesis
has remained a challenging question, particularly when
considering that a normal embryogenesis needs a process of
fusion of gametes. Cancer research is not the business only for
biological and medical researchers. Astrophysicists proposed cancer
as an atavistic reversion effect (Lineweaver et al., 2021). Moreover,
quantum physics, the study on the discrete units of matter and
energy throughout the Universe, is also suggested as the governing
rule of cancer (Hameroff, 2004; Bordonaro, 2019; Laster et al., 2019).
Despite the universality of physics, it is critical to find a particular
link to integrate different data and phenomena, distinguish causality
and associations, and figure out causal and supporting factors from
the observations of cancer research. In the review, I will discuss my
findings about the central role of neural stemness in cell
tumorigenicity and pluripotent differentiation potential. This
gives rise to a conceptual paradigm that might integrate different
features of tumorigenesis. I propose that tumorigenesis might
represent a distorted replay of neural induction and subsequent
tissue differentiation during embryogenesis, a critical process
required for neural development and normal body axis formation.

2 Embryonic neural induction and
embryogenesis

How the nervous system is formed and body axis is established
had been a primary focus of embryological study. Almost a century
ago, a paramount work done by Spemann andMangold showed that
a small group of cells, the dorsal blastopore lip of a newt gastrula
embryo, were capable of inducing formation of secondary body axis
or a conjoined twin when they were transplanted to the ventral side
of a host gastrula embryo. The secondary body axis, which contained
neural tube, somites, pronephros and gut, was derived from the host,
whereas the transplanted dorsal blastopore differentiated mostly

into notochord (Spemann and Mangold, 1924; Spemann and
Mangold, 2001). The dorsal lip was then named as the
“Spemann-Mangold organizer”. An ectopic organizer induces
formation of a conjoined twin containing neural tissues in a
gastrula embryo. Vice versa, various studies showed that an
embryo in the absence of organizer activity forms a “belly piece”
only that contains no neural and dorsal structures (Spemann, 1938;
Gerhart, 2001; De Robertis, 2009; Sosa et al., 2019).

Subsequent pursuit of the mechanisms underlying the induction
of neural tissue and body axis by organizer was a failure in nearly
6 decades after the dorsal blastopore transplantation experiment (De
Robertis, 2009). Revival of the research began until the end of 1980s
because of a critical observation. Amphibian blastula ectodermal
explants differentiated into only epidermal tissues when they were
cultured in neutral saline in vitro. Surprisingly, when the explants
were disaggregated into single cells for a few hours first and then re-
aggregated again, ectodermal cells differentiated into neural cells
exclusively (Godsave and Slack, 1989; Grunz and Tacke, 1989; Sato
and Sargent, 1989), suggesting that removal of an extracellular signal
is required for the ectoderm to adopt a neural fate, and neural fate
might be the “default fate” of ectodermal cells. Afterwards, genes
with localized expression in the organizer that showed the activity of
neural induction and secondary axis formation were identified,
including noggin, chordin, cerberus, etc. (Smith and Harland,
1992; Sasai et al., 1994; Bouwmeester et al., 1996; Harland, 2000;
De Robertis and Kuroda, 2004; De Robertis, 2006). They encode for
secreted proteins that inactivate the signaling pathways promoting
epidermalization of ectoderm and ventralization of body axis,
particularly the BMP signaling, via direct binding to the BMP
ligands (Harland, 2000; De Robertis and Kuroda, 2004; De
Robertis, 2006; Anderson and Stern, 2016). Moreover, inhibition
of the receptor for activin, a BMP-related ligand of the TGF-β
family, led to neuralization of ectoderm in absence of inducing
factors and rescue of ventralized embryos (Hemmati-Brivanlou and
Melton, 1994). In contrast to the initial aim for finding neural
inducers, these lines of evidence demonstrate that the fate of
ectoderm is neural by default and epidermal fate is induced, and
the organizer promotes neural fate by inhibiting the signals that
promote epidermal fate in ectoderm. This is the “neural default
model” of ectoderm (Weinstein and Hemmati-Brivanlou, 1997;
Muñoz-Sanjuán and Brivanlou, 2002).

Neural induction is a prerequisite for body axis formation, a
process including differentiation of not only the nervous system, but
also differentiation of mesodermal and endodermal tissues such as
somite and gut. Neural induction means activation or upregulation
of a spectrum of neural genes, forming a regulatory network defining
neural plate, the undifferentiated precursor tissue of the central
nervous system. Ectopic organizer activity led to the formation of
conjoined embryos. Likewise, ectopic stimulation of genes with
specific or enriched expression in embryonic neural cells, for
example, the proto-oncogenes eed, yy1, ski, egfr, erbb2, erbb4 in
Xenopus, gelsolin and msxB in zebrafish, also causes formation of a
partial secondary body axis or a conjoined twin, which contains both
neural and non-neural tissues (Amaravadi et al., 1997; Satijn et al.,
2001; Kanungo et al., 2003; Nie and Chang, 2006; Phillips et al.,
2006). These genes are components of the regulatory network for
embryonic neural cells. Their ectopic expression activates the neural
regulatory network, leading to gain of neural fate in non-neural cells
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and formation of a second body axis. By contrast, disruption of
embryonic neural genes causes defects in neural and axial
differentiation in mouse embryos, ultimately leading to
developmental arrest at early stages (Faust et al., 1995; Gassmann
et al., 1995; Threadgill et al., 1995; Berk et al., 1997; Britsch et al.,
1998; Donohoe et al., 1999). Moreover, neural plate specifies somite
size and is required for somite development during early
embryogenesis (Mariani et al., 2001). These results suggest the
critical importance of embryonic neural genes and neural
precursor cells in tissue differentiation. Neural stemness, refering
to the collective property of primitive neural stem cells (NSCs),
neural crest cells and adult NSCs, represents the general stemness,
defining tumorigenicity and pluripotent differentiation potential, a
notion that has been experimentally clarified (Clarke et al., 2000;
Tropepe et al., 2001; Xu et al., 2021; Cao, 2022; Zhang et al., 2022).
This unique property of neural stemness might be predestined by the
evolutionary advantage of neural regulatory networks (Xu et al.,
2021; Cao, 2022). Contribution of neural stemness to formation of
the nervous system is self-evident. However, its contribution to non-
neural differentiation is not. Neural crest cells are pluripotent and
share regulatory network with cleavage stage embryos,
differentiating into peripheral nervous system and many types of
non-neural tissues/cells, such as melanocytes, skeletal and
connective tissues, and medulla cells of the adrenal gland, etc.
Locating between neural plate and epidermal ectoderm, neural
crest is induced by interactions between neural plate and
adjacent tissues (Selleck and Bronner-Fraser, 1995; Knecht and
Bronner-Fraser, 2002; Buitrago-Delgado et al., 2015; Gilbert and
Barresi, 2016; Pla and Monsoro-Burq, 2018). This means that
pluripotency of neural crest cells is ultimately derived from
neural plate cells. Neuromesodermal progenitors in the most
posterior region of elongating embryos give rise to both spinal
cord and paraxial mesoderm. These cells are presumably
originated from anterior neural plate (Henrique et al., 2015;
Sambasivan and Steventon, 2021). Therefore, neural induction
generates neural precursor cells, which give rise to the
differentiation of not only neural tissues, but non-neural tissues
as well.

The studies above on neural induction and body axis formation
were primarily performed with amphibian species, the newts and
African clawed frog (Xenopus laevis). The functional homologue has
been identified in all classes of vertebrates, such as fish, bird and
mammalian embryos, which is known as the node. It exhibits the
activity of neural induction and body axis formation similar to the
organizer through conserved molecular mechanisms (Gerhart, 2001;
Thisse and Thisse, 2015; Martinez Arias and Steventon, 2018). The
neural default state exhibited by amphibian blastula ectodermal cells
is also exhibited by mammalian embryonic stem cells (ESCs).
Amphibian blastula ectodermal cells are the equivalents of ESCs,
since they have the potential of differentiation into cell types of all
three germ layers. ESCs are usually cultured in medium containing
high-concentration of fetal bovine serum. They adopt a neural fate
and turn into primitive NSCs when cultured in defined serum-free
medium (Tropepe et al., 2001; Ying et al., 2003a; Smukler et al.,
2006). In this cell fate transition, BMP signaling plays a critical role
in inhibiting neural fate in ESCs (Ying et al., 2003b; Malaguti et al.,
2013), a similar mechanism as observed in amphibian ectodermal
cells.

In summary, either extracellular signals by the organizer or node
or ectopic activation of neural genes in non-neural cells can cause
the gain of neural fate in non-neural cells during gastrulation,
i.e., neural induction, and leads to the formation of a secondary
body axis or a conjoined twin. This is the paradigm for
understanding how neural tissue and body axis are initiated to
form during early embryogenesis. Neural induction is fundamental
for neural development and embryogenesis. Nevertheless, aberrant
occurrence of neural induction or a similar process might be
associated with some most sophisticated pathological effects. It
was proposed that a conjoined twin is formed when a secondary
organizer-like activity is present in a gastrulating embryo, such as a
human embryo (Levin, 1999). A neural induction-like process could
also occur erroneously in cells of postnatal animals, which might be
the general cause of tumorigenesis.

3 Neural induction-like process and
tumorigenesis

As analyzed above, neural induction during embryogenesis
means that non-neural (ectodermal) cells turn into neural
precursor cells in response to either an extracellular signal
inhibiting non-neural cell property or intracellular stimulation of
embryonic neural genes. Ectopic neural induction during
gastrulation causes formation of a conjoined twin. Neural
stemness is characterized as the essential property of tumorigenic
and pluripotent cells, and tumorigenesis could be envisioned a
progressive loss of original cell identity and gain of neural
stemness in postnatal cells (Southall et al., 2014; Cao, 2017; Li
et al., 2020; Cao, 2022; Zhang et al., 2022), reflecting a neural
induction-like effect. One obvious example for the comparability
of tumorigenesis as a conjoined twin formation should be the
teratocarcinomas/teratomas, which are composed of disorganized
but histologically identifiable tissues or organs derived from all three
germ layers, such as undifferentiated neural epithelial tissue and
differentiated nerves from ectoderm, gut and glandular tissues from
endoderm, and cartilaginous and muscle tissues from mesoderm.
Teratocarcinomas/teratomas are usually found in the gonads, but
they can also form in extragonadal tissues/organs (Chao et al., 2004;
Gatcombe et al., 2004; Singhal and Jhavar, 2008; Agrawal et al.,
2010). The mechanism underlying teratocarcinoma/teratoma
formation has been rarely reported. In mouse, an inactivation
mutation in the gene Dnd1, which encodes a master regulator for
vertebrate germ cell development, causes progressive loss of germ
cells and incidence of testicular teratoma (Youngren et al., 2005; Liu
and Collodi, 2010). The pluripotent property of embryonal
carcinoma cells (ECs) derived from teratocarcinoma was well
characterized, which enlightened subsequent studies on
pluripotency of ESCs (Andrews, 2002; Solter, 2006; Barbaric and
Harrison, 2012). ECs form teratocarcinomas when transplanted into
immunodeficient mouse hosts, and contribute to formation of
chimeric embryos when transferred into blastocysts. EC
pluripotent cell lines are characteristic of neural precursor or
progenitor cells, they can be differentiated into neurons when
treated with retinoic acid (Pleasure and Lee, 1993; Bain and
Gottlieb, 1998; Negraes et al., 2012), a reagent inducing neuronal
differentiation from NSCs. Neural stem/progenitor cells, which are
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tumorigenic and are capable of teratoma formation in
immunodeficient mice (Xu et al., 2021), were isolated from
teratocarcinoma/teratoma (Hasgekar et al., 1996; Kim et al.,
2019). Therefore, ECs are characteristic of neural stemness,
tumorigenicity and pluripotent differentiation potential. Like
neural induction during embryonic development,
teratocarcinomas/teratomas are the consequence of progressive
loss of original cell identity and gain of neural stemness, which
contributes to tumorigenicity and pluripotency (Xu et al., 2021; Cao,
2022; Zhang et al., 2022), in either germ or somatic cells.

A much broader range of tumorigenesis is the formation and
progression of cancers that have been found in most postnatal
tissues/organs. Growing evidence has shown that cancer cells, or
generally tumorigenic cells, are characteristic of NSCs. Like NSCs
and ECs, cells from different cancer types are capable of neuronal
differentiation in response to inhibition of endogenous cancer
promoting factors, which have a specific or enriched expression
in embryonic neural cells during vertebrate embryogenesis, and play
essential roles in maintaining neural stemness in both cancer cells
and NSCs (Lu et al., 2017; Zhang et al., 2017; Lei et al., 2019; Chen
et al., 2021; Zhang et al., 2022). In general, most (if not all) cancer-
promoting genes are neural stemness genes or genes with enriched
expression in embryonic neural cells during vertebrate
embryogenesis. Cancer cells share both regulatory networks and
cell property with NSCs or embryonic neural cells (Zhang et al.,
2017; Cao, 2022). By contrast, non-neural tissue-specific genes and
genes promoting differentiation are downregulated/silenced in
cancer cells, and a substantial part of tumor suppressor genes are
non-neural genes during embryogenesis (Cao, 2017; Zhang et al.,
2017; Cao, 2022). This mode of expression change of cancer related
genes reflects the progressive loss of original cell identity and gain of
neural stemness, and consequently, the gain of tumorigenicity and
pluripotency in cancer cells during tumorigenesis. For example,
when the key muscle differentiation geneMyod1 was knocked out in
myoblast cells, the cells lost their myoblast identity and gain of
neural stemness, tumorigenicity and pluripotent differentiation
potential (Xu et al., 2021). Correspondingly, a recurrent mutation
in MYOD1 leads to a dominant-negative product that inhibits the
function of wild-type protein in rhabdomyosarcomas (Kohsaka
et al., 2014; Rekhi et al., 2016). Intestinal stem cells in Drosophila
turned into a NSC-like state in response to the loss of a transcription
repressor, and consequently, caused the formation of
neuroendocrine tumor (Li et al., 2020). Neurons can also be
dedifferentiated into an NSC-like state when a factor repressing
NSC and cell cycle genes andmaintaining neurons in a differentiated
state was removed, leading to acquirement of tumorigenicity and
tumor formation (Southall et al., 2014).

Unlike teratocarcinomas/teratomas that are composed of a
haphazard mixture of adult tissues and deformed organs, most
other tumors usually do not contain well differentiated tissues
and organs. Nevertheless, they are composed of cell types with
distinct functional features and/or expression of tissue- or cell
type-specific markers, indicating intratumor phenotypic
heterogeneity. Two mainstream models are proposed to explain
how phenotypic heterogeneity is generated. The clonal evolution
model emphasizes that phenotypic heterogeneity is a result of
genetic heterogeneity arising from Darwinian-like evolution.
Nevertheless, how genetic heterogeneity causes phenotypic

heterogeneity seems to be not understood at all and not testified
experimentally. The cancer stem cell (CSC) model proposes that
differentiation of CSCs generates phenotypic heterogeneity (Clevers,
2011; Marusyk et al., 2012; Beck and Blanpain, 2013; Burrell et al.,
2013; Meacham and Morrison, 2013; McGranahan and Swanton,
2015; Quintanal-Villalonga et al., 2020), which has been validated in
many studies. In vitro generated cells with CSC property can
differentiate into cell types expressing neuronal, endothelial and
muscle cell markers (Scaffidi and Misteli, 2011). CSCs of
glioblastoma give rise to tumor endothelium and vascular
pericytes, supporting tumor growth (Ricci-Vitiani et al., 2010;
Wang et al., 2010; Cheng et al., 2013). CSCs of colorectal cancer
revealed the capacity of multilineage differentiation (Vermeulen
et al., 2008). A consensus conceptual framework could not be
deduced from these studies about the nature of CSCs except that
they can differentiate. It was not clear whether CSCs of different
cancer types have the property of stem/progenitor cells of their
respective tissues of cancer origin, or all CSCs might have a common
property of stemness, or CSCs might be of “cancer-specific” nature
that is not comparable to any known stem cell types. In fact, similar
to ECs, cancer cells are also pluripotent because xenograft tumors
formed by cancer cells show expression of markers of tissue/cell
types derived from all three germ layers, for example, SOX1-
expressing cells representing cells with neural stemness and
derived from ectoderm, ACTA2-expressing cells derived from
mesoderm, and AFP-expressing cells derived from endoderm (Xu
et al., 2021; Cao, 2022; Zhang et al., 2022). These cells can be widely
detected in different cancer types. Public databases show that a
majority of transcripts and their protein products have low cancer
specificity and are present in many cancer types (www.proteinatlas.
org) (Uhlen et al., 2017). For example, BMI1, CDH2, DCLK1,
FGFR4, MSI2, and SMARCA4 representing neural stemness;
MAP2, NEUROG2, and TUBB3 representing neuronal
differentiation; AFP, FOXA3, GATA6, and KRT8 representing
endodermal tissue differentiation; and ACTA1, ACTA2,
COL1A1, FXR1, and MEF2D representing mesodermal tissue
differentiation (Figure 1). Noticeable is that ACTA2 and
COL1A1 are also the markers of cancer-associated fibroblasts
(CAFs). Therefore, different cancer types contain basic elements
representing cell/tissue differentiation, similar to the case of
embryogenesis. Cancer cells at different stage of tumorigenesis
exhibit different degree of tumorigenicity. They are more similar
to the cells of cancer origin and exhibit weak tumorigenicity at the
beginning stage of tumorigenesis. Cancer cells at later stage are more
dissimilar to the cells of cancer origin and show stronger
tumorigenicity. Neural stemness and differentiation potential of
cancer cells grow progressively and simultaneously with the
progression of cancer, as suggested by a serial
xenotransplantation assay of cancer cells (Zhang et al., 2022).
Although cancer cells share the regulatory networks and cell
property with neural stem or embryonic neural cells, some
essential disparities still exist, including extensive defects in genes
(differentiation genes in particular) and genome in cancer cells and
the difference in the microenvironments with which cancer cells or
embryonic neural cells communicate, leading to chaotic
differentiation of cancer cells. In some cases, however, tissue/
organ formation can be still observed, such as osteoid and bone
formation in various cancers (Hoorweg et al., 1997; Goto et al., 2010;
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Dekkers et al., 2019; Kattepur et al., 2021; Tian et al., 2021). Cancers
are degenerated forms of teratomas/teratocarcinomas or embryoid
bodies, and tumorigenesis resembles an ectopic neural induction
process and consequently embryonic tissue differentiation in
postnatal animals. Cancer cells were demonstrated to induce
secondary axis formation when transplanted into the appropriate
position of a blastula stage of zebrafish embryo, implying a neural
induction-like activity (Hendrix et al., 2007). Mutations in Wnt
pathway that leads to stabilization and hence extra nuclear
accumulation of β-catenin in cells are usually the cause of some
cancers, e.g., colorectal cancer. Meanwhile, these mutations are able
to cause the formation of a twinned mouse embryo (Brickman and
Burdon, 2002), strengthening the intrinsic link between neural
induction, conjoined twin formation and tumorigenesis. It is thus
plausible that nearly every gene is associated with cancer (de
Magalhães, 2022).

4 Epithelial-mesenchymal transition
(EMT) means transition from a relatively
known to an unknown cellular state,
but EMT marker expression change
reflects a neural induction-like
program

EMT has been considered as a general rule governing malignant
transformation of epithelial cells. EMT is described as a phenotypic
change, in which a polarized epithelial cell loses its polarity and
adhesion with neighboring cells, and assumes a mesenchymal
phenotype with a motile property. At molecular level, the loss of
epithelial phenotype is reflected by downregulation of the epithelial
marker CDH1, and gain of mesenchymal phenotype is driven by a
core set of EMT transcription factors, SNAI1, SNAI2, TWIST1,
ZEB1, and ZEB2. EMT is believed to be the key driver of

FIGURE 1
Typical marker proteins representing neuroectodermal or neural progenitor cells, neuronal cells, cells derived from endodermal differentiation, and
cells derived from mesodermal differentiation during normal animal development were widely detected in various types of cancers. This indicates that
tissue/cell types found in an animal body are also present in various cancers, suggesting cancers as degenerated embryoid bodies. For each cancer, color
bars indicate the percentage of patients (maximum 12 patients) with high and medium protein expression level. Low or not detected protein
expression results in a white bar. 1, Glioma; 2, Thyroid cancer; 3, Lung cancer; 4, Colorectal cancer; 5, Head and neck cancer; 6, Stomach cancer; 7, Liver
cancer; 8, Carcinoid; 9, Pancreatic cancer; 10, Renal cancer; 11, Urothelial cancer; 12, Prostate cancer; 13, Testis cancer; 14, Breast cancer; 15, Cervical
cancer; 16, Endometrial cancer; 17, Ovarian cancer; 18, Melanoma; 19, Skin cancer; 20, Lymphoma. Data are from the Human Protein Atlas (www.
proteinatlas.org) (Uhlen et al., 2017).
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carcinogenesis and has been extensively investigated (Yang et al.,
2020). Nevertheless, it has been heavily controversial because of its
essential flaws, which were discussed in details previously (Cao,
2017). Themain point is that both epithelial andmesenchymal states
are highly heterogeneous among different tissues/organs and cannot
be defined universally by a few “epithelial and mesenchymal”
markers, and the meaning of “mesenchymal marker” expression
change during malignant transformation of epithelial cells should be
a misinterpretation (Cao, 2017). Moreover, some cancers are not
originated from epithelial cells, but from mesenchymal cells, such as
sarcomas. After 2 years of discussion, the EMT International
Association (TEMTIA) in 2020 made a consensus statement
about the guidelines and definitions of EMT research (Yang
et al., 2020). The statement pointed out that the definition of
classical EMT cannot reflect the complicated intermediate states
between the binary switch from fully epithelial to fully mesenchymal
state. Therefore, TEMTIA recommends that the definition of EMT
should be more flexible and use “EMT plasticity” (EMP) to describe
these intermediate states (Yang et al., 2020). The revised term can
now smoothly fit all possible situations encountered during EMT
research. However, the mechanisms underlying the boundless
plasticity or how the plasticity is derived have not been
understood at all. Furthermore, “while the characteristics of fully
epithelial cells are relatively clearly defined, our current knowledge
does not allow us to define the mesenchymal state with specific
cellular characteristic or molecular markers that are universal end-
products of all EMT programmes” (Yang et al., 2020). This means
that EMT actually represents a transition from a relatively known to
an unknown state. Many molecular mechanisms have been
described for the regulation of EMT transcription factors in
cancer or regulation of cancer progression by EMT transcription
factors in numerous publications (Yang et al., 2020). But what the
“mesenchymal state” is has remained unknown. In EMT or EMP,
either the undefined plasticity (or “dynamics” in other literatures
(Brabletz et al., 2021)) or the undefined mesenchymal state is used as
a standard reference to define the characteristics of cancer cells. How
this dilemma could fit for the regularly advocated logics of biological
research, e.g., rigor, precision, and physiological relevance, is
intriguing and worthy of pondering.

4.1 The alteration of EMT marker expression
cannot be representative of the complex
change during malignant transformation of
epithelial cells

Although epithelial cells of different tissues/organs express a
same epithelial marker CDH1, they are derived from different
lineages during development and execute distinct physiological
functions in tissues/organs. Therefore, epithelial cells of different
tissues/organs have different intrinsic regulatory networks. For
example, epithelial cells of liver, which is differentiated from
endoderm, must be different in function and regulatory network
from those of kidney or skin, which are derived frommesoderm and
ectoderm, respectively, during embryonic development. That is to
say, besides the common epithelial property, epithelial cells of
different tissues/organs are defined by tissue-specific genes/factors
to perform tissue-specific functions. Downregulation of the

epithelial marker is not the only event occurring during
neoplastic transformation of epithelial cells. But rather, it is an
associated or concomitant event among much more sophisticated
changes: the progressive downregulation/silencing of tissue-specific
and differentiation genes. This causes a dedifferentiation effect and
loss of the property (including their epithelial state) and normal
function of the original cells. On the other hand, many genes,
including those encoding the “core EMT factors”, are
upregulated/activated in cancer cells and play promoting roles
during cancer initiation and progression. Unfortunately, this
broad range of changes have not been considered by “EMT”.
Cancer promoting genes may express and play diverse functions
in normal embryonic and adult cells. However, their primary
expression and function-a link between different cancer
promoting genes-had been neglected. In fact, these genes belong
to a same cellular context because most (if not all) of them are either
neural stemness genes or genes with enriched expression in
embryonic neural cells (Zhang et al., 2017). The typical
“mesenchymal markers and transcription factors”, SNAI1,
SNAI2, TWIST1, ZEB1, ZEB2, CDH2, VIM, are localized or at
least enriched in embryonic neural cells, neuroepithelium, neural
plate and neural crest (Wang et al., 2015; Zhang et al., 2017)
(Figure 2), similar to most cancer promoting genes/factors.
Upregulation of “core EMT factors” in cancer cells is
concomitant with the upregulation of many other cancer
promoting genes during cancer progression. Therefore, cancer
cells share regulatory networks with NSCs or embryonic neural
cells, but not other types of cells, and neural stemness is the
determinant for cell tumorigenicity and pluripotent
differentiation potential, a situation dictated by the evolutionary
advantage of neural genes and neural state. In summary, malignant
transformation of epithelial cells reflects the process of loss of
original cell identity (including epithelial state) and gain of
neural stemness (Cao, 2017; Zhang et al., 2017; Xu et al., 2021;
Cao, 2022; Zhang et al., 2022).

4.2 The “mesenchymal state” shares little
similarity with cancer cells in both cell
features and regulatory networks

Furthermore, the “mesenchymal state” shares little similarity
with cancer cells. Cancer cells are characteristic of rapid cell cycle
and proliferation, stemness, dysregulated epigenetics and
metabolism, cell motility, evasion of programmed cell death and
immunosurveillance, resistance to therapies, plasticity, etc.
(Hanahan and Weinberg, 2011; Bakir et al., 2020). There has
been no evidence so far to demonstrate that any types of non-
neural mesenchymal cells share these features and regulatory
networks with cancer cells. Instead, these cell features are
manifested by and the corresponding regulatory networks are
enriched in NSCs or embryonic neural cells (Cao, 2017; Zhang
et al., 2017; Chen et al., 2021; Xu et al., 2021; Cao, 2022; Zhang et al.,
2022). The machineries for basic cell physiological functions,
including cell cycle, ribosome biogenesis and protein translation,
proteasome, spliceosome, epigenetic modifications, transcription,
DNA replication, DNA damage and repair, and genes/factors
promoting stemness, etc., are all enriched in embryonic neural
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cells (Xu et al., 2021; Cao, 2022). They work concertedly together,
but not alone, to define the property of high proliferation with
pluripotent differentiation potential that serves as a fundamental cell
property, i.e., neural stemness (Chen et al., 2021; Cao, 2022; Zhang
et al., 2022). It is rather logical that all these basic machineries play
active roles during tumorigenesis. Cancer cells always gain resistance
to therapies, including immunotherapy, ultimately leading to a
therapeutic failure. One of the most frequent mechanisms is the
activation or upregulation of genes conferring resistance (Nussinov
et al., 2017; Ramos et al., 2021). Actually, this is an intrinsic property
of neural stemness. For example, EZH2 is involved in both
chemoresistance and immunotherapy resistance (Hu et al., 2010;
Kim et al., 2020; Reid et al., 2021). It is enriched in neural cells during
vertebrate embryogenesis, maintains neural stemness, and is capable
of dedifferentiating astrocytes into NSCs and confers stemness in
cancer cells (Sher et al., 2011; Kim et al., 2013; Akizu et al., 2016;
Zhang et al., 2017; Gorodetska et al., 2019; Lei et al., 2019). Cancer
cells are characteristic of plasticity, which is usually explained as the
consequence of EMP (Bakir et al., 2020; da Silva-Diz et al., 2018;
Yuan et al., 2019). However, it should be kept in mind that genes in
the regulatory networks of both cancer and embryonic neural cells
are enriched in longer genes containing more exon/introns
compared with those of non-neural cells (Sahakyan and
Balasubramanian, 2016; Xu et al., 2021; Cao, 2022). Obviously,
longer genes can serve as more flexible scaffold for regulatory
signals for cell differentiation and functions, generate more
splicing variants that contribute to phenotypic novelty and tissue
identity (Baralle and Giudice, 2017; Bush et al., 2017). In agreement,
the components of spliceosomes, the machinery responsible for
alternative splicing, are expressed predominantly in embryonic
neural cells and enriched in cancer cells, and promote cancers

(Lee and Abdel-Wahab, 2016; Wang and Aifantis, 2020; Cao,
2022; Yamauchi et al., 2022). It was demonstrated recently that
cell tumorigenicity and pluripotency are coupled properties unified
by neural stemness. Synchronic enhancement of neural stemness,
tumorigenicity and pluripotency is accompanied by increased level
of proteins involved in translation, ribosome biogenesis and
spliceosome assembly, etc., and accordingly, increased events of
alternative splicing in cancer cells (Zhang et al., 2022). It can be
concluded that cancer cells are characteristic of neural stemness, but
not mesenchymal state, in both cell features and regulatory
networks.

4.3 The association between “EMT” or “EMP”
and cancer cell features is within the context
of neural induction-like program

Many studies have shown the association between “EMT” or
“EMP” programs and cancer cell features, such as stemness,
resistance to therapies, plasticity, etc. (Singh and Settleman, 2010;
Brabletz et al., 2021). As shown in Figure 2, the epithelial marker
gene cdh1 is primarily expressed in non-neural ectoderm during
vertebrate embryogenesis, while the typical “mesenchymal markers
and transcription factors” are localized or enriched in embryonic
neural cells, neuroepithelium, neural plate and neural crest. This
means that the “core EMT transcription factors” are components of
embryonic neural regulatory networks, similar to most cancer
promoting factors. The neural specific expression readily establishes
the correlation between the “core mesenchymal factors” and neural
stemness, the ground state of pluripotency and tumorigenicity, and
implies a far-fetched relationship with the “mesenchymal state”.

FIGURE 2
Expression patterns of “EMT” marker genes in neurula embryos of Xenopus laevis. Neural induction during gastrulation leads to formation of
embryonic neural tissues in the subsequent developmental stage, during which the nervous system and various tissues/organs begin to form. Whole
mount in situ hybridization revealed specific expression of cdh1 in epidermis excluding the embryonic neural tissues, whereas cdh2, zeb2 and vim are
localized to neural plate, the precursor tissue of the central nervous system, and snai1, snai2 and twist1 are localized to neural crest, which give rise to
the peripheral nervous system andmany non-neural tissues. sox2, a marker gene for pluripotent stem cells and NSCs, is localized to neural plate and used
as a control. Dorsal view is shown for each embryowith the anterior to the left. epi, epidermis; np, neural plate; nt, neural tube; nc, neural crest. Expression
pattern data are from Zhang et al. (2017) and Wang et al. (2015) with permission from publisher.
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Contribution of “EMT” to cancer cell stemness was reported, but the
underlying mechanisms have remained elusive (Lambert and Weinberg,
2021). Occasional studies demonstrated that stemness factors SOX2,
BMI1 and OCT4 can be triggered by “EMT” factors ZEB1, SNAI1 and
SNAI2 (Kurrey et al., 2009; Wellner et al., 2010; Mitra et al., 2018).
Interestingly, Sox2, Bmi1, and Oct4 gene expression is localized to
embryonic neural cells during neural induction and early neural
development during vertebrate embryogenesis (Cao, 2022). Therefore,
both “EMT factors” and stemness factors are components of the
regulatory networks of a same cell type. “EMT” is associated with
therapy resistance. One major mechanism for “EMT” associated
therapy resistance is that “EMT factors” are able to induce
transcription of genes encoding ABC transporters, such as
ABCC4 and ABCC5 (Saxena et al., 2011). Resistance can also be
enhanced by “EMT” via disruption of TP53 function, repression of
tumor suppressor PTEN, or upregulation of pro-survival protein BCL-
XL/BCL2L1 (Brabletz et al., 2021). The primary location of transcription
of genes encoding ABC transporters, Tp53, Pten and Bcl2l1 is embryonic
neural tissues (Zhang et al., 2017; Xu et al., 2021). Therefore, both “EMT
factors” and therapy resistance factors are components of the regulatory
networks of embryonic neural cells. The mechanisms underlying the
contribution of “EMT” to cancer cell plasticity is also elusive. In the
context of “EMT”, cancer cell plasticity is defined by the expression levels
of “EMTmarkers”. A high level of epithelial marker expression in cancer
cells indicates epithelial phenotype, whereas a high level of mesenchymal
marker expression indicates “mesenchymal” phenotype. The
intermediate states like “partial EMT”, “intermediate EMT”, etc., are
represented with hybrid expression of different levels of epithelial and
mesenchymal markers, and hence, cancer cells can be grouped into
distinct subtypes (Bakir et al., 2020; Brabletz et al., 2021; Esquer et al.,
2021). Cancer cells with stronger “mesenchymal” phenotype are more
strongly tumorigenic (Esquer et al., 2021). This is a logical dilemma
because an undefined cellular state, the “mesenchymal state”, is used as a
standard reference to define the phenotypic diversity of cancer cells. No
matter it is a partial or a complete “mesenchymal state”, it is an unknown
state. So far, it is not known mechanistically how the expression levels of
“EMT markers” control cell plasticity. The situation will be changed
when considering that the “mesenchymal markers” are actually integral
components of the regulatory networks of NSCs or embryonic neural
cells (Figure 2), i.e., neural stemness, which is a defined and plastic cell
state. A key mechanism underlying cell plasticity is the enrichment of
long genes and spliceosomes and hence alternative splicing in both cancer
and embryonic neural cells (Sahakyan and Balasubramanian, 2016; Xu
et al., 2021; Cao, 2022; Zhang et al., 2022). “EMT” is a concomitant event
during carcinogenesis, but it has been misinterpreted as a causal or
central factor. As having been proofed, it is difficult to find mechanisms
and physiological relevance for a misinterpreted event. In summary,
neural stemness, but not the undefinable mesenchymal state, is
physiologically relevant with and integrates different characteristics of
cancer cells and tumorigenesis (Xu et al., 2021; Cao, 2022).

5 Neural stemness of cancer cells and
the tumor microenvironment:
understanding the causality in cancer

Cancer research was dominated by a cancer cell-intrinsic view
before 1980s since mutations in oncogenes and tumor suppressor

genes were seemingly sufficient to determine cancer initiation and
progression. This view could not explain smoothly the mechanisms
governing cancer metastasis. Studies on tumor microenvironment
(TME) and interactions between different cell types in the TME and
between tumor and normal tissues might provide reasonable
explanations, leading to a shift from the cancer cell-centric view
to a tumor environment-centric view (Vogelstein and Kinzler, 1993;
Maman and Witz, 2018; Garner and de Visser, 2020). Tumor-host
interaction and crosstalks in TME is important for tumor growth
and cancer progression. However, understanding the causal and
supporting factors involved in the interactions and crosstalks is
crucial not only for cancer biology, but also for the development of
more efficient strategies of cancer therapy.

A tumor consists of heterogeneous populations of cells. A widely
held view is that normal tissue cells infiltrate tumors or cancer cells
acquire magic power to hijack normal cells, for example, nerves,
immune cells, fibroblasts, blood vessels, etc., and recruit them into
TME to promote cancer progression (Maman and Witz, 2018;
Saxena and Bhardwaj, 2018; Brandao et al., 2019; Cervantes-
Villagrana et al., 2020; Lugano et al., 2020). The crosstalks
between cancer cells and recruited normal tissue cells have been
a major topic of study in cancer biology. How the cells in the TME
are originated and how the functions of the cells are related with
tumorigenesis have remained elusive.

5.1 The nerve-cancer crosstalk

The presence of nerves was observed in about one century ago
and numerous subsequent studies have demonstrated that neural
infiltration contributes to tumor progression and dissemination.
High intratumor nerve intensity is correlated with poor prognosis
and high recurrence across many cancer types (Jobling et al., 2015;
Boilly et al., 2017; Cervantes-Villagrana et al., 2020; Reavis et al.,
2020; Silverman et al., 2021). Promoting roles of nerves in cancer
initiation and progression have been extensively investigated
(Magnon et al., 2013; Hayakawa et al., 2017). It is believed that
neural infiltration is achieved primarily by three ways: axonogenesis
induced by neurotrophic factors (NGF, BDNF, GDNF) and axon-
guidance molecules (Netrin-1, Ephrin B1) that are released from
cancer cells, neural reprogramming or conversion of nerve types via
extracellular vesicles derived from cancer cells, and neurogenesis as a
result of differentiation of neural progenitor cells recruited by cancer
cells (Silverman et al., 2021). Extracellular vesicle-induced neural
reprogramming is dependent on Rab27A and Rab27B in cancer cells
(Amit et al., 2020), which are required for extracellular vesicle release
from cells (Ostrowski et al., 2010; Colombo et al., 2014). At least,
Rab27A is predominantly expressed in neural tissues during
vertebrate embryogenesis (Wuttke et al., 2016), suggesting that it
is involved in neural development. Neurogenesis in tumors via
recruitment of circulating progenitor cells from brain
subventricular zone is rather provocative (Mauffrey et al., 2019).
However, it needs to find out how neural progenitor cells break the
brain-blood barrier and enter circulation, and what is the
physiological significance of circulating neural progenitor cells.
Under normal developmental processes and physiological
conditions, neural cells are the primary source of neurotrophic
factors and axon-guidance molecules. Either neural factors or
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extracellular vesicles released by cancer cells indicate that cancer
cells have intrinsic features of neural cells, which communicate with
and shape normal nerves. Studies have shown that cancer cells have
the intrinsic potential of differentiation of neuronal cells (Lu et al.,
2017; Zhang et al., 2017; Lei et al., 2019; Chen et al., 2021; Zhang
et al., 2022), which compose of at least a part of nerves in a tumor
(Reavis et al., 2020). Single-cell RNA-sequencing analyses also
indicate that cancer cells are characteristic of neural cell state
(Pascual et al., 2021; Venkataramani et al., 2022).

5.2 Cancer-associated fibroblasts (CAFs)

CAFs are one of the major cell types of tumor stroma and
communicate with tumor cells and immune cells, thereby
promoting or suppressing cancer progression (Kalluri and
Zeisberg, 2006; Xouri and Christian, 2010; Alguacil-Núñez et al.,
2018; Kobayashi et al., 2019; Miki et al., 2020; Miyai et al., 2020; Biffi
and Tuveson, 2021). Very much similar to the “mesenchymal state”,
CAFs are also an undefinable cell state because they are
heterogeneous in marker expression, function and inter- and
intra-tumoral phenotypes (Kobayashi et al., 2019; Biffi and
Tuveson, 2021). CAFs are different from normal fibroblasts in
both morphological and growth properties (Delinassios et al.,
1983; Rønnov-Jessen et al., 1996). Little is known about the
origin of CAFs in tumors, but a few possibilities were proposed
(Xouri and Christian, 2010; Kobayashi et al., 2019). At the early stage
of tumorigenesis, CAFs might be the remnant native fibroblasts
from the tissue or organ of cancer origin. With the progression of
tumorigenesis, new CAFsmight be derived from transdifferentiation
from a non-fibroblastic lineage, activation of existing resident
fibroblasts, recruitment of circulating cells of a remote source
(particularly the bone marrow mesenchymal stem cells),
differentiation from cells with a stem or progenitor property, and
even “EMT” (Kalluri and Zeisberg, 2006; Xouri and Christian, 2010;
Kobayashi et al., 2019). Nevertheless, how different CAF types are
related with their cellular origins has not been validated. For
example, some studies considered local fibroblasts, bone marrow
mesenchymal stem cells and pericytes as the origins of CAFs (Kalluri
and Zeisberg, 2006; Hosaka et al., 2016; Koliaraki et al., 2017), but
others showed that COL1A1+ and alpha-SMA+ CAFs are
predominantly derived from local precursor cells rather than
mesenchymal stem cells (Arina et al., 2016). Studies with mouse
models and human patients showed that transplanted bone marrow
cells are able to migrate to tumor sites and differentiate into some
portion of CAFs in a tumor (Worthley et al., 2009; Quante et al.,
2011). This does not mean that the circulating bone marrow
progenitors are the only or main origin of CAFs. Cancer cells are
pluripotent, they can differentiate into different cell types, including
alpha-SMA+ cells. Cancer cells with stronger tumorigenicity and
pluripotency can differentiate more efficiently, and alpha-SMA+

cells are more abundant in xenograft tumors formed by cancer
cells with stronger tumorigenicity (Xu et al., 2021; Zhang et al.,
2022). Stromal content is correlated with cancer progression and
responses to therapy, and a high stromal content and a high level of
CAFs in stroma is an indicator of poor patient prognosis (Huijbers
et al., 2013; Sandberg et al., 2019; Vangangelt et al., 2020; Almangush
et al., 2021; Hagenaars et al., 2021). These correlations also reflect

that cancer cells with stronger tumorigenicity have stronger
differentiation potential, i.e., tumorigenicity and pluripotency are
coupled cell properties (Cao, 2022; Zhang et al., 2022), and CAFs
might be at least partially derived from cancer cell differentiation.

5.3 Cancer-immune crosstalk

Immune cells, either innate (macrophages, neutrophils,
dendritic cells, innate lymphoid cells, myeloid-derived suppressor
cells, and natural killer (NK) cells) or adaptive (T and B Cells), are
important constituents of tumor stroma (Maman and Witz, 2018;
Hinshaw and Shevde, 2019). Cancer-immune crosstalk has been a
mainstream study in cancer research, which sets up the basis for
cancer immunotherapy. There exist many inconsistencies in the
functions of immune cells in the TME. Tumor infiltrating T Cells
exhibit both antitumor cytotoxicity (Vose et al., 1977; Brunner et al.,
1981) and cancer-promoting activities (Vose and Moore, 1985;
Wang et al., 2020a; Marcucci and Rumio, 2021). The M1 subset
of macrophages exhibits antitumor activity, whereas the M2 subset
plays a tumor-promoting role. The functions of dendritic cells,
neutrophils, NK cells, etc., all play both anti- and pro-tumor
roles, depending on the subtypes of immune cells or on the types
of cancers (Hinshaw and Shevde, 2019). Based on these
understandings, researchers have made the best of anti-tumor
function of immune cells and developed strategies of
immunotherapy, particularly the engineered cytotoxic T Cells
(CAR-T) and inhibitors of immune checkpoints. Immunotherapy
has greatly revolutionized cancer therapy. However, the number of
patients who can benefit from these therapies is still very limited.
CAR-T therapy has shown high efficiencies in eliminating cancer
cells of B Cell malignancies, but achieved little success in solid
cancers due to high antigen heterogeneity in solid tumors, physical
barriers preventing T Cell infiltration, and highly
immunosuppressive TME that leads to T Cell exhaustion and
dysfunction (De Bousser et al., 2021; Hou et al., 2021; Sterner
and Sterner, 2021). Likewise, immune checkpoint inhibition
achieves responses in only a minority of patients due to primary
or intrinsic resistance of cancer cells (Sharma et al., 2017; Gide et al.,
2018; Kalbasi and Ribas, 2020; Vitale et al., 2021), and sometimes
cause even an adverse effect of hyperprogression (Champiat et al.,
2018; Kamada et al., 2019; de Miguel and Calvo, 2020; Marcucci and
Rumio, 2021). Meanwhile, therapy efficacy declines or disappears
because cancer cells acquire resistance as therapy continues (Draghi
et al., 2019; Gide et al., 2018; O’Donnell et al., 2019; Schoenfeld and
Hellmann, 2020; Sharma et al., 2017). The mechanisms for
resistance to immunotherapy are also a complicated issue and
seem to be not more easily understood than understanding
cancer itself. In general, resistance to immunotherapy is caused
by insufficient tumor antigenicity due to the lack of tumor
neoantigens, defects in transduction of anti-tumor immune
response mediated by tumor-intrinsic IFNγ signaling, impaired
antigen processing and presentation machinery, regulation by
oncogenic signaling, and tumor dedifferentiation and stemness
(Sharma et al., 2017; Draghi et al., 2019; Kalbasi and Ribas, 2020;
Schoenfeld and Hellmann, 2020). These seemingly distinct
mechanisms are actually interconnected together by the core
feature of cancer cells, as exemplified in the following examples.
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MEX3B allows melanoma cells to evade tumour-specific T Cells via
repression of HLA-A post-transcriptionally (Huang et al., 2018).
Inhibition of CDK4/6 boosts antitumor immunity by increasing IL-
2 production and tumor infiltration of T Cells (Kalbasi and Ribas,
2020). ADAR1 inhibition overcomes resistance to immune
checkpoint blockade caused by inactivation of antigen
presentation by tumour cells (Ishizuka et al., 2019). EZH2 plays
an important role in immune checkpoint blockade resistance by
regulating antigen presentation and antitumor immunity (Kim et al.,
2020; Zhou et al., 2020). β-catenin activation impairs dendritic cell
recruitment, promotes expression immune checkpoint genes, or
represses T Cell genes in cancers (Spranger et al., 2015; Ruiz de
Galarreta et al., 2019; Perry et al., 2020). SETDB1 promotes immune
exclusion and resistance to immune checkpoint blockade in cancer
cells by suppressing immunostimulatory genes (Griffin et al., 2021).
Many studies established an association between “EMT” and tumor
immunity, by showing that “EMT” is linked with upregulation of
inhibitory checkpoint ligands, downregulation of tumor-associated
antigens and inhibition of T Cell infiltration, etc. (Marcucci and
Rumio, 2021). The intrinsic connection between these different
mechanisms is that all these factors promoting immune therapy
resistance are embryonic neural genes, and plays critical roles in
neural development and tumorigenesis. This means that the
resistance effect is concurrent with the gain or enhancement of
tumorigenicity of cancer cells, i. e., neural stemness. In agreement,
dedifferentiation and stemness of cancer cells is the key factor
driving resistance to immunotherapy (Miao et al., 2019; Li and
Stanger, 2020; Lei and Lee, 2021).

Cancer-initiating cells exhibit immune privilege, protecting cells
from immune attack using the mechanisms mentioned above
(Galassi et al., 2021). Accordingly, NSCs and embryonic stem
cells, whose default state is NSCs, also exhibit immune privilege.
They form teratomas in immunocompetent mice as the result of low
expression of immune-related proteins, including MHC class I and
II antigens, HLA-DR and co-stimulatory molecules (Magliocca
et al., 2006; Itakura et al., 2017; Ozaki et al., 2017). In
comparison, adult cells and non-neural cells are more susceptible
to immune rejection (Drukker et al., 2006; Xu et al., 2021),
suggesting that immunogenicity might be correlated with
differentiation state.

It is believed that immune checkpoints promote tumorigenesis
by regulating immune response of tumor cells to immune attack.
Inhibitors of PD-1/PD-L1 have revolutionized cancer therapy. But
inhibitors of subsequently identified immune checkpoints may have
not achieve significant responses in patients. IDO1 functions in
suppression of anti-tumor immunity by degrading tryptophan and
producing a series of toxic kynurenine metabolites to promote
immune evasion of tumors (Uyttenhove et al., 2003; Munn and
Mellor, 2013), but the inhibitor of IDO1 failed in a phase 3 clinical
trial (Long et al., 2019). The failure is in contrast to the mechanisms
underlying IDO1 function in suppression of anti-tumor immunity.
Emerging studies have elucidated some novel functions of the
immune checkpoint PD-1 (PDCD1), which might be suggestive
for the failures. PD-1 is primarily expressed in bone marrow and
lymphoid tissues, and accordingly, enriched in activated T Cells,
indicating a differentiated cell state. However, PD-1 expression was
also detected in some subpopulations of cells of different cancers
(Du et al., 2018; Wang et al., 2020b; Ieranò et al., 2022).

Overexpressed PD-1/PD-L1 suppressed the viability, growth,
proliferation and tumorigenicity of cancer cells, and inhibited
tumor growth, whereas blocking cancer cell-intrinsic PD-1/PD-
L1 generated an opposite effect. Therefore, in contrast to its
tumor-promoting function in the context of immunity, cancer
cell-intrinsic PD-1/PD-L1 works actually as a tumor suppressor
(Du et al., 2018;Wang et al., 2020b; Ieranò et al., 2022), a finding that
complicates cancer therapy using PD-1/PD-L1 blockade and the
outcomes of patients in response to therapy. Mechanistically,
inhibition of cancer cell-intrinsic PD-1/PD-L1 enhances AKT
and ERK1/2 activity (Wang et al., 2020b). Genes for Akt (Akt1/
2/3) and Erk1/2 (Mapk1/3) are all enriched in embryonic neural
cells (Magdaleno et al., 2006; Xu et al., 2021), play critical roles in
embryonic neural induction and neurodevelopment (Kuroda et al.,
2005; Sittewelle and Monsoro-Burq, 2018), and promote
tumorigenesis. Previous studies generalized that cancer
promoting genes are mostly embryonic neural genes, which
confer cells with neural stemness, and tumor suppressor genes
are mainly non-neural or pro-differentiation genes, which
suppress tumorigenicity by inhibiting neural stemness and confer
cells with non-neural cell property (Cao, 2017; Zhang et al., 2017;
Yang et al., 2021; Cao, 2022). Loss of PD-1 might cause a
dedifferentiation effect in cancer cells and enhances their
tumorigenicity. The novel function of PD-1/PD-L1 was identified
mainly in vitro conditions. However, these studies indicate that it is
not enough to understand the functions of immune checkpoints
merely in the context of cancer-immune crosstalk.

5.4 Cancer cell-centric or tumor
environment-centric?

There are some other cell/tissue types in tumors and more
complicated crosstalks between multiple cell types have been
described, e.g., the tumor-neuro-immune crosstalk (Kuol et al.,
2018). As the mainstream viewpoint, cells in the TME are
derived from normal tissues because of infiltration of circulating
cells, invasion of cancer into normal tissues or hijacking of normal
cells. In addition to these possible sources, it should be kept in mind
that cancer cells are capable of pluripotent differentiation. The intra-
and inter-tumoral phenotypic heterogeneity should be primarily
resulted from differentiation of cancer cells. The cell types in a tumor
might reflect a differentiation hierarchy of cancer cells, under the
control of intra- and extracellular signals. Teratocarcinoma is a
particular type of malignant tumors, which exhibit differentiation of
histologically identifiable tissues/organs derived from all three germ
layers, such as cartilage, bone tissues, neural epithelia, gut structures,
etc. Formation of these tissues/organs in teratocarcinomas can be
explained by the pluripotent differentiation potential of embryonal
carcinoma cells and experimentally testified, but cannot be
explained by hijacking of normal cells or cell infiltration. Osteoid
and bone formation in primary tumors of various extraskeletal
tissues, such as skin, breast, liver and rectum (Hoorweg et al.,
1997; Goto et al., 2010; Dekkers et al., 2019; Kattepur et al.,
2021; Tian et al., 2021) should be a consequence of cancer cell
differentiation rather than recruitment of normal cells. It is possible
that cancer cells can also differentiate into cells resembling immune
cells, a topic remaining to be investigated.
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Besides targeted and immune therapy of cancer, strategies of
targeting TME components, e.g., vasculature, neuronal cells, CAFs,
immune cells, etc., have been emerging (Chung et al., 2010; Hao
et al., 2021; Kaduri et al., 2021; Maia and Wiemann, 2021; Saw et al.,
2022). TME is highly heterogeneous in context, functions and
regulatory networks. For example, CD146– CAFs inhibit ER
expression in ER+ breast cancer cells, increasing resistance of
tumor cells to Tamoxifen. By contrast, CD146+ CAFs maintain
the expression of ER in ER+ breast cancer cells and sustain sensitivity
to Tamoxifen (Brechbuhl et al., 2017), suggesting that similar
subsets of CAFs can have distinct functions within different
cancer subtypes. Targeting CAFs in TME via interference of
TGF-β1/2, Furin, etc., has been extensively investigated (Saw
et al., 2022). These proteins are also expressed in cancer cells and
play complex roles during tumorigenesis. TGF-β cytokines play
dichotomous roles during tumor progression, they suppress cancer
initiation but later promote cancer cell metastasis and
immunoevasion (Yeh et al., 2019). Furin has been suggested as a
potential target of therapy of some cancer types, but inhibition of
Furin in some other cancers led to aggressive phenotypes (He et al.,
2022). This means that inhibition of CAF-related proteins
suppresses CAFs, and at the same time might also cause a
promoting effect on cancer cells. Different immune cells and
subpopulations of a same type of immune cells also generate
contrasting effects on tumors, as mentioned above. Cancer cell
intrinsic PD-1/PD-L1 being a tumor suppressor raises the
question whether other immune checkpoints or TME molecular
targets might also be expressed in cancer cells and serve as tumor
suppressors. These complexities and inconsistencies make it a
complicated issue to evaluate the efficacy of targeting TME (Maia
and Wiemann, 2021). It needs to clarify how TME is derived from
and how a gene/protein functions in cancer cells. A central role of
neural stemness in tumorigenicity and pluripotent differentiation
potential should be considered in both basic research and
development of therapeutic strategies of cancer. A preliminary
study showed that non-neural pro-differentiation factors inhibit
cancer cell tumorigenicity effectively via conferring non-neural
property in cancer cells and meanwhile inhibition of neural
stemness and neural regulatory network (Yang et al., 2021).

6 Tumorigenicity as a manifestation of
pluripotency in a postnatal animal

Tumorigenicity and pluripotency are key cell properties for
tumorigenesis and embryogenesis. The proposal that neural
stemness represents the ground state of and unifies cell
tumorigenicity and pluripotency implies that tumorigenesis and
embryogenesis are driven by a same general principle, the neural
induction or a similar process. This provides fresh insights into the
essence of tumorigenicity and tumorigenesis. A key property of
ESCs is that they differentiate into various cells/tissues and
contribute to chimeric formation when transplanted into
blastocysts. Similar chimeric formation effects can be observed
for NSCs (Clarke et al., 2000; Tropepe et al., 2001). Importantly,
various types of cancer cells, including teratocarcinoma, leukemia,
neuroblastoma and melanoma cells, can also contribute to chimeric
formation or be induced to differentiate into different types of cells

when transplanted into an embryo. The differentiated offspring cells
are similar to host cells and not tumorigenic anymore (Brinster,
1974; Papaioannou et al., 1975; Illmensee and Mintz, 1976; Cooper
and Pinkus, 1977; Gootwine et al., 1982; Podesta et al., 1984; Webb
et al., 1984; Gerschenson et al., 1986; Wells andMiotto, 1986; Kulesa
et al., 2006; Hendrix et al., 2007). A recent study highlights that the
differentiation stage of cancer cells affects the consequence of
tumorigenicity (Baggiolini et al., 2021). Moreover, transplantation
of the nuclei of different cancer cells into enucleated oocytes led to
development of normal embryos (King and DiBerardino, 1965;
McKinnell et al., 1969; DiBerardino et al., 1983; Li et al., 2003;
Hochedlinger et al., 2004), suggesting the pluripotent nature of
cancer cells. Therefore, characterization of cancer cells and NSCs
implies that variants of pluripotent state can be numerous and are
present throughout the life of an animal from a pre-implantation
blastocyst to adult stage. Chimeric formation indicates that
pluripotent cells, including cancer cells, NSCs and embryonic
pluripotent cells, can be induced to differentiate into normal cells
in an embryonic milieu and integrated into the development of an
embryo. Instead, they form embryoid structures that cannot
integrate into normal differentiated tissues or organs in the
absence of embryonic differentiation signals during tumorigenesis
in a postnatal animal or under the skin of an immunodeficient
mouse. The different behavior of pluripotent cells in embryonic
milieu and in a postnatal animal suggests that tumorigenicity, a
pathological property, is actually an aberrant manifestation of
pluripotent state in a postnatal animal. These studies, together
with a recent study, also suggest that differentiation of cancer
cells induced by embryonic inducing factors could be an efficient
therapeutic strategy of cancers (Yang et al., 2021). Different cancer
cell features, such as rapid cell cycle and proliferation, stemness,
dysregulated metabolism, dysregulated epigenetics,
immunoevasion, etc., are all integral constituents of neural
stemness (Cao, 2017; Xu et al., 2021; Cao, 2022; Zhang et al.,
2022). In conclusion, neural stemness and its regulatory network
is the unique base on which an embryo or a tumor is built
up. Figure 3 summarizes that neural induction, a process of loss
of original cell identity and gain of neural stemness or restoration of
neural ground state in cells, drives embryogenesis in gastrulating
embryos but drives tumorigenesis in a postnatal animal.
Tumorigenicity and pluripotency are both but different
manifestations of the same cell property: neural stemness, in
different stages of an animal life.

7 Perspectives

It is increasingly clear that malignant transformation of cells is a
process of progressive loss of original cell identity and gain of the
property of NSCs, a cellular property that determines both
tumorigenicity and pluripotency, and unifies different malignant
features, such as fast cell cycle/proliferation, motility, evasion of
apoptosis and immune surveillance, dysregulated epigenetics and
metabolism, therapy resistance, etc. (Cao, 2017; Xu et al., 2021; Cao,
2022; Zhang et al., 2022). Neural stemness is the prime cellular
property that determines tumorigenesis. TME plays important roles
during tumorigenesis and has been a main focus of cancer research.
Nevertheless, how the cells in TME are derived and how the cells
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function in cancer have remained elusive. The TME of
teratocarcinoma and the pluripotency of teratocarcinoma cells
are inspiring. In addition to cells originating from the host, the
pluripotent differentiation potential of cancer cells (or generally,
tumorigenic cells) should be the prime factor to consider when
deciphering TME and the functions of TME components in cancer.

As discussed above, great progresses have been achieved in
cancer therapy, in particular the targeted and immune therapies.
But many challenges persist, such as the limited number of patients

who can benefit from the therapies and the insurmountable obstacle
of therapy resistance. Many mechanistic studies have revealed that
factors conferring cancer cells with therapy resistance are generally
neural stemness or embryonic neural factors, suggesting that neural
stemness is also the cell property responsible for resistance. Neural
stemness is the key property of cancer cells, targeting neural
stemness might be potentially an efficient strategy to suppress
cancer and reduce resistance effect. That cancer cells can be
induced to differentiate into non-tumorigenic cells in embryonic

FIGURE 3
Neural induction, conjoined twin formation and tumorigenesis. (A) (Upper) A schematic illustration depicting the organizer graft transplantation
experiment done by Spemann and Mangold, in which the organizer graft (the dorsal blastopore lip) of an early gastrula of a light-gray newt (Triturus
cristatus) was grafted to the site opposite to the dorsal lip of an early gastrula of a dark-gray newt (Triturus taeniatus). (Middle) An illustration showing
conjoined twin formation by organizer grafting. A section through the trunk of a conjoined twin embryo demonstrated that the light-gray graft
contributed to the notochord, medial somite and floor plate of the secondary body axis, but the secondary neural tube, somites, pronephros, and
archenteron cavity were induced from the dark-gray host embryo. (Lower) Conjoined twin formation of frog (Xenopus laevis) embryo by organizer
grafting performed at early gastrula stage. (B) Tumor formation in human. The first clinical illustration of tumor, a large scapulohumeral tumor, most
probably a sarcoma, in a book by a surgeon Marco Aurelio Severino published in 1,632 (Hajdu, 2011). (C) Neural induction or a similar process underlying
both conjoined twin and tumor formation. During embryonic development, the organizer or node secretes proteins inhibiting epidermal fate of gastrula
ectoderm, leading to the gain of neural fate in ectoderm and formation of neuroectoderm, a process known as “neural induction”. This is required not only
for the differentiation of the nervous system but also for many non-neural tissues, such that the body axis of an embryo can form. Neural induction can
occur ectopically during gastrulation, caused either by an ectopic organizer or node activity or by ectopic activation of embryonic neural genes, leading
to the formation of secondary embryonic structures or a conjoined twin. This process might occur in any cell and at any time of animal life. Cells of a
postnatal animal may suffer various extracellular (e.g., microenvironmental change) and/or intracellular (e.g., gene mutations) insults. If occasionally the
insults cause activation of neural stemness regulatory network and/or downregulation/silencing of tissue-specific or differentiation genes/factors, cells
progressively lose their original cell identity and gain of neural stemness or restore the neural ground state, similar to the neural induction process in
gastrula ectodermal cells. The resulting cells can self-renew and differentiate into tissue/cell types of all three germ layers, resembling a defected process
of embryonic development, that is, tumorigenesis. Tumorigenic cells (cancer cells, NSCs and embryonic pluripotent cells) are induced to differentiation
into normal cells and integrate into normal embryonic development when they are placed in an embryonic environment, but they form tumors instead
and cannot integrate into animal tissues/organs when they are in an environment in a postnatal animal because of lack of embryonic inducing signals.
Therefore, tumorigenicity is a property of pluripotent cells manifested in amicroenvironment of a postnatal animal. (A) is adapted fromHarland (2008), (B)
from Hajdu (2011), and (C) is from Zhang et al. (2022) with permission from publishers.
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environment implies that inhibition of tumorigenesis might be
achieved via differentiation, hence the loss of neural stemness in
cancer cells. Differentiation therapy was suggested 50 years ago
(Pierce and Wallace, 1971; Pierce, 1983). A variety of differentiation
inducing agents, including neural growth factors, all trans retinoic
acid, arsenic trioxide, butyric acid or cAMP, have been shown some
degree of differentiation-inducing capability in vitro and/or in vivo
experiments (de Thé, 2018). The best-known case of differentiation
therapy is the treatment of acute promyelocytic leukemia with all-
trans retinoic acid (Huang et al., 1988). But differentiation therapy
has been not applied as widely as other therapies. If the key property
of cancer cells is not understood, it will be difficult to find an
appropriate approach to achieve efficient differentiation. The neural
stemness property and pluripotency of cancer cells implies that they
can be induced to differentiate by key differentiation factors,
particularly those for embryonic tissue differentiation that can
mimic embryonic differentiation environment. Indeed, preclinical
studies have shown that pancreatic cancer cells can be induce to
differentiate by a key pancreatic differentiation factor Ptf1a, and
breast cancer cells can be induced to post-mitotic adipocytes, and
leading to suppression of the cancers (Ishay-Ronen et al., 2019; Krah
et al., 2019). My preliminary study also demonstrated that non-
neural pro-differentiation factors inhibit tumorigenicity of cancer
cells via inhibition of neural stemness (Cózar et al., 2021). Whether
differentiation via targeting neural stemness can be widely applied
for cancer therapy is worth further studies.
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