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Nucleic acid aptamers are ssDNA or ssRNA fragments that specifically recognize
targets. However, the pharmacodynamic properties of natural aptamers
consisting of 4 naturally occurring nucleosides (A, G, C, T/U) are generally
restricted for inferior binding affinity than the cognate antibodies. The
development of high-affinity modification strategies has attracted extensive
attention in aptamer applications. Chemically modified aptamers with stable
three-dimensional shapes can tightly interact with the target proteins via
enhanced non-covalent bonding, possibly resulting in hundreds of affinity
enhancements. This review overviewed high-affinity modification strategies
used in aptamers, including nucleobase modifications, fluorine modifications
(2′-fluoro nucleic acid, 2′-fluoro arabino nucleic acid, 2′,2′-difluoro nucleic
acid), structural alteration modifications (locked nucleic acid, unlocked nucleic
acid), phosphate modifications (phosphorothioates, phosphorodithioates), and
extended alphabets. The review emphasized how these high-affinity
modifications function in effect as the interactions with target proteins, thereby
refining the pharmacodynamic properties of aptamers.
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1 Introduction

Aptamers are ssDNA or ssRNA fragments, which are typically screened from
oligonucleotide pools using the systematic evolution of ligands by exponential
enrichment (SELEX) technology. Because of the three-dimensional shapes, aptamers
enable to recognition of abundant targets like antibodies (Chen and Yang, 2015).
Aptamers take many advantages over antibodies, including easier synthesis, less time
and cost consumption, lower immunogenicity, higher stability, and superior re-
foldability. Hence, aptamers are promising substitutes for homologous antibodies. In
2004, the United States Food and Drug Administration (FDA) approved the first
commercialized aptamer drug (Macugen®) that binds vascular endothelial growth factor
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protein 165 (VEGF165) for the wet-form neovascular age-related
macular degeneration (AMD) (Ruckman et al., 1998; Rothlisberger
and Hollenstein, 2018). Nowadays, several therapeutic aptamers
have entered phase II-III clinical trials.

In ionic environments, aptamers enable the folding of numerous
3-dimensional (3D) motifs, e.g., hairpins, bulges, loops and
pseudoknots (Strehlitz et al., 2012). It permits aptamers to form
different shapes to interact with the ligands through non-covalent
bonding, including hydrogen bonding, π–π stacking, London
dispersion forces, ion-ion interactions, and dipole-dipole
interactions. It is critical for aptamers to tightly interact with the
target ligand (usually protein) to obtain high binding affinity (Hu
et al., 2022). Nevertheless, aptamers should form a 3D structure for
target recognition, possibly impeding the amplification efficiency
during polymerase chain reaction (PCR). It provides a mechanistic
insight involved in the undesired binding affinity of the resultant
aptamers screened by SELEX to targets (Hasegawa et al., 2016).
More importantly, natural DNA aptamers are composed of
naturally occurring 4 deoxynucleotides (A, C, G, T), while
natural antibodies are composed of 20 amino acids. Hence, the
chemical variety of DNA aptamers is much more restricted in
comparison with those of antibodies. Typically, naturally
occurring aptamers show a decreased binding affinity than
cognate antibodies. It indicates that the interactions between the
aptamer and its ligand protein have spaces to be optimized.

Researchers sought to determine whether chemical
modifications could facilitate interactions between the modified
aptamer and its ligand protein, with no increase in off-target
effects (Lipi et al., 2016) (Figure 1.). Totally, the interactions can
be classified as non-covalent and covalent, respectively. Although
covalent bonding enhances the highest affinity, the miserable off-
target effects demonstrate reduced therapeutic or diagnostic
applications in aptamers. In contrasts, non-covalent bonding
embodies the properties of high affinity and specificity. The

absence of interactions of aptamers to targets can be remedied
with modifications at either the nucleobase, sugar ring or phosphate
backbone. The naturally occurring aptamers have reached a plateau
in the treatment of diseases, and there is an urgent sense that affinity
enhancement must now come from fresh modification approaches,
such as hydrophobic groups, amino acids, positive charges and
phosphorothioates. Importantly, expanding aptamer epitopes, i.e.,
increasing the contact area between the modified aptamer and
protein, largely contributes to the affinity enhancement (Zon, 2022).

In this review, we summarized an outlook of chemically
modified aptamers for improving binding affinity to the target
protein via enhanced non-covalent bonding. It will help guide
the next-generation of chemically modified aptamers with high
affinity for disease diagnosis and treatment.

2 Strategies for improving the binding
affinity of the modified aptamer to the
target protein via enhanced non-
covalent bonding

2.1 Nucleobases modifications

2.1.1 Nucleobases with amino acid-like side chains
Nucleobases can be modified with a wide variety of functional

groups to improve the affinity between aptamer and protein. Given
the inherent properties of nucleic acids and proteins nucleobases
with amino acid-like side chains could confer further advantages to
modified aptamers, because those amino acid side chains can
directly participate in the interaction with protein.

By modifying the C5 position of deoxyuridine triphosphate
(dUTP) with some hydrophobic groups (Figure 2), Gold et al.
combined the conformational flexibility of nucleic acids with the
functional variety of proteins, which greatly enhanced the binding

FIGURE 1
Chemically modified aptamers for improving binding affinity to the target protein via enhancing non-covalent bonding (the red dot represented
amino acid residues on the protein, the yellow rectangle represented modified nucleotides on the aptamer, the black arrow represented non-covalent
bond).
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affinity of modified aptamers to proteins (Davies et al., 2012). dUTP
modification at C5 can form additional hydrophobic interactions
with hydrophobic pockets of proteins. These aptamers embodied
slow off-rate to proteins, and were termed as SOMAmers (slow off-
rate modified aptamers). Nebojsa et al. expanded nucleobases with
amino acid-like side chains from uracil to cytosine. It was found that
aptamers comprising modified uracil and cytosine exhibited higher
binding affinity than that comprising modified uracil (Gawande
et al., 2017).

Different from the SOMAmers in which an amido linker was
used between hydrophobic group and dU, Günter Mayer et al.
developed triazole linker by click chemistry between alkyne-
modified uridine (5-ethynyl-deoxyuridine (EdU)) instead of
thymidine and hydrophobic group-azide (Figure 2B). Combining
the compatibility of EdU to DNA polymerase in SELEX procedure
and highly efficiency of click chemistry, they succeeded to screen an
indole modified aptamer against cycle 3 GFP with 18.4 nM of KD

value (Tolle et al., 2015; Pfeiffer et al., 2018).
Apart from hydrophobic modifications, hydrophilic modifications

may facilitate forming additional hydrogen bonds and ion-ion
interactions. Buyst et al. conjugated histamine to C5 of the thymine
base in the aptamer by amido linkages (Buyst et al., 2015). The single
modified thymine was placed at four different positions in the center of
the 14mer double helix, from which the interaction between imidazole
and double chain and its influence on imidazole pKa were studied. A
structural motif is established by unrestricted molecular dynamics and
nuclear magnetic resonance, involving the formation of hydrogen
bonds between imidazole and the Hoogsteen side of two adjacent
GC base pairs, which has been shown to significantly enhance the DNA
Thermal stability of double strands.

It was reported that base modifications contribute to the thermal
stability of synthetic DNA duplexes (Verdonck et al., 2018).
Unconstrained molecular dynamics (MD) simulation showed that
attributable hydrogen bonds could be formed between imidazole
and the nearby guanosine. A principal validation study showed that
the imidazole thymine modification could enhance the stability of
L-arginine amide conjugated aptamers, indicating a vital role in
stability enhancement. Park’s group demonstrated that the
hydrophobic amino acids in aptamers could be regarded as a
novel kind of unnatural nucleotide (Yum et al., 2021). They
synthesized a series of modified thrombin aptamers (TBA) to
investigate their affinity and antithrombin activity. Then found
that the incorporation of amine acids could improve the binding
affinity of TBA (KD = 2.94 nM), and make the 3-fold of
antithrombin activity enhancement.

2.1.2 Base-appended base modifications
Horii and Waga’s group developed the base-appended bases

(Figure 2C) to enhance the binding affinity of modified aptamers
(Minagawa et al., 2017). Using modified SELEX, a high affinity
aptamer could be isolated after several rounds of selection. For
example, a Salivary α-amylase (sAA) aptamer (AMYm1) was
selected, which had high affinity (KD<1 nM) with sAA. Ikuo
et al. designed an adenine-appended modification strategy, and
successfully screened an aptamer Aad1 against human β-defensin
2 (Minagawa et al., 2020) with the KD value of 6.8 nM. Recently,
Horii’s group applied base-appended modification strategy to select
SARS-CoV-2 aptamer (Minagawa et al., 2022). These aptamers had
extremely low KD value (1.2 nM and <1 nM) to the receptor-binding
domain (RBD) and spike trimer of the SARS-CoV-2, respectively.

FIGURE 2
The nucleobasesmodifications on the aptamers to enhance binding affinity. (A) SOMAmersmodification; (B)Modified uridine by click chemistry; (C)
Base-appended bases modification; (D) Amino acid (leu) modification.
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2.1.3 Other nucleobase modifications
Apart from above modifications, Smirnov et al. introduced

amino acids, such as Leu (Figure 2D), to the nucleobase of TBA
via post-SELEX modification (Smirnov et al., 2021). They
demonstrated that these modifications could improve the binding
affinity and enhance anticoagulant activity. The crystal data
demonstrated that modified bases increased the contact areas
between the target proteins and modified aptamers. (Cheung
et al., 2020b). Cheung et al. report the affinity of cubane-
modified aptamers (cubamers) for the malaria biomarker
Plasmodium vivax lactate dehydrogenase (PvLDH) (Cheung
et al., 2020a). Analysis of the crystal structure of the complex
reveals a binding mechanism involving multi-carbon clusters
within the hydrophobic pocket. SPR analysis of the binding
affinity of cubamer to Plasmodium falciparum lactate
dehydrogenase (PfLDH) and PvLDH, respectively, showed that
cubamer had higher affinity and specificity to PvLDH. β-secretase
1 (BACE1) is the therapeutic target of Alzheimer’s disease, so
developing a DNA aptamer that binds to BACE1 to treat the
disease may be an effective measure. Herdewijn’s team added
triphosphate analogs modified by 5-chlorouracil and 7-
deazaadenine bases during the SELEX process to obtain high-
affinity aptamers for BACE1 (Gasse et al., 2018). The finally
screened aptamers showed significant affinity (KD = 10 nM) to
BACE1 with IC50 values in the low nanomolar range.

2.2 Ribose modifications

2.2.1 2′-Fluoro nucleic acid (2′-F RNA)
Modifications on the ribose part of nucleic acid, such as 2′-

fluoro (2′-F), 2′-Fluoro Arabino, 2′, 2′-difluoro-2′-deoxycytidine
(Figure 3), could enhance the binding affinity. Generally,
unmodified aptamers have limited affinity to targets, and the 2′-
fluoro (2′-F) optimized aptamers exhibit superior binding affinity
and nuclease resistance (Maio et al., 2017; Odeh et al., 2020)
(Figure 3A). For instance, oligonucleotides modified with 2′-F,
but not with 2′,4′-constrained 2′-O-ethyl (cEt) or 2′-O-
methoxyethyl (2′-MOE), exhibit higher affinity to 54 kDa nuclear
RNA- and DNA-binding protein (P54nrb). Wen et al. isolated
antisense oligonucleotides (ASO) binding protein from HeLa cell
extracts using a biotinylated gapmer phosphorothioate (PS)-ASO

with flanking nucleotides 2′-modified with F (ISIS623496), and
competitively eluted it with non-biotinylated gapmer PS-ASOs of
the same sequence modified on the flanking nucleotides with 2′-
MOE, cEt or 2′-F (Shen et al., 2015). The affinity-selected proteins
analyzed by western blotting showed that more P54nrb as well as
fused in sarcoma (FUS) were preferentially eluted by 2′-F modified
competitor ASO, rather than cEt or 2′-MOE-PS-ASO. Then, the
author designed two kinds of gapmer oligonucleotides with 2′-F
modification on 5′or 3′flanking nucleotides (called “wings”) and 2′-
MOE modification on the other wings. These two PS-ASOs were
used to elute ASO binding proteins coprecipitated by biotinylated
2′-F-PS-ASO. The separated proteins were then characterized
through Western blotting. It was found that P54nrb as well as
FUS had higher affinity for ASO with 2′-F modification on
oligonucleotide 3′-wing.

2.2.2 2′-Fluoro arabino nucleic acid (2′-F-ANA)
The sugar ring of 2′-deoxy-2′-fluoro-arabinonucleic acid

(FANA) (Figure 3B) typically adopts a C2′/O4′-endo
conformation rather than the C3′-endo conformation of 2′-
fluorinated ribonucleotides (El-Khoury and Damha, 2021;
McKenzie et al., 2021), the fluorine group of FANA is the β
conformation rather than α (Trempe et al., 2001; Martin-Pintado
et al., 2013). Recently, 2′F-ANA modified aptamers against HIV-1
integrase (IN) have been selected through SELEX (Rose et al., 2019).
The dissociation constants of 2′F-ANA modified aptamers in the
range of 50–100 p.m. were obtained, of which the KD value exceeded
two orders of magnitude than traditionally than unmodified DNA
and RNA aptamers. The substitution of 2′F-ANA nucleotides
significantly reduce the binding affinity. It indicates that the
distinctive structural conformation of 2′F-ANA nucleotides in the
aptamer is essential to improve the affinity.

Compared to unmodified thrombin aptamer (TBA), FANA
modified TBA showed significantly higher affinity and nuclease
resistance (Peng and Damha, 2007; Watts and Damha, 2008).
Huang et al. drew a binding affinity map of 2′F-ANA modified
aptamer with TBA (Lietard et al., 2017). A total of 32768 sequences
were prepared on the microarray to plot possible mutations in
DNA-to-2′F-ANA. Since 2′F-ANA was linked to tight interactions,
the antiparallel folded G-quadruplex with 2′F-ANAmodifications in
loops had a profitable effect on binding affinity improvement. This
work enhanced the potential aptamer research of 2′F-ANA and

FIGURE 3
The ribose modifications on the aptamers to enhance binding affinity. (A) 2′-fluoro (2′-F) modification; (B) 2′-Fluoro Arabino nucleic acid
modification; (C) 2′, 2′-difluoro-2′-deoxycytidine modification; (D) Locked Nucleic Acid modification; (E) Unlocked Nucleic Acid modification.
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further expanded the non-genomic applications in the field of
nucleic acid microarrays.

2.2.3 2′,2′-Difluorocytidine (dFdC, gemcitabine)
Gemcitabine [2′,2′-difluoro-2′-deoxycytidine (dFdC)]

(Figure 3C) has a fluorine substituent in the pentose ring, with
involvement of the most important deoxycytidine analogs
(Heinemann et al., 1988). As a pyrimidine antimetabolite and a
prodrug, dFdC has been approved for the treatment of breast cancer,
bladder cancer, ovarian cancer, colon cancer, non-small cell lung
cancer and pancreas cancer (Dubey et al., 2016). Gemcitabine could
be internalized into cells via nucleoside transporters (hENT2,
hENT1) as well as concentrated nucleoside transporters (hCNT3,
hCNT2 and hCNT) (Mini et al., 2006).

Previous studies had shown that the loop region in the
G-quadruplex played a crucial role in nucleolar protein binding.
Thus, chemical modification in the loop region might change the
binding ability of the modified aptamer to protein (Kotula et al.,
2012). Kang’s team has constructed a gemcitabine-modified AS1411
(APTA-12) (Park et al., 2018). The binding affinity data exhibit that
gemcitabine modification (KD = 14.37) could sightly enhance the
binding ability of modified AS1411 to nucleolin (KD = 16.36).

2.2.4 Locked nucleic acid (LNA)
Locked Nucleic Acid (LNA) is a nucleic acid analog whose the

conformation structure of the locked nucleic acid (LNA) is “locked”
by a methylene bridge connecting the 2′-oxygen and the 4′-carbon
atoms. The fixed C3’ internal conformation of LNA endows the
modified aptamers with enhanced thermal stability, improved
nuclease resistance, and stable base-pairings (Figure 3D)
(Koshkin et al., 1998).

LNA is the most promising modified nucleotide widely used in
antisense oligonucleotides, siRNAs and aptamers. Its characteristics
in binding affinity and nuclease resistance are being extensively
studied. Birte et al. described the changes in affinity after the
incorporation of 2′-amino LNA and LNA monomers into avidin
protein binding DNA aptamers (Hernandez et al., 2009). The kinetic
curves of the selected modified aptamers were obtained by SPR and
compared to those of the unmodified DNA aptamers. The results
showed that LNA modified a new avidin aptamer, and the affinity
was increased by 8.5 times. The incorporation of 2′-amino LNA
served as a new monomer into the aptamer can also obviously
improve the binding affinity of the antibiotin, and has the potential
function as an additional molecular entity carrier unit.

2.2.5 Unlocked nucleic acid (UNA)
As an acyclic analog of RNA, the bond linking to the C2’ and C3’

atoms in UNA (unlocking nucleic acid) (Figure 3E) ribose ring is cut
off (Nielsen et al., 1995). In 1995, researchers first synthesized UNA
thymine monomer, which was proven to significantly reduce the
thermal stability of DNA double strands. Recently, the synthesis of
UNA-A, -C, -U and -G phosphoramides, brought all UNA
monomers into DNA and RNA double stranded bodies, and
analyzed their thermodynamic stability (Campbell and Wengel,
2011).

The initial idea of UNA was to increase the flexibility of aptamer
structures for promoting an induced fit mechanism between
aptamer and target. As a 31 nt DNA aptamer, RE31 is composed

of G-quadruplex as well as double stranded domains, which can
effectively prolong thrombin time. Anna et al. reported the effect of
some modified nucleotide residues on the thermodynamic as well as
biological characteristics of RE31 and the changes in folding
topology (Kotkowiak et al., 2019). In particular, the impact of
nucleosides in unlocked nucleic acid (UNA) sequences was
assessed. SPR spectroscopy was used to determine the interaction
intensity between RE31 variant and thrombin. O3 containing a
UNA-C residue at the T15 position obtained the most favorable KD

value (KD value of 0.43 nM) compared with the unmodified RE31
(with a KD value of 1.34 nM). Using UNA-A, UNA-U and UNA-G
to modify the T15 position of the RE31 variant, the KD values
measured are higher but still lower than the unmodified RE32 (KD

values of 0.76, 0.68 and 0.75 nM for O2, O4 and O5, respectively).
The results demonstrate that both UNA residues as appropriate
molecular tools can regulate RE31 thermal as well as biological
stability. Their results offer new views into the application field in
modified DNA aptamers as potential replacements for classic
antithrombin drugs.

2.2.6 Xenogenic nucleic acids (XNAs)
Nucleic acid backbone modifications can reduce its

susceptibility to nucleases, and these modified nucleic acids can
be used for targeting and therapeutic purposes. These nucleic acid
backbone structures are significantly different from natural nucleic
acids and are often referred to as xenogenic nucleic acids (XNA)
(Meek et al., 2016). In the early 2000s, a research group introduced a
modification that the 4′-oxygen atom of the sugar unit was replaced
by a sulfur atom (Figure 4A) (Kato et al., 2005). 4′-
Thioribonucleoside proved to facilitate enhancing the stability of
modified aptamer without loss of the protein binding ability
(Hoshika et al., 2004). For instance, Kato et al. used 4′-thioribose
for the synthesis of 4′-thiouridine (4′-thioUTP) and 4′-thiacytidine
(4′-TTP) triphosphate, which were then used for in vitro screening
of anti-thrombin thioRNA aptamers (Kato et al., 2005). The
resulting 4′-thio-modified aptamer bound the thrombin target
with high affinity (KD = 4.7 nM) and showed a 50-fold increase
in resistance to RNase A compared to wild-type RNA. In addition,
Noriaki et al. selected 4′-thioRNA aptamers by optimizing the
nucleoside triphosphates (NTPs) concentration, and the most
potent aptamers generated by this selection experiment showed
high affinity binding to thrombin (KD = 7.2 nM) (Minakawa et al.,
2008).

Threose nucleic acid (TNA) (Figure 4B) as a type of XNA, the
natural ribose in its RNA is replaced by unnatural threose.
McCloskey et al. integrated chemically modified uracil residues
into the 3′,2′-α-l-threofuranosyl nucleic acid library and screened
out biologically stable TNA aptamers (McCloskey et al., 2021). The
modified and unmodified S1 aptamers had KD values of 3.1 ± 1.0 and
34 ± 11 nM for the S1 protein in SARS-CoV-2, respectively.
Chaput’s team developed a TNA heterologous nucleic acid
system that is significantly resistant to nuclease digestion (Dunn
et al., 2020). Functional TNA aptamers can be isolated by engineered
TNA polymerase with KD values for HIV reverse transcriptase (HIV
RT) ranging from 0.4 to 4.0 nM. This TNA aptamer has the ability of
high binding affinity and thermal stability, which is a powerful
system for developing diagnostic and therapeutic drugs. Among the
other XNAs aptamers, three structurally unique 2′-O-methyl-
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ribose-1,5-anhydrohexitol nucleic acid (MeORNA-HNA)
(Figure 4C)aptamers targeting rat VEGF164 target protein were
successfully screened by the researchers (Eremeeva et al., 2019). The
HNA/2′-OMemodified aptamer was able to bind rat VEGF164 with
low nanomolar affinity (KD = 1.1 nM). Additionally, Arangundy-
Franklin et al. report the synthesis and reverse transcription of
uncharged P-alkyl phosphonate nucleic acids (phNA) (Figure 4D)
under full substructure using engineered polymerase variants
(Arangundy-Franklin et al., 2019). The experimental results
showed that the affinities of phNA aptamers T1-20 and T5-20 to
streptavidin (SA) appeared in the low millimolar range.

2.2.7 Spiegelmer modifications
Different from the chirality centers of ribose sugars in natural

aptamers, the Spiegelmer (mirror-image aptamer) (Figure 5) have
inverted chirality centers in ribose sugars. Because nature enzymes
did not recognize L-nucleotides, it made Spiegelmer more stable in
plasma. It is helpful to design the aptamer with good biostability. In the
development of Spiegelmer, the critical point was that requiring the
enzymes to recognize the L-nucleotides because the enzymes were
necessary for the PCR or sequencing process. Zhu’s group developed

the technology for the selection L-aptamers with mirror-image DNA
polymerase (Chen et al., 2022). They selected the L-aptamers that could
be used in inhibiting and detecting thrombin in nuclease-rich
environments. Furthermore, there are many high binding affinity
L-aptamers were generated in these years (Vater and Klussmann,
2015). For example, an important Spiegelmer, NOX-A12, could bind
stromal-cell-derived factor-1 with a KD of 0.2 nM. NOX-A12 was
further applied in clinical trials with good therapy effect (Vater
et al., 2013). In addition, other Spiegelmers also were evaluated in
phase trials because its safety profile and therapy effect (Vater and
Klussmann, 2015). Klussmann group developed the mirror-image
aptamer (NOX-D19) to target complement factor C5a with a KD of
1.4 nM (Hoehlig et al., 2013). The NOX-D19 also had therapy effect on
animal model. In addition, a L-RNA aptamer was selected to bind
D-RNA by Sczepanski′s group (Dey and Sczepanski, 2020), it expanded
the application of Spiegelmer.

2.3 Phosphate modifications

2.3.1 Phosphorothioate (PS)
Modifications on the phosphate part of aptamer are regarded as

an important strategy to improve affinity, and this modification also

FIGURE 4
The ribose modifications on the aptamers to enhance binding affinity. (A) 4′-S modification; (B) TNA modification; (C) HNA modification; (D) phNA
modification.

FIGURE 5
Themirror-image nucleotide (L-DNA) modification on aptamers.

FIGURE 6
The chemical modifications on the phosphate of aptamers to
improve affinity. (A) Phosphorothioate (PS) modification; (B)
phosphorodithioate (PS2) modification.
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can help aptamer to resist nuclease in vivo. Two non-bridging
oxygens can be replaced by sulfur to form thiophosphorus (PS)
and phosphorodithioate (PS2) (Figure 6). PS-modified DNA had
been well established through solid phase synthesis (Blackburn et al.,
2006). To synthesize PS DNA, the vulcanization step replaced the
oxidation step (Saran et al., 2021). Vulcanization of newly formed
phosphite triester ester with Beaucage reagent. This reaction would
form two isomers (Blackburn et al., 2006; Frederiksen and Piccirilli,
2009). It was worth noting that single PS modification could be
separated by HPLC, and multiple PS modified pure diastereomers
can be obtained by synthesis methods (Stec and Wilk, 1994; Hara
et al., 2020). In the following, several examples could be presented to
describe the PS modification for enhancing the affinity between
aptamers and targets.

Liu et al. previously screened an adipocyte-specific aptamer
named Adipo8 (Liu et al., 2012). However, two shortages
including short half-life and low affinity hampered the
therapeutic application of aptamers (Wang et al., 2011). To solve
these mentioned above issues, Chen et al. used chemical
modification approaches to modify aptamer Adipo8 by
incorporating phosphorothioate linkages and conjugating
polyethylene glycol (PEG) (Chen et al., 2015). Compared with
unmodified Adipo8, they found that PS modified aptamer
showed higher binding affinity to the target and performed high
specificity in vitro. Furthermore, PS modified aptamer
Adipo8 inhibited effectively adipogenic differentiation of adipose
tissue, which showed potential in treating obesity.

Glypican-3 is the cellular membrane proteoglycan and is
regarded as a tumor biomarker for diagnosing hepatocellular
carcinoma. Recently, Dong et al. used capillary electrophoresis
(CE)-SELEX technology to successfully screen an aptamer named
AP613-1 with a 59.85 nM KD value that can specifically bind to
glypican-3 (Dong et al., 2018). When a phosphorothioate linkage
was incorporated into APS613-1, the binding affinity of APS613-1
was improved to 15.48 nM (Dong et al., 2018). In addition, APS613-
1 with PS modification was conjugated with Alexa Fluor 750. This
conjugate could use for subcutaneous hepatocellular carcinoma
imaging in vivo, indicating that it might be a potential agent in
glypican-3 positive tumor imaging for diagnosing hepatocellular
carcinoma.

Aptamer with PS modification also was used in detecting heavy
metal cadmium ions, and it is exposure resulted in serious health
risks. Recently, Yu screened an aptamer (CBA15) to develop a
fluorescence anisotropy (FA) sensor for detecting cadmium ions.
However, the CBA15 demonstrated unmet binding affinity to the
target, which showed low sensitivity. To acquire better sensing
performance, they used PS modification approach to modify
aptamer’s phosphate backbone to improve the binding affinity of
an aptamer to target by adding extra interaction between sulfur and
cadmium ions. Compared with unmodified CBA15, PS modified
CBA15 with a 47 nM KD value represents a more than four-fold
enhancement (Yu and Zhao, 2022).

2.3.2 Phosphorodithioate (PS2)
The incorporation of phosphorodithioate (PS2) (Figure 6B) in

the aptamers could also increase its binding affinity to the target
proteins. Oligonucleotide (ODN) dithiophosphates are chemically
modified ODN in which two sulfurs replaced non-bridging oxygen

atoms at phosphate moiety (Volk and Lokesh, 2017). This
modification strategy was used for improving the binding affinity
of nucleic acid drugs and resist nuclease degradation. For example, it
is usually used in aptamer modification for aptamer-based
diagnostics and therapeutic applications. Abeydeera et al. showed
that one dithiophosphate incorporation at a specific position could
enhance binding affinity about ~1000-fold for an RNA aptamer
(Abeydeera et al., 2016). The synthesis of nucleoside
dithiophosphates can be performed via several approaches. The
most commonly used approach is the phosphoramidite approach
(Beaucage, 1993). The one-pot reaction with H2S and tetrazole was
prepared to construct phosphordithioate. The solid-phase synthesis
of aptamers with PS2 modification is similar to traditional methods
for synthesizing ODN. For the incorporation of phosphorodithioate,
the conventional order of oxidation after capping was replaced by
sulfurization before capping. This procedure could lead to fewer by-
products.

The PS2 modified aptamers can resist the degradation of
nucleases. This property had been evaluated by several labs
(Sakatsume et al., 1992; Cummins et al., 1996). These findings
pointed out that PS2 linkages in oligonucleotides were not
hydrolyzed by nucleases (Murata et al., 1990). However, it had
been reported that PS2-aptamers were as susceptible to DNase I as
the natural aptamers (Ghosh et al., 1993).

The improved binding affinity of the PS2-ODNs to the target
proteins has drawn some attention. Researchers have evaluated the
interactions of the PS2 modified ODNs with proteins. Cheng et al.
evaluated the interactions between E. coli single-stranded DNA
binding protein (SSB) and ODNs with chemical modifications
including PS2 modification (Cheng et al., 1997). The results
demonstrated that the binding affinity of PS2-ODN to SSB was
significantly higher than unmodified ODN. Additionally, the length
of PS2-ODN could also influence the binding to SSB. Another team
compared the cellular pharmacology of phosphorothioate and PS2-
ODNs in HL60 cells (Tonkinson et al., 1994). They also
demonstrated that PS2-ODNs could bind rsCD4 and bFGF to
inhibit the activity of protein kinase C (PKC). In 2002, a team
reported that the affinity of duplex aptamers targeting NF-κB was
dramatically increased when the backbone was substituted by
dithioate (Volk et al., 2002).

Because of the enhanced affinity and higher stability of the
PS2 backbone-modifications, the thioaptamers have a promising
future. A novel bead-based thioaptamer selection protocol was
reported, which could be used to generate potential thioaptamers
targeting specific proteins (Yang et al., 2003; Yang and Gorenstein,
2004). Hayes et al. demonstrated XBY-S2 thioaptamer targeting AP-
1 with resisting nuclease degradation (Hayes and Salvato, 2012). Its
antiviral ability against the West Nile virus has been tested. Further,
the activity of XBY-S2 has been proven effective in animal models.

2.4 Extended alphabet (artificial nucleotides)

In the nature SELEX library, the types of nucleotides are limited
(only dA, dT, dC, dG for DNA, or A, G, C, U for RNA), and these
nucleotides have similar chemical structures, resulting in low
chemical diversity. In contrast, there are 20 natural amino acids,
which are made up of target proteins for aptamer. Therefore,
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increasing the chemical diversity of SELEX is regarded as a
promising method to acquire high affinity aptamer (Hamashima
et al., 2018).

Hirao et al. first added artificial nucleotides into the SELEX
library for high affinity aptamer selection, and they called it
ExSELEX (genetic alphabet expansion for systematic evolution
of ligands by exponential enrichment (Kimoto et al., 2013; Kimoto
et al., 2023). All of the oligonucleotides in the SELEX library
included predetermined 1-3 highly hydrophobic unnatural bases
Ds (7- (2-thienyl) imidazo [4, 5-b] pyridine) (Figure 7A), which
could enhance the hydrophobic interactions between the aptamer
and target proteins. Then they identified two DNA aptamers bind
respectively vascular endothelial cell growth factor-165 (VEGF-
165) (KD = 0.65 p.m.) and interferon-γ (IFN-γ) (KD = 0.038 nM).
The affinities of the aforementioned two aptamers are >100-fold
enhanced over the aptamers which only contained natural
nucleotides. Hirao’s group also improved the ExSELEX in a
subsequent study, in which they constructed a Ds-randomized
library improving the complexity of the initial version library
(Matsunaga et al., 2017). Using the enhanced version ExSELEX,

they identified the aptamer targeting von Willebrand factor A1-
domain (vWF) (KD = 75 p.m.). In addition, Hirao’s group also
developed the mini-hairpin DNA to modify aptamer for
improving the stability of unnatural-nucleotides aptamers
without declining their affinity (Matsunaga et al., 2015; Kimoto
et al., 2016). Benner’s group constructed a laboratory in vitro
evolution system including A, G, C, T, Z (Figure 7B) and P
(Figure 7C) (Biondi et al., 2016). They generated an aptamer
binding protective antigen (PA) PA63 with a dissociation
constant of ~35 nM. Furthermore, by combining cell
engineering technology and a laboratory in vitro evolution
system, Benner and his colleagues found a series of aptamers
including unnatural nucleotides targeting glypican 3 (GPC3)
which was expressed on the surface of liver cells (Zhang et al.,
2016). Artificial nucleoside incorporation could increase the
complexity of the SELEX library, and it made aptamers more
like proteins, thereby allowing aptamers to bind target proteins
with high affinity. Recently, the Hachimoji eight-letter DNA/RNA
was reported, which might promote significantly the aptamer field
in the future (Hoshika et al., 2019).

FIGURE 7
The artificial nucleotides incorporating into aptamer to improve binding affinity. (A) The (7- (2-thienyl) imidazo [4, 5-b] pyridine) (Ds) artificial
nucleotide; (B) the 6-amino-5-nitro-3- (1′-β-D-2′-deoxyribofuranosyl)-2 (1H)-pyridone (Z) artificial nucleotide; (C) the 2-amino-8- (1′-β-D-2′-deoxy-
ribofuranosyl)-imidazo-[1,2-a]-1,3,5-triazin-4 (8H)-one) (P) artificial nucleotide.

TABLE 1 Chemically modified aptamers for improving binding affinity.

Target Aptamer (length) Modification strategy KD Ref

platelet-derived growth factor B SL1 (29) SOMAmer 0.02 nM Davies et al. (2012)

Interleukin-8 8A-35 (35) 2′-fluoro-pyrimidine 1.72 pM Sung et al. (2014)

HIV-1 reverse transcriptase FA1 (77) 2′-deoxy-2′-fluoroarabinonucleotide 4 pM Alves Ferreira-Bravo et al. (2015)

Salivary
α-amylase

AMYm1 (75) base-appended base <1 nM Minagawa et al. (2017)

vascular endothelial cell growth factor-165 AF83-7 (24) PS2 modification 1 pM Abeydeera et al. (2016)

Interferon-γ IFd1-3Ds-49 (49) Artificial Nucleotide Ds 0.038 nM Kimoto et al. (2013)

vascular endothelial cell growth factor-165 VGd1-2Ds-47 (47) Artificial Nucleotide Ds 0.65 pM Kimoto et al. (2013)
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3 Precision strike, new driving force for
aptamer affinity improvement by
chemical modification

The current researches put forward higher requirements for
aptamers - precision strike, in which the target of the aptamer is not
no longer the whole molecule but a part of it. Therefore, high affinity
and specificity is required. For this purpose, chemicalmodificationmust
be the most powerful sword. Recent works from Ichiro Hirao’s group
succeeded to identify four dengue non-structural protein 1 (DEN-NS1)
serotypes from clinical samples using expended alphabet Ds included
aptamers (KD: 27–182 p.m.). The specificity of each aptamer is
remarkably high, and the aptamers can recognize the subtle variants
of DENNS1 with at least 96.9% amino acid sequence identity, beyond
the capability of serotype identification (69–80% sequence identities
(Matsunaga et al., 2021a; Matsunaga et al., 2021b). The presence of
several Ds bases in these aptamers significantly increased the affinities
and specificities to each target. Not alone, Ge Zhang’s group identified
an aptamer, named aptscl56, which specifically targets the structural
domain loop3 of sclerostin to promote bone formation without
cardiovascular risks. Because the loop2 of plays a protective role in
cardiovascular system, once the aptamer binds to it, it will lead to
cardiovascular risk just like the previously reported monoclonal
antibody. In their aptamer, four methoxy modifications at each
5′and 3′terminals not only provided nuclease-resistant ability, but
also enhanced affinity (Yu et al., 2022). Following these concepts, it
will be a trend to explore subdomain binding aptamers, in which
chemical modification will definitely play his role well.

4 Discussion and future perspectives

The affinity of aptamers to the target protein is a key factor for
their pharmacodynamics. Generally, the higher binding affinity was
linked to better pharmacodynamics. The reduced dosage could
contribute to less toxicity. The naturally occurring aptamer are
composed of four kinds of nucleosides (A, G, C, T or U).
Typically, naturally occurring aptamers show a decreased binding
affinity than cognate antibodies. To enhance the affinity of aptamers,
chemical modifications have great potentials to optimize the
interactions between the aptamer and its ligand protein. Until
now, many high affinity aptamers were generated by using
chemical modifications either in pre-SELEX or post-SELEX
procedures (Table 1). In the pre-SELEX procedure, the chemically
modified nucleotide analogs were involved early in the construction of
the SELEX library through phosphoramidite chemistry. Importantly,
it has reached a conclusion that the involved nucleotide analogs must
be compatible with DNA/RNA polymerase during PCR procedure.
The next challenge is to understand which nucleotide analogs need
what kind of DNA/RNA polymerase to maximize the PCR yield for
improving the success rate of aptamer screening. Just like SOMAmers,
the hydrophobicity of amino acid like side chains were demonstrated
to have great potential in increasing hydrophobic interactions
between the aptamers and target proteins (Vaught et al., 2010;
Rohloff et al., 2014). Although chemical modifications benefit
aptamers with abundant diversity and preferred nuclease
resistance, there is rare evidence on which types of chemical
modifications have the most impact. Accordingly, most chemical

modifications hindered the integrity of SELEX libraries during their
construction and the enrichment of high-affinity sequences, as well as
the final sequencing procedure. In the post-SELEX procedure, the
choice of chemical modifications is usually unrestricted, which
significantly widens the diversity of modified aptamers.
Additionally, chemical modifications in post-SELEX are site-
specific. It indicates that diverse modifications can be
simultaneously incorporated into aptamers to meet the criteria for
optimizing properties. On contrary to pre-SELEX modification, pre-
SELEX modification becomes complex and costly in the screening
procedure. Not only did many sites were needed to be considered in
the initial preparation of themodified aptamers, but also the screening
methodwas limited. For example, depending on the researchers’will if
we want to manipulate 2 types of modification groups on a 40-nt long
DNA aptamer, a total of 340 possibilities needed to be considered,
which cannot be completed by manpower. One of the shortcuts is to
consider only one modification at one site of a known aptamer. Just as
phosphorodithioate modification in an RNA aptamer, Xianbin Yang’s
group tested every phosphorodithioate linkage at a single site and
finally obtained ~1000-fold of affinity enhancement in a case
(Abeydeera et al., 2016). Additionally, structure-guided post-SELEX
optimization is strongly recommended after a deep understanding of
the interactions between the aptamer and its target (Xu et al., 2019).
Last but not the least, high-throughput screening methods, such as
DNAmicrochips, artificial intelligence, and combinational chemistry,
could be involved to increase the capacity of post-SELEX
modification. The possibilities of the modification types and
modification sites in aptamer are both huge. It is impossible to
characterize all the interactions of the modified aptamers to the
target manually. Thus, it is necessary to seek an efficient virtual
prediction strategy to optimize the modification types and
modification sites of the aptamers for high binding affinity.
Artificial intelligence (AI) has witnessed successes in predicting the
interactions between targets and ligands in drug discovery as
previously reported. Using high-throughput DNA chip technology,
the binding ability data of aptamers with some modifications at some
sites could be obtained. Based on the above data, the researchers could
further build and train AI models to predict the enormous binding
affinity of aptamers with different modifications at different sites.
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